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CONTROLLABILITY RESULTS FOR SECOND ORDER

IMPULSIVE STOCHASTIC FUNCTIONAL DIFFERENTIAL

SYSTEMS WITH STATE-DEPENDENT DELAY

C. PARTHASARATHY AND M. MALLIKA ARJUNAN

Abstract. In this paper, we study the controllability results of second-order

impulsive stochastic differential and neutral differential systems with state-
dependent delay. Sufficient conditions for controllability of a class of second-
order stochastic differential systems are formulated then the results are ob-
tained by using the theory of strongly continuous cosine families and Sadovskii

fixed point theorem. An example is provided to illustrate the theory.

1. Introduction

Stochastic differential equations have been considered extensively through dis-
cussion in the finite and infinite dimensional spaces. As a matter of fact, there exist
broad literature on the related to the topic and it has played an important role in
many ways such as option pricing, forecast of the growth of population, etc., and as
an applications which cover the generalizations of stochastic differential equations
arising in the fields such as electromagnetic theory, population dynamics, and heat
conduction in material with memory. Random differential and integral equations
play an important role in characterizing numerous social, physical, biological and
engineering problems. For more details reader may refer [9, 15, 19, 32, 37, 39] and
reference therein.

Impulsive systems arise naturally in various fields, such as mechanical systems,
economics, engineering, biological systems and population dynamics, undergo abrupt
changes in their state at certain moments between intervals of continuous evolution.
Since many evolution process, optimal control models in economics, stimulated
neural networks, frequency- modulated systems and some motions of missiles or
aircrafts are characterized by the impulsive dynamical behavior. Nowadays, there
has been increasing interest in the analysis and synthesis of impulsive systems due
to their significance both in theory and applications. Thus the theory of impul-
sive differential equations has seen considerable development. For more details,
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see the monographs of Lakshmikantham et al. [34], Bainov and Simeonov [3] and
Somoilenko and Perestuk [42].

Controllability play an important role in the analysis and design of control sys-
tems. Any control system is said to be controllable if every state correspond-
ing to this process can be affected or controlled in respective time by some con-
trol signals. If the system cannot be controlled completely then different types
of controllability can be defined such as approximate, null, local null and local
approximate null controllability. For more details reader may refer the papers
[4, 5, 6, 7, 11, 12, 30, 33, 35, 38, 40] and reference therein. Functional differential
equations with state-dependent delay appear frequently in applications as model
equations and for this reason the study of such equations gave received much atten-
tion in last few years, see for an instance [1, 2, 10, 16, 22, 27, 31, 36] and reference
therein. The partial differential with differential equations with state dependent de-
lay have been examine recently, for more details reader may refer [23, 24, 25, 26, 29]
and reference therein.

In [8], P. Balasubramaniam et al. have studied approximate controllability of
second-order stochastic distributed implicit functional differential systems with in-
finite delay.by using Sadovskii’s fixed point theorem, whereas Yong Ren et al. [47]
have proved second-order neutral impulsive stochastic evolution equations with
delay and Chang et al. [13] have established the existence results for a second
order impulsive functional differential equations with state-dependent delay by us-
ing Sadovskii’s fixed point theorem, then Ganesan Arthi et al. [18] have examine
the controllability of second-order impulsive functional differential equations with
state-dependent delay by using Sadovskii’s fixed point theorem. Recently, Jing
Cui et al. [14] have investigate existence results for impulsive neutral second-order
stochastic evolution equations with nonlocal conditions by using Sadovskii’s fixed
point theorem.

Inspired by the above mentioned works [8, 13, 14, 18, 47], the main purpose of
this paper is to establish the controllability results for the following second order
impulsive stochastic differential equations with state-dependent delay of the form

d[x′(t)] =
[
Ax(t) +Bu(t)

]
dt+ f(t, xρ(t,xt))dw(t), t ∈ J := [0, b], (1.1)

x0 = φ ∈ B, x′(0) = ψ ∈ H, (1.2)

∆x(tk) = Ik(xtk), k = 1, 2, . . . ,m, (1.3)

∆x′(tk) = Jk(xtk), k = 1, 2, . . . ,m, (1.4)

where A is the infinitesimal generator of a strongly continuous cosine family of
bonded linear operator C(t) on H. The control function u(·) is given in LF

2 (J, U);
x(t) ∈ H; the histroy xt : (−∞, 0] → H,xt(θ) = x(t + θ), for t ≥ 0, belongs to
phase space B, which will be defined axiomatically in preliminaries; 0 < t1 < t2 <
· · · < tm < b are prefixed numbers. Let K be another separable Hilbert space with
inner product (·, ·)K and norm ∥ · ∥K . Suppose {W (t)}t≥0 is a given K- valued
Brownian motion or Wiener process with a finite trace nuclear covariance operator
Q ≥ 0. Throughout this paper we are employing the inner product and norm
denoted respectively by (·, ·) and ∥ · ∥ for H, U and L(K,H) denotes the space of
all bounded linear operator from K into H. The functions f : J ×B → LQ(K,H),
ρ : J × B → (−∞, b] are measurable mapping in LQ(K,H)-norm. Here LQ(K,H)
denotes the space of all Q-Hilbert Schmidt operators from K into H which will be
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defined in next section. Let φ(t) ∈ L2(Ω,B) and ψ(t) is a H-valued Ft-measurable
random variables independent of Brownian motion {W (t)} with a finite second
moment. Ik and Jk : B → H are appropriate functions. Moreover, let 0 < t1 <
. . . < tm < b, x(t+k ) and x(t−k ) denote the right and left limits of x(t) at t = tk,

∆x(tk) = x(t+k ) − x(t−k ) represents the jump in the state x at time tk. Similarly

x′(t+k ) and x
′(t−k ) denote, respectively, the right and left limits of x′ at tk.

The rest of this paper is organized as follows. In Section 2, we introduce some
basic notations and necessary preliminaries. In Section 3, we establish the control-
lability of second-order impulsive stochastic differential systems . In Section 4, we
derive the controllability of second-order neutral impulsive stochastic differential
systems. Finally, Section 5, paper concludes with an example is to illustrate the
obtained results.

2. Preliminaries

Let (K, ∥ · ∥K) and (H, ∥ · ∥H) be the two separable Hilbert space with inner
product ⟨·, ·⟩K and ⟨·, ·⟩H , respectively. We denote L(K,H) be the set of all linear
bounded operator from K into H, equipped with the usual operator norm ∥ · ∥. In
this article, we use the symbol ∥ · ∥ to denote norms of operator regardless of the
space involved when no confusion possibly arises.
Let (Ω,F , P,H) be the complete probability space furnished with a complete family
of right continuous increasing σ- algebra {Ft, t ∈ J} satisfying Ft ⊂ F . An H-
valued random variable is an F- measurable function x(t) : Ω → H and a collection
of random variables S = {x(t, ω) : Ω → H \ t ∈ J} is called stochastic process.
Usually we write x(t) instead of x(t, ω) and x(t) : J → H in the space of S. Let
{ei}∞i=1 be a complete orthonormal basis of K. Suppose that {w(t) : t ≥ 0} is a
cylindrical K-valued wiener process with a finite trace nuclear covariance operator
Q ≥ 0, denote Tr(Q) =

∑∞
i=1 λi = λ < ∞, which satisfies that Qei = λiei. So,

actually, ω(t) =
∑∞

i=1

√
λiωi(t)ei, where {ωi(t)}∞i=1 are mutually independent one-

dimensional standard Wiener processes. We assume that Ft = σ{ω(s) : 0 ≤ s ≤ t}
is the σ-algebra generated by ω and Ft = F . Let Ψ ∈ L(K,H) and define

∥Ψ∥2Q = Tr(ΨQΨ∗) =
∞∑

n=1

∥
√
λnΨen∥2.

