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VALUE DISTRIBUTION OF DIFFERENCE POLYNOMIALS OF

MEROMORPHIC FUNCTIONS
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Abstract. In this article, we establish the an inequality (Milloux inequality)
about the nonlinear difference monomials of the form

Ψ(z) =

m∏
j=0

(
∆ηj f(z)

)kj , (1)

where ηj ∈ C, at least one of the ηj ̸= 0 for j = 1, 2 · · ·m and K =
m∑

j=0
kj ,

k0, k1, · · · , km ∈ N. As an application of the inequality, we also investigate the

value distribution of some difference monomials and polynomials, where f(z)
being a transcendental meromorphic function.