If ∥Ψ∥Q < ∞, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H)
denote the space of all Q-Hilbert-Schmidt operators Ψ : K → H. The completion
LQ(K,H) of L(K,H) with respect to the topology induced by the norm ∥ · ∥Q
where ∥Ψ∥2Q = ⟨Ψ,Ψ⟩ is a Hilbert space with the above norm topology. For more

details reader may refer the reference [15].
The theory of cosine functions of operator is well known from few concepts and

properties related to the second-order abstract Cauchy problem are going to be
mentioned for more details reader may refer [17, 21, 43, 44]. Now, we say that the
family {C(t) : t ∈ R} of operators in L(H) is a strongly continuous cosine family if

(i) C(0) = I, I is the identity operators in H,
(ii) C(t+ s) + C(t− s) = 2C(t)C(s), for all s, t ∈ R,
(iii) the map t→ C(t)x is strongly continuous for each x ∈ H.
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The strongly continuous sine family {S(t) : t ∈ R}, associated to the given strongly
continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ H, t ∈ R.

We denote N and Ñ are a pair of positive constants such that ∥C(t)∥2 ≤ N and

∥S(t)∥2 ≤ Ñ for every t ∈ J . The infinitesimal genertor A : H → H of the cosine
family {C(t) : t ∈ R} is defined by

Ax =

(
d2

dt2

)
C(t)x|t=0,

for all x ∈ D(A) = {x ∈ H : C(·)x ∈ C2(R,H)}.
It is well known that the infinitesimal generator A is a closed, densely defined
operator on H. Such cosine and corresponding sine families and their generators
satisfy the following properties hold(see [45]).

Proposition 2.1. Suppose that A is the infinitesimal generator of a cosine family
of operators {C(t) : t ∈ R}. Then, it holds the following.

(i) There exists M∗ ≥ 1 and α ≥ 0 such that ∥C(t)∥ ≤ M∗eα|t| and hence
∥S(t)∥ ≤M ∗ eα|t|.

(ii) A
∫ r

s
S(u)xdu = [C(r)− C(s)]x, for all 0 ≤ s ≤ r <∞.

(iii) There exists N∗ ≥ 1 such that ∥S(s) − S(r)∥ ≤ N∗|
∫ r

s
eα|s|ds|, for all

0 ≤ s ≤ r <∞.

The uniform boundedness principle, together with Proposition 2.1, part(i), im-
plies that both {C(t) : t ∈ [0, b]} and {S(t) : t ∈ [0, b]} are uniformly bounded by

some positive constants N, Ñ respectively.
The existence of solutions of the second order linear abstract Cauchy problem

x′′(t) =Ax(t) + g(t), t ∈ J, (1.5)

x(0) =u, x′(0) = v, (1.6)

where g : J → H is an integrable function, has been discussed in [43]. Similarly,
the existence of solutions for semilinear second-order abstract Cauchy problem has
been treated in [44].

Definition 2.1. The function x(·) given by

x(t) = C(t)u+ S(t)v +

∫ t

0

S(t− s)g(s)ds, t ∈ J,

is called a mild solution of (1.5)-(1.6) and, if u ∈ H, the function x(·) is continuously
differentiable and

x′(t) = AS(t)u+ C(t)v +

∫ t

0

C(t− s)g(s)ds.

For more details on cosine function theory, reader may refer [43, 45].
To consider the impulsive conditions (1.3)-(1.4), it is convenient to introduce some
additional concepts and notations.
A function u : [µ, τ ] → H is said to be normalized piecewise continuous function
on [µ, τ ] if u is piecewise continuous and left continuous on (µ, τ ]. We denoted by
PC([µ, τ ],H) the space of normalized piecewise continuous functions from [µ, τ ] into
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H. In particular, we introduce the space PC formed by all normalized piecewise
continuous function u : [0, b] → H such that u(·) is continuous at t ̸= tk, u(t

−
k ) =

u(tk) and u(t+k ) exists, for k = 1, 2, . . . ,m. In this paper, we always assume that

PC is endowed with the norm ∥u∥PC =

(
sups∈J E∥u(s)∥2

) 1
2

. It is clear that

(PC, ∥ · ∥PC) is a Banach space.
To simplify the notations, we put t0 = 0, tm+1 = b and, for u ∈ PC, we denote by
ũk, for k = 1, 2, . . . ,m the function ũk ∈ C(tk, tk+1, L

2(Ω, H)) given by ũk(t) = u(t)
for t ∈ (tk, tk+1] and ũk(tk) = limt→t+k

u(t). Moreover, for a set B ⊆ PC, we denote
by B̃k for k = 1, 2, . . . ,m, the set B̃k = {ũk : u ∈ B}.
In this work, we will employ an axiomatic definition for the phase space (B, ∥ · ∥B)
is a seminormed linear space of F0-measurable functions maping (−∞, 0] into Hα

and satisfies the following conditions[20, 28]:

(A1) If x : (−∞, σ + b] → Hα, b > 0, is such that x|[σ,σ+b] ∈ PC([σ, σ + b] : Hα)
and xσ ∈ B, then for every t ∈ [σ, σ + b] the following conditions hold:
(i) xt is in B,
(ii) ∥x(t)∥ ≤ H∥xt∥B,
(iii) ∥xt∥B ≤ K(t− σ) sup{∥x(s)∥ : σ ≤ s ≤ t}+M(t− σ)∥xσ∥B,
where H ≥ 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is
locally bounded, and H,K,M are independent of x(·).

(A2) For the function x(·) in (A1), xt is a B-valued continuous function on [0, b].
(A3) The space B is complete.

The collection of all strongly measurable, square integrable, H-valued random
variables, denoted by L2(Ω,F , P ;H) ≡ L2(Ω, H) is a Banach space equipped with

norm ∥x(·)∥L2 = (E∥x(·, w)∥2) 1
2 , where E denotes expectation defined by Ex =∫

Ω
x(w)dP . Let J1 = (−∞, b] and C(J1, L2(Ω,H)) be the Banach space of all con-

tinuous maps from J1 into L2(Ω,H) satisfying the conditions sup0≤t≤bE∥x(t)∥2 <
∞. An important subspace is given by L0

2(Ω, H) which denote the family of all
F0-measurable, H-valued random variable x(0). The notation Br[x,H] stands for
the closed ball with center at x and radius r > 0 in H.

Let C be the closed subspace of all continuously differentiable process x ∈
C1(J, L2(Ω,H)) consisting of Ft-adapted measurable process such that the F0-
adapted process φ,ψ ∈ L0

2(Ω,B). Let ∥ · ∥C be a seminorm in C defined by

∥x∥C =

(
sup
t∈J

∥xt∥2B
) 1

2

,

where

∥xs∥B ≤MbE∥φ∥B +Kb sup
0≤s≤b

E∥x(s)∥α,

Kb = supt∈J{K(t) : 0 ≤ t ≤ b}, Mb = supt∈J{M(t) : 0 ≤ t ≤ b}. It is easy to verify
that C, endowed with the norm topology as defined above, is a Banach space.

Lemma 2.1. (Sadosvskii’s Fixed Point Theorem[41]). Let F be condensing oper-
ator on a Banach space X. If F (S) ⊂ S for a convex, closed and bounded sets S
of X, then F has a fixed point in S.
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3. Controllability Results For Second Order Impulsive Stochastic
Systems

In this section, we prove the controllability of impulsive stochastic differential
systems with state-dependent delay. Let J1 = (−∞, b] , here we present by defining
the mild solution for the impulsive stochastic differential systems (1.1)-(1.4).

Definition 3.2. An Ft-adapted stochastic process x : (−∞, b] → H is called
mild solution of the system (1.1)-(1.4) if x ∈ C1(J, L2(Ω,H)), the function S(t −
s)f(t, xρ(s,xs)) is integrable on J , x0 = φ, x′(0) = ψ and ∆x(tk) = Ik(x(tk)),
∆x′(tk) = Jk(x(tk)), k = 1, 2, . . . ,m, x(t) satisfied the following integral equation:

x(t) = C(t)φ(0) + S(t)ψ +

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)f(t, xρ(s,xs))dw(s)

+
∑

0<tk<t

C(t− tk)Ik(xtk) +
∑

0<tk<t

S(t− tk)Jk(xtk), t ∈ J.

Definition 3.3. The nonlinear stochastic differential equations (1.1)-(1.4) is said
to be controllable on the interval J1, if for every continuous initial stochastic process
x0 = φ ∈ B, x′(0) = ψ defined on J0, there exists a stochastic control u ∈ L2(J, U)
which is adapted to the filtration {Ft}t≥0 such that the solution x(·) of (1.1)-
(1.4) satisfies x(b) = x1 where x1 and b are preassigned terminal state and time,
respectively.

In order to prove the main theorem, we always assume that ρ : J ×B → (−∞, b]
is continuous and that φ ∈ B. we assume the following hypotheses:

(Hφ) The function t → φt is continuous from R(ρ−) = {ρ(s, ψ) ≤ 0, (s, ψ) ∈
J × B} into B and there exists a continuous and bounded function Jφ :
R(ρ−) → (0,∞) such that ∥φt∥ ≤ Jφ(t)∥φ∥B for each t ∈ R(ρ−).

(H1) The linear operator W : L2(J, U) → L2(ω;H), defined by

Wu =

∫ b

0

T (b− s)Bu(s)ds,

has an induced inverse W−1 which takes values in L2(J, U)/KerW and
there exist two positive constants M2 and M3 such that

∥B∥2 ≤M1 and∥W−1∥2 ≤M2.

(H2) The function f : J × B → LQ(K,H) satisfies the following conditions:
(i) The function f(·, ψ) : J → LQ(K,H) is strongly measurable.
(ii) The function f(t, ·) : B → LQ(K,H) is continuous for each t ∈ J .
(iii) There exists integrable function p(t) : J → [0,∞) such that

E∥f(t, φ)∥2Q ≤ p(t)Ω(∥φ∥2B), (t, φ) ∈ J × B.

where Ω : [0,∞)× (0,∞) is a continuous nondecreasing function.
(iv) For every positive constant r, there exists an hr ∈ L1(J) such that

sup
∥φ∥2≤r

∥f(t, φ)∥2 ≤ hr(t).

(v) f : J × B → L(K,H) is completely continuous. Then the operator

Ψx(t) =

∫ t

0

S(t− s)f(s, x(s))dw(s) +

∫ t

0

S(t− s)(Bux)(s)ds, t ∈ [0, b]
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is completely continuous.
(H3) There exists a positive constants MIk , MJk

such that

∥Ik(Ψ1)− Ik(Ψ2)∥2 ≤MIk∥Ψ1 −Ψ2∥2B, Ψj ∈ B, j = 1, 2, k = 1, 2, . . . ,m,

∥Jk(Ψ1)− Jk(Ψ2)∥2 ≤MJk
∥Ψ1 −Ψ2∥2B, Ψj ∈ B, j = 1, 2, k = 1, 2, . . . ,m.

(H4) The maps Ik, Jk : B → H, k = 1, 2, . . . ,m are completely continuous
and there exist continuous non-decreasing functions Φk,Γk : [0,∞) →
(0,∞), k = 1, 2, . . . ,m, such that

∥Ik(Ψ)∥2 ≤ Φk(∥Ψ∥2B), lim inf
γ→+∞

Φk(γ)

γ
= γk <∞,

∥Jk(Ψ)∥2 ≤ Γk(∥Ψ∥2B), lim inf
γ→+∞

Γk(γ)

γ
= σk <∞.

Remark 3.1. In the rest of this paper, y : (−∞, b] → H is the function defined by
y(t) = φ(t) on (−∞, 0] and y(t) = C(t)φ(0) + S(t)ψ for t ∈ J . Also ∥y∥b,Mb,Kb

and Jφ
0 are constants defined by ∥y∥b = sups∈[0,b] ∥y(s)∥, Mb = sups∈[0,b]M(s),

Kb = sups∈[0,b]K(s), Jφ
0 = supt∈R(ρ−) J

φ(t).

Lemma 3.2. If x : (−∞, b] → H is a function such that x0 = φ and x|I ∈
PC(I : H), then

∥xs∥B ≤ (Mb + Jφ)∥φ∥B +Kb sup{∥x(θ)∥; θ ∈ [0, max{0, s}]}, s ∈ R(ρ−) ∪ J,

where Jφ = supt∈R(ρ−) J
φ(t), Mb = supt∈J M(t) and Kb = supt∈J K(t).

Theorem 3.1. Assume that the assumptions (Hφ), (H1)-(H4) hold. Then the
system (1.1)-(1.4) is controllable on J1 provided that

(
36 + 362b2M1M2M3

) [
Kb

(
M1Tr(Q) lim inf

ξ→∞

Ω(ξ)

ξ

∫ b

0

p(s)ds+M1

m∑
k=1

MIk

)]
< 1.

Proof. Consider the space Y = {x ∈ PC : u(0) = φ(0)} endowed with the
uniform convergence topology. Using the assumption (H1), for an arbitrary function
x(·), we define the control

u(t) =W−1

[
x1 − C(b)φ(0)− S(b)ψ −

∫ b

0

S(b− s)f(s, xρ(s,xs))dw(s)

−
m∑

k=1

C(b− tk)Ik(xtk)−
m∑

k=1

S(b− tk)Jk(xtk)

]
(t).
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Using this control, we shall show that the operator Ψ : Y → Y defined by

Ψx(t) = C(t)φ(0) + S(t)ψ +

∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))dw(s)

+

∫ t

0

S(t− η)BW−1

{
x1 − C(b)φ(0)−

∫ b

0

S(b− s)f(s, x̄ρ(s,x̄s))dw(s)

− S(b)ψ −
m∑

k=1

C(b− tk)Ik(x̄tk)−
m∑

k=1

S(b− tk)Jk(x̄tk)

}
(η)dη

+
m∑

k=1

C(t− tk)Ik(x̄tk) +
∑

0<tk<t

S(t− tk)Jk(x̄tk), t ∈ J,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the system
(1.1)-(1.4). Clearly, (Ψx)(b) = x1, which means that the control u steers the
systems from the initial state φ to x1 in time b, provided we can obtain a fixed
point of the operator Ψ which implies that the systems is controllable. Here x̄ :
(−∞, b] → H is such that x̄0 = φ and x̄ = x on J . From the axiom (A1) and our
assumption on φ, it is easy to see that Ψx ∈ PC.

Next we claim that there exists r > 0 such that Ψ(Br(y|J , Y )) ⊆ (Br(y|J , Y )). If
we assume this property is false, then for every r > 0 there exist xr ∈ (Br(y|J , Y ))

and tr ∈ J such that r < E∥Ψxr(tr)− y(tr)∥2. Then by using Lemma 3.2 we get

r < E∥Ψxr(tr)− y(tr)∥2

≤ 36NH∥φ∥2B + 36Ñ∥ψ∥2 + 36ÑTr(Q)

∫ tr

0

p(s)Ω(∥xrρ(s,x̄r
s)
)∥2B)ds

+ 362ÑM1M2

∫ tr

0

[
∥x1∥2 +NH∥φ∥2B + ÑTr(Q)

∫ b

0

p(s)Ω(∥xrρ(s,x̄r
s)
)∥2B)ds

+ Ñ∥ψ∥2 +
m∑

k=1

N(MIk∥(x̄tk − ytk∥2B + ∥Ik(ytk)∥2)

+

m∑
k=1

Ñ(MJk
∥(x̄tk − ytk∥2B + ∥Jk(ytk)∥2)

]
dη

+ 36
m∑

k=1

N(MIk∥(x̄tk − ytk∥2B + ∥Ik(ytk)∥2)

+ 36
m∑

k=1

Ñ(MJk
∥(x̄tk − ytk∥2B + ∥Jk(ytk)∥2)

≤ 36NH∥φ∥2B + 36Ñ∥ψ∥2 + 36ÑTr(Q)Ω((Mb + Jφ
0 )∥φ∥2B +Kbr

+Kb∥y∥2b)
∫ tr

0

p(s)ds+ 362b2M1M2

[
∥x1∥2 +NH∥φ∥2B + Ñ∥ψ∥2

+ ÑTr(Q)Ω((Mb + Jφ
0 )∥φ∥2B +Kbr +Kb∥y∥2b)

∫ b

0

p(s)ds

+
m∑

k=1

N(MIkKbr + ∥Ik(ytk)∥2) +
m∑

k=1

Ñ(MJk
Kbr + ∥Jk(ytk)∥2)

]
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+ 36
m∑

k=1

N(MIkKbr + ∥Ik(ytk)∥2) + 36
m∑

k=1

Ñ(MJk
Kbr + ∥Jk(ytk)∥2),

and hence

1 ≤
(
36 + 362b2M1M2M3

) [
Kb

(
ÑTr(Q) lim inf

ξ→∞

Ω(ξ)

ξ

∫ b

0

p(s)ds

+

m∑
k=1

(NMIk + ÑMJk

)]
,

which is the contrary to the our assumption.
Let r > 0 be such that Ψ(Br(y|J , Y )) ⊂ (Br(y|J , Y )). In order to prove that Ψ

is a condensing map on Ψ(Br(y|J , Y )) into (Br(y|J , Y )). We decompose Ψ as Ψ1

and Ψ2 (i.e) Ψ = Ψ1 +Ψ2 where

Ψ1x(t) =S(t)ψ +
∑

0<tk<t

C(t− tk)Ik(x̄tk) +
∑

0<tk<t

S(t− tk)Jk(x̄tk), t ∈ J,

Ψ2x(t) =C(t)φ(0) +

∫ t

0

S(t− s)f(t, x̄ρ(s,x̄s))dw(s) +

∫ t

0

S(t− s)Bu(s)ds, t ∈ J.

Now

E∥Bu(s)∥2 ≤ 36M1M2

[
∥x1∥2 +NH∥φ∥2B + Ñ∥ψ∥2 + Tr(Q)Ñ

∫ b

0

hrds

+N
m∑

k=1

Φk∥x̄tk∥2 + Ñ
m∑

k=1

Γk∥x̄tk∥2
]

≤ 36M1M2

[
∥x1∥2 +NH∥φ∥2B + Ñ∥ψ∥2 + Tr(Q)Ñ

∫ b

0

hrds

+

m∑
k=1

r(NΦk + ÑΓk)

]
= P0.

Step 1. The set Ψ2(Br(y|J , Y ))(t) = {Ψ2x(t) : x ∈ (Br(y|J , Y ))} is relatively
compact in X for every t ∈ J . The case t = 0 is obvious. Let 0 < ϵ < t ≤ b. If
x ∈ (Br(y|J , Y )), from Lemma 3.2 it follows that,

∥x̄ρ(s,x̄s)∥
2
B ≤ r∗ = (Mb + J̃φ)∥φ∥2B +Kbr,

and so

∥
∫ τ

0

S(τ − s)f(t, x̄ρ(s,x̄s))dw(s)∥
2 ≤ r∗∗ = Tr(Q)Ω(r∗)Ñ

∫ b

0

p(s)ds, t ∈ J,

and

∥
∫ τ

0

S(τ − s)Bu(s)ds∥2 ≤ g∗ = Ñ

∫ b

0

P0ds, τ ∈ J.
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Consequently, for x ∈ (Br(y|J , Y )), we define that

E∥Ψ2x(t)∥2 = E∥C(t)φ(0) + S(ϵ)

∫ t−ϵ

0

S(t− ϵ− s)f(t, x̄ρ(s,x̄s))dw(s)+

+

∫ t

t−ϵ

S(t− s)f(t, x̄ρ(s,x̄s))dw(s) + S(ϵ)

∫ t−ϵ

0

S(t− ϵ− s)Bu(s)ds

+

∫ t

t−ϵ

S(t− s)Bu(s)ds∥2

∈ 9{C(t)ϕ(0)}+ 9S(ϵ)Br∗∗(0,H) + 9Mϵ + 9S(ϵ)Bg∗(0,H) + 9Gϵ,

where diam(Mϵ) ≤ 2ÑTr(Q)Ω(r∗)

∫ t

t−ϵ

p(s)ds and diam(Gϵ) ≤ Ñ

∫ t

t−ϵ

P0ds which

proves that Ψ2(Br(y|J , Y ))(t) is relatively compact in H.
Step 2. The function Ψ2(Br(y|J , Y )) is equicontinuous on J . Let 0 < t < b and
ϵ > 0. Since the semigroup (T (t))t≥0 is strongly continuous and Ψ2(Br(y|J , Y )) is
relatively compact in H, there exists 0 < δ ≤ b− t such that

E∥S(h)x− x∥2 < ϵ, x ∈ Ψ2(Br(y|J , Y )), 0 < h < δ.

Under these conditions, for x ∈ Ψ2(Br(y|J , Y )) and 0 < h < δ, we get

E∥Ψ2x(t+ h)−Ψ2x(t)∥2 ≤ E∥S(t+ h)φ(0)− S(t)φ(0)∥2 + E∥S(h)x− x∥2

+ E∥
∫ t+h

t

S(t− s)f(t, x̄ρ(s,x̄s))dw(s)∥
2

+ E∥
∫ t+h

t

S(t− s)Bu(s)ds∥2

≤ 9Ñ∥(S(t+ h)− I)φ(0)∥2 + 9ϵ

+ 9ÑTr(Q)Ω(r∗)

∫ t+h

t

p(s)ds+ 9Ñ

∫ t+h

t

P0ds,

which proves that the set function Ψ2(Br(y|J , Y )) is right equicontinuous at t ∈
(0, b). Similarly, we can prove the right equicontinuity at zero and left equicontinuity
at t ∈ (0, b]. Thus Ψ2(Br(y|J , Y )) is equicontinuous on J .
Step 3. The map Ψ2(·) is continuous on (Br(y|J , Y )). Let (xn)n∈N be a sequence
in (Br(y|J , Y )) and x ∈ (Br(y|J , Y )) such that xn → x in PC. From the Axioms, it
is easy to see that (xn)s → x̄s as n→ ∞ uniformly for s ∈ (−∞, b] as n→ ∞. By
assumption, we have

f(t, xnρ(s,x̄s)) → f(t, x̄ρ(s,x̄s)) as n→ ∞,

for each s ∈ [0, t], and since

∥f(t, xnρ(s,x̄n
s )
)− f(t, x̄ρ(s,x̄s))∥

2 ≤ 2p(t)Ω(r∗) as n→ ∞.
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Now, a standard application of Lebesgue dominated convergence theorem, we have

E∥Ψ2x
n −Ψ2x∥2B

≤ E∥
∫ t

0

S(t− s)[f(t, xnρ(s,x̄n
s )
)− f(t, x̄ρ(s,x̄s))]dw(s)

+

∫ t

0

S(t− η)B

[
W−1

{
x1 − C(b)φ(0)− S(b)ψ

−
∫ b

0

S(b− s)f(s, x̄nρ(s,x̄n
s )
)dw(s)−

m∑
k=1

C(b− tk)Ik(x̄
n
tk
)

−
m∑

k=1

S(b− tk)Jk(x̄
n
tk
)

}
−W−1

{
x1 − C(b)φ(0)

− S(b)ψ −
∫ b

0

S(b− s)f(s, x̄ρ(s,x̄s))dw(s)

−
m∑

k=1

C(b− tk)Ik(x̄tk)−
m∑

k=1

S(b− tk)Jk(x̄tk)

}]
(η)dη∥2

≤ 4Tr(Q)Ñ

∫ t

0

E∥f(t, xnρ(s,x̄s))− f(t, x̄ρ(s,x̄s))∥
2ds

+ 4ÑM1M2

∫ b

0

[
Ñ

∫ b

0

∥f(t, xnρ(s,x̄s))− f(t, x̄ρ(s,x̄s))∥
2ds

+N
m∑

k=1

∥Ik(xntk)− Ik(x̄tk)∥2 + Ñ
m∑

k=1

∥Jk(xntk)− Jk(x̄tk)∥2
]
dη

→ 0 as n→ ∞.

Thus, Ψ2(·) is continuous.
Step 4. The map Ψ1(·) is a contraction on (Br(y|J , Y ))

∥Ψ1x−Ψ1y∥2 ≤ 4Kb

m∑
k=1

(
NMIk + ÑMJk

)
∥x− y∥2.

It follows that Ψ1 is a contraction on (Br(y|J , Y )) which implies that Ψ is a con-
densing operator on (Br(y|J , Y )) into (Br(y|J , Y )).

Finally, from Lemma 2.1, Ψ has a fixed point in Y which implies that any fixed
point Ψ(·) is a mild solution of the problem (1.1)-(1.4). This completes the proof.

4. Controllability Results for Second Order Neutral Impulsive
Stochastic Systems

In this section, we prove the controllability result for nonlinear systems with
state-dependent delay. Consider the impulsive neutral stochastic control systems
of the form

d[x′(t)− g(t, xt)] =
[
Ax(t) +Bu(t)

]
dt+ f(t, xρ(t,xt))dw(t), t ∈ J := [0, b], (4.1)

x0 = φ ∈ B, x′(0) = ψ ∈ H, (4.2)

∆x(tk) = Ik(xtk), k = 1, 2, . . . ,m, (4.3)

∆x′(tk) = Jk(xtk), k = 1, 2, . . . ,m, (4.4)
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where A,B, ρ, f, Ik and Jk are defined in equations (1.1)-(1.4). Here g : J ×B → H
is an appropriate function. Furthermore, we assume the following conditions:

(H5) The function g : J × B → H is completely continuous and there exists
Mg > 0 such that

∥g(t, ψ1)− g(t, ψ2)∥2 ≤Mg∥ψ1 − ψ2∥2, (t, ψl) ∈ J × B, l = 1, 2.

(H6) There exists positive constants θ1, θ2 such that ∥g(t, ψ)∥2 ≤ θ1∥ψ∥2 + θ2,
for every (t, ψ) ∈ J × B.

Definition 4.4. An Ft-adapted stochastic process x : (−∞, b] → H is called
mild solution of the system (4.1)-(4.4) if x ∈ C1(J, L2(Ω,H)), the function S(t −
s)f(t, xρ(s,xs)) and C(t − s)g(s, xs) is integrable on J , x0 = φ, x′(0) = ψ and
∆x(tk) = Ik(x(tk)), ∆x

′(tk) = Jk(x(tk)), k = 1, 2, . . . ,m, x(t) satisfied the follow-
ing integral equation:

x(t) = C(t)φ(0) + S(t)[ψ − g(0, φ)] +

∫ t

0

C(t− s)g(s, xs)ds

+

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)f(s, xρ(s,xs))dw(s)

+
∑

0<tk<t

C(t− tk)Ik(xtk) +
∑

0<tk<t

S(t− tk)Jk(xtk), t ∈ J.

Theorem 4.2. Assume that the assumptions (Hφ), (H1)-(H6) hold. Then the
system (4.1)-(4.4) is controllable on (−∞, b] provided that

1 ≤
(
49 + 492b2ÑM1M2

)[
Kb

(
b2NMg + ÑTr(Q) lim inf

ξ→∞

Ω(ξ)

ξ

∫ b

0

p(s)ds

+
m∑

k=1

(NMIk + ÑMJk

)]
.

Proof. Consider the space Y = {x ∈ PC : u(0) = φ(0)} endowed with the
uniform convergence topology. Using the assumption (H1), for an arbitrary function
x(·), we define the control

u(t) =W−1

[
x1 − C(b)φ(0)− S(b)[ψ − g(0, φ)]−

∫ b

0

C(b− s)g(s, xs)ds

−
∫ b

0

S(b− s)f(s, xρ(s,xs))dw(s)−
m∑

k=1

C(b− tk)Ik(xtk)

−
m∑

k=1

S(b− tk)Jk(xtk)

]
(t).
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Using this control, we shall show that the operator Ψ : Y → Y defined by

Ψx(t) = C(t)φ(0) + S(t)[ψ − g(0, φ)] +

∫ t

0

C(t− s)g(s, xs)ds

+

∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))dw(s) +

∫ t

0

S(t− η)BW−1

[
x1 − C(b)φ(0)

− S(b)[ψ − g(0, φ)]−
∫ b

0

S(b− s)f(s, x̄ρ(s,x̄s))dw(s)

−
∫ t

0

C(b− s)g(s, xs)ds−
m∑

k=1

C(b− tk)Ik(x̄tk)

−
m∑

k=1

S(b− tk)Jk(x̄tk)

]
(η)dη +

m∑
k=1

C(t− tk)Ik(x̄tk)

+
∑

0<tk<t

S(t− tk)Jk(x̄tk), t ∈ J,

has a fixed point x(·). The fixed point x(·) is then a mild solution of the system (4.1)-
(4.4). Clearly, (Ψx)(b) = x1, which means that the control u steers the systems
from the initial state φ to x1 in time b, provided we can obtain a fixed point of the
operator Ψ which implies that the systems is controllable. Here x̄ : (−∞, b] → H
is such that x̄0 = φ and x̄ = x on J . From the axiom (A1) and our assumption on
φ, it is easy to see that Ψx ∈ PC.

Next we claim that there exists r > 0 such that Ψ(Br(y|J , Y )) ⊂ (Br(y|J , Y )).

If this assume this property is false, then for every r > ∥φ∥2 there exist xr ∈
(Br(y|J , Y )) and tr ∈ J such that r < E∥Ψxr(tr)− y(tr)∥2. Then by using Lemma
3.2, we get

r < E∥Ψxr(tr)− y(tr)∥2

≤ 49NH∥φ∥2B + 98Ñ [∥ψ∥2 + ∥g(0, φ)∥2] + 49N

∫ tr

0

∥g(s, (x̄r)s)− g(s, ys)∥2ds

+ 49N

∫ tr

0

∥g(s, ys)∥2ds+ 64ÑTr(Q)

∫ tr

0

p(s)Ω(∥xrρ(s,x̄r
s)
)∥2B)ds

+ 492ÑM1M2

∫ tr

0

[
∥x1∥2 +NH∥φ∥2B + 2Ñ [∥ψ∥2 + ∥g(0, φ)∥2]

+N

∫ b

0

∥g(s, (x̄r)s)− g(s, ys)∥2ds+N

∫ b

0

∥g(s, ys)∥2ds

+ ÑTr(Q)

∫ b

0

p(s)Ω(∥xrρ(s,x̄r
s)
)∥2B)ds+

m∑
k=1

N(MIk∥(x̄tk − ytk∥2B + ∥Ik(ytk)∥2)

+
m∑

k=1

Ñ(MJk
∥(x̄tk − ytk∥2B + ∥Jk(ytk)∥2)

]
dη

+ 49
m∑

k=1

N(MIk∥(x̄tk − ytk∥2B + ∥Ik(ytk)∥2)
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+ 49
m∑

k=1

Ñ(MJk
∥(x̄tk − ytk∥2B + ∥Jk(ytk)∥2)

≤ 49NH∥φ∥2B + 98Ñ [∥ψ∥2 + ∥g(0, φ)∥2] + 49NMgKb

∫ tr

0

∥x̄r − y∥2sds

+ 49N

∫ tr

0

(θ1∥ys∥2B + θ2)ds+ 49ÑTr(Q)Ω((Mb + Jφ
0 )∥φ∥2B +Kbr

+Kb∥y∥2b)
∫ b

0

p(s)ds+ 492b2ÑM1M2

[
∥x1∥2 +NH∥φ∥2B + 2Ñ [∥ψ∥2

+ g(0, φ)∥2] +NMgKb

∫ b

0

∥x̄r − y∥2sds+N

∫ b

0

(θ1∥ys∥2B + θ2)ds

+ ÑTr(Q)Ω((Mb + Jφ
0 )∥φ∥2B +Kbr +Kb∥y∥2b)

∫ b

0

p(s)ds

+

m∑
k=1

N(MIkKbr + ∥Ik(ytk)∥2) +
m∑

k=1

Ñ(MJk
Kbr + ∥Jk(ytk)∥2)

]

+ 49
m∑

k=1

N(MIkKbr + ∥Ik(ytk)∥2) + 49
m∑

k=1

Ñ(MJk
Kbr + ∥Jk(ytk)∥2),

and hence

1 ≤
(
49 + 492b2ÑM1M2

)[
Kb

(
b2NMg + ÑTr(Q) lim inf

ξ→∞

Ω(ξ)

ξ

∫ b

0

p(s)ds

+

m∑
k=1

(NMIk + ÑMJk

)]
,

which is the contrary to the our assumption.
Let r > 0 be such that Ψ(Br(y|J , Y )) ⊂ (Br(y|J , Y )). In order to prove that Ψ

is a condensing map on Ψ(Br(y|J , Y )) into (Br(y|J , Y )). We decompose Ψ as Ψ1

and Ψ2 (i.e) Ψ = Ψ1 +Ψ2 where

Ψ1x(t) = S(t)[ψ − g(0, φ)] +

∫ t

0

C(t− s)g(s, x̄s)ds

+
∑

0<tk<t

C(t− tk)Ik(x̄tk) +
∑

0<tk<t

S(t− tk)Jk(x̄tk), t ∈ J,

Ψ2x(t) = C(t)φ(0) +

∫ t

0

S(t− s)f(t, x̄ρ(s,x̄s))dw(s) +

∫ t

0

S(t− s)Bu(s)ds, t ∈ J.

Now

E∥Bu(s)∥2 ≤ 36M1M2

[
∥x1∥2 +NH∥φ∥2B + 2Ñ [∥ψ∥2 + θ1∥φ∥2 + θ2]

+N

∫ b

0

(θ1∥x̄s∥2 + θ2) + Tr(Q)Ñ

∫ b

0

hrds

+N
m∑

k=1

Φk∥x̄tk∥2 + Ñ
m∑

k=1

Γk∥x̄tk∥2
]
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≤ 36M1M2

[
∥x1∥2 +NH∥φ∥2B + 2Ñ [∥ψ∥2 + θ1∥φ∥2 + θ2]

+ Tr(Q)Ñ

∫ b

0

hrds+ b2N(θ1r + θ2) +

m∑
k=1

r(NΦk + ÑΓk)

]
= P̃0.

Similarly, same as in the proof of Theorem 3.1. we can conclude that Ψ is
continuous and that Ψ2 is completely continuous. Moreover, from estimate

∥Ψ1u−Ψ1v∥2PC ≤ 16Kb

[
b2MgN +

m∑
k=1

(
NMIk + ÑMJk

)]
∥u− v∥2PC ,

it follows that Ψ1 is a contraction on (Br(y|J , Y )) which implies that Ψ is a con-
densing operator on (Br(y|J , Y )) into (Br(y|J , Y )).

Finally, from Lemma 2.1, Ψ has a fixed point in Y which implies that any fixed
point Ψ(·) is a mild solution of the problem (4.1)-(4.4). This completes the proof.

Theorem 4.3. Assume that the assumptions (Hφ), (H1)-(H6) hold. Then the
system (4.1)-(4.4) is controllable on (−∞, b] provided that

1 ≤
(
49 + 492b2ÑM1M2

)[
Kb

(
b2NMg + ÑTr(Q) lim inf

ξ→∞

Ω(ξ)

ξ

∫ b

0

p(s)ds

+
m∑

k=1

(NMIk + ÑMJk

)]
.

Proof. Consider the space Y = {x ∈ PC : u(0) = φ(0)} endowed with the
uniform convergence topology. Using the assumption (H1), for an arbitrary function
x(·), we define the control

u(t) =W−1

[
x1 − C(b)φ(0)− S(b)[ψ − g(0, φ)]−

∫ b

0

C(b− s)g(s, xs)ds

−
∫ b

0

S(b− s)f(s, xρ(s,xs))dw(s)−
m∑

k=1

C(b− tk)Ik(xtk)

−
m∑

k=1

S(b− tk)Jk(xtk)

]
(t).

Using this control, we shall show that the operator Ψ : Y → Y defined by

Ψx(t) = C(t)φ(0) + S(t)[ψ − g(0, φ)] +

∫ t

0

C(t− s)g(s, xs)ds

+

∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))dw(s) +

∫ t

0

S(t− η)BW−1

[
x1 − C(b)φ(0)

− S(b)[ψ − g(0, φ)]−
∫ b

0

S(b− s)f(s, x̄ρ(s,x̄s))dw(s)
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−
∫ t

0

C(b− s)g(s, xs)ds−
m∑

k=1

C(b− tk)Ik(x̄tk)

−
m∑

k=1

S(b− tk)Jk(x̄tk)

]
(η)dη +

m∑
k=1

C(t− tk)Ik(x̄tk)

+
∑

0<tk<t

S(t− tk)Jk(x̄tk), t ∈ J,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the system
(4.1)-(4.4). Clearly, (Ψx)(b) = x1, which means that the control u steers the
systems from the initial state φ to x1 in time b, provided we can obtain a fixed
point of the operator Ψ which implies that the systems is controllable. Here x̄ :
(−∞, b] → H is such that x̄0 = φ and x̄ = x on J . From the axiom (A1) and our
assumption on φ, it is easy to see that Ψx ∈ PC.

Next we claim that there exists r > 0 such that Ψ(Br(y|J , Y )) ⊂ (Br(y|J , Y )). If
this assume this property is false, then for every r > 0 there exist xr ∈ (Br(y|J , Y ))

and tr ∈ J such that r < E∥Ψxr(tr)− y(tr)∥2. Then by using Lemma 3.2, we get

r < E∥Ψxr(tr)− y(tr)∥2

≤ 49NH∥φ∥2B + 98Ñ [∥ψ∥2 + ∥g(0, φ)∥2] + 49N

∫ tr

0

∥g(s, (x̄r)s)− g(s, ys)∥2ds

+ 49N

∫ tr

0

∥g(s, ys)∥2ds+ 64ÑTr(Q)

∫ tr

0

p(s)Ω(∥xrρ(s,x̄r
s)
)∥2B)ds

+ 492ÑM1M2

∫ tr

0

[
∥x1∥2 +NH∥φ∥2B + 2Ñ [∥ψ∥2 + ∥g(0, φ)∥2]

+N

∫ b

0

∥g(s, (x̄r)s)− g(s, ys)∥2ds+N

∫ b

0

∥g(s, ys)∥2ds

+ ÑTr(Q)

∫ b

0

p(s)Ω(∥xrρ(s,x̄r
s)
)∥2B)ds+

m∑
k=1

NΦk∥(x̄tk∥2) +
m∑

k=1

ÑΓ∥(x̄tk∥2)
]
dη

+ 49

m∑
k=1

NΦk(∥x̄tk∥2B) + 49

m∑
k=1

ÑΓk∥(x̄tk∥2B),

Since Φk and Γk are non-decreasing operators, we have

≤ 49NH∥φ∥2B + 98Ñ [∥ψ∥2 + ∥g(0, φ)∥2] + 49NMgKb

∫ tr

0

∥x̄r − y∥2sds

+ 49N

∫ tr

0

(θ1∥ys∥2B + θ2)ds+ 49ÑTr(Q)Ω((Mb + Jφ
0 )∥φ∥2B +Kbr

+Kb∥y∥2b)
∫ b

0

p(s)ds+ 492b2ÑM1M2

[
∥x1∥2 +NH∥φ∥2B + 2Ñ [∥ψ∥2 + g(0, φ)∥2]

+NMgKb

∫ b

0

∥x̄r − y∥2sds+N

∫ b

0

(θ1∥ys∥2B + θ2)ds

+ ÑTr(Q)Ω((Mb + Jφ
0 )∥φ∥2B +Kbr +Kb∥y∥2b)

∫ b

0

p(s)ds
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+
m∑

k=1

NΦk(r
∗) +

m∑
k=1

ÑΓk(r
∗)

]
+ 49

m∑
k=1

NΦk(r
∗) + 49

m∑
k=1

ÑΓk(r
∗),

where ∥x̄tk∥2 ≤ r∗ = (Mb + Jφ
0 )∥φ∥2B +Kb(r + ∥y∥2b) and hence

1 ≤
(
49 + 492b2ÑM1M2

)[
Kb

(
b2NMg + ÑTr(Q) lim inf

ξ→∞

Ω(ξ)

ξ

∫ b

0

p(s)ds

+

m∑
k=1

(Nζk + Ñσk

)]
,

which is the contrary to the our assumption.
Proceeding as in the proof of Theorem 4.2, we can conclude that Ψ(·) is a con-

densing map on Br(y|J , Y ) and from Lemma 2.1, we conclude that there exists a
mild solution x(·) from (4.1)-(4.4). This complete the proof.

Corollary 4.1. If all conditions of Theorem 4.2 hold except that (H2)(iii)replaced
by

(C1) : there exists an integrable function p : J → [0,+∞) and a constant τ ∈
[0, 1) such that

∥f(t, ψ)∥2 ≤ p(t)(1 + ∥ψ∥τB), for each(t, ψ) ∈ J × B,

then the problem (4.1)-(4.4) admits at least one mild solution on (−∞, b]
provided that

(49 + 492b2ÑM1M2)

[
Kb

( m∑
k=1

NMIk + ÑMJk

)
+ b2NMg

]
< 1.

Corollary 4.2. If all the conditions of Theorem 4.3 hold except that (H4) replaced
by the following one,

(C2) : there exists positive constants ck, dk, ek, lk, k = 1, 2, . . . ,m, and constants
µ, υ ∈ [0, 1) such that for each Ψ ∈ B,

∥Ik(Ψ)∥2 ≤ ck + dk(∥Ψ∥B)µ, k = 1, 2, . . . ,m,

and

∥Jk(Ψ)∥2 ≤ ek + lk(∥Ψ∥B)υ, k = 1, 2, . . . ,m,

then the problem (4.1)-(4.4) has at least one mild solution on (−∞, b] pro-
vided that

(49 + 492b2ÑM1M2)

[
Kb

(
ÑTr(Q) lim inf

ξ→∞

Ω(ξ)

ξ

∫ b

0

p(s)ds+ b2NMg

)]
< 1.

Corollary 4.3. If all conditions of Theorem 4.3 hold except that (H2)(iii) and
(H4) replaced by (C1) and (C2), then the problem has at least one mild solution
on (−∞, b] provided that

Kbb
2NMg < 1.
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5. Example

Example 1. Consider the following impulsive stochastic partial differential equa-
tion with state-dependent delay of the form

d

[
∂

∂t
w(t, y)

]
=

[
∂2

∂y2
w(t, y) + z(y)u(t)

]
dt

+

∫ t

−∞
b(s− t)w(s− ρ1(t)ρ2(∥w(t)∥), y)dβ(s), (5.1)

w(t, 0 = w(t, π) = 0, t ∈ J = [0, b], (5.2)

w(τ, y) = φ(τ, y), τ ∈ (−∞, 0], y ∈ [0, π], (5.3)

∆w(tk, y) =

∫ tk

−∞
ak(tk − s)w(s, y)ds, y ∈ [0, π], k = 1, 2, . . . ,m, (5.4)

∆w′(tk, y) =

∫ tk

−∞
ãk(tk − s)w(s, y)ds, y ∈ [0, π], k = 1, 2, . . . ,m, (5.5)

where the space H = L2([0, π]), φ ∈ B = PC0×L2(g,H) and 0 < t1 < · · · < tm < b
are prefixed numbers, then ρi : [0,∞) → (0,∞] is continuous, and β(s) is a one-
dimensional standard Wiener process. Define A : H → H by Az = z′′ with domain
D(A) = {z(·) ∈ H : z,′ , are absolutely continuous, z′′ ∈ H, z(0) = z(π) = 0}.
The spectrum of A consists of the eigenvalues −n2 for n ∈ N , with associated eigen
vectors en(y) = ( 2π )

1
2 sin(ny). Futhermore, the set {en : n ∈ N} is an orthonormal

basis of H. In particular,

Az =
∞∑

n=1

n2(z, en), z ∈ D(A).

Moreover, the operator C(t) defined by

C(t)x =

∞∑
n=1

cos(nt) < z, en > en, t ∈ R,

form a cosine function on H, with associated sine function

S(t)x =
∞∑

n=1

sin(nt)

n
< z, en > en, t ∈ R.

From Ref. [43], for all x ∈ H, t ∈ R, ∥S(t)∥ ≤ 1 and ∥C(t)∥ ≤ 1. Let α < 0, define
the phase space

B =
{
ϕ ∈ C((−∞, 0], H) : lim

s→−∞
eαsϕ(s) exist in H

}
,

and let ∥ϕ∥B = sup−∞<s<0{eαs ∥ϕ(s)∥L2}. Then, (B, ∥ϕ∥B) is a Banach space
which satisfies the Axioms from (i)-(iii) with L = 1,Kb = max{1, e−αt},Mb = e−αt.
Hence for (t, ϕ) ∈ [0, b] × B, where ϕ(s)(y) = ϕ(θ, y), (s, y) ∈ (−∞, 0] × [0, π], let
z(t)(y) = z(t, y).

To study the above systems, we impose the following conditions hold:

(i) The function b : R → R, ρi : [0,∞) → (0,∞], i = 1, 2 are continuous,
bounded

Mf =
(∫ 0

−∞

(b2(s))

g(s)
ds
) 1

2

<∞.
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(ii) The function ak : R→ R are continuous such that

MIk =

(∫ 0

−∞

(a2k(s))

g(s)
ds

) 1
2

, k = 1, 2, . . . ,m,

and

MJk
=

(∫ 0

−∞

(ã2k(s))

g(s)
ds

) 1
2

, k = 1, 2, . . . ,m.

Assume that the bounded linear operator B ∈ L(R,H) is defined by

Bu(t) = z(y)u, 0 ≤ y ≤ π, u ∈ R, z(y) ∈ L2([0, π]).

By defining the operator ρ, f : J × B → H and Ik, Jk : B → H by

f(t, ϕ)(y) =

∫ 0

−∞
b(s)ϕ(s, y)ds,

ρ(t, ϕ) = s− ρ1(s)ρ2(∥ϕ(0)∥),

Ik(ϕ)(y) =

∫ 0

−∞
ak(−s)ϕ(s, y)ds, k = 1, 2, . . . ,m,

Jk(ϕ)(y) =

∫ 0

−∞
ãk(−s)ϕ(s, y)ds, k = 1, 2, . . . ,m,

we can transform the systems (5.1)-(5.5) into the abstract impulsive Cauchy prob-
lem (1.1)-(1.4). Now the linear operator W is given by

Wu =

∞∑
n=1

∫ π

0

1

n
sinns(µ(s, y), en)ends, y ∈ [0, π].

Assume that this operator has a bounded inverse W−1 in L2(J, U). Moreover the
function F, Ik, k = 1, 2, . . . ,m are bounded linear operators with ∥f(t, ·)∥2L(B,H) ≤
Mf , ∥Ik∥2L(B,H) ≤ MIk , ∥Jk∥2L(B,H) ≤ MJk

. Hence all the conditions of Theorem

3.1 have been satisfied for the system (5.1)-(5.5), and so system is controllable on
J1.

Example 2. Consider the following impulsive neutral stochastic partial differential
equation with state-dependent delay of the form

d

[
∂

∂t
w(t, y) +

∫ t

−∞

∫ π

0

a(t− s, η, y)w(s, η)dηds

]
=

[
∂2

∂y2
w(t, y)

+ z(y)u(t)

]
dt+

∫ t

−∞
b(s− t)w(s− ρ1(t)ρ2(∥w(t)∥), y)dβ(s), (5.6)

w(t, 0) = w(t, π) = 0, t ∈ J, (5.7)

w(τ, y) = φ(τ, y), τ ∈ (−∞, 0], y ∈ [0, π], (5.8)

∆w(tk, y) =

∫ tk

−∞
ak(tk − s)w(s, y)ds, y ∈ [0, π], k = 1, 2, . . . ,m, (5.9)

∆w′(tk, y) =

∫ tk

−∞
ãk(tk − s)w(s, y)ds, y ∈ [0, π], k = 1, 2, . . . ,m, (5.10)

where φ,B, b, ρi, i = 1, 2 and Mf are defined in Example 1. Assume that the
conditions (ii)of the previous example holds and
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(ii) The function a(s, η, y), ∂a(s,η,y)
∂y are continuous and measurable, a(s, η, π) =

a(s, η, 0) = 0 and

Mg = max

[(∫ π

0

∫ 0

−∞

∫ π

0

1

g(s)

(
∂ja(s, η, y)

∂yj

)
dηdsdy

) 1
2

: j = 0, 1

]
<∞.

Define the function A,B, f, ρ, Ik, Jk and W as in Example 1 and the operator
g : J × B → H by

g(ϕ)(y) =

∫ 0

−∞

∫ π

0

a(s, υ, y)ϕ(s, υ)dυds,

we can transform the systems (5.6)-(5.10) into the abstract Cauchy problem (4.1)-
(4.4). Moreover, the function g is a bonded linear operator with ∥g(t, ·)∥L(B,H) ≤
Mg. Hence all the conditions of Theorem 4.3 have been satisfied for the system
(5.6)-(5.10), and so system is controllable on J1.

6. Conclusion

In this paper, we discussed controllability results for the second order impulsive
stochastic differential and neutral differential systems with state-dependent delay
by using phase space axioms. Through the theory of strongly continuous cosine
families of operators and the Sadovskii’s fixed point theorem can be successfully
used in the control problems to obtain sufficient conditions. Finally, an example is
illustrated for the effectiveness of the controllability results.
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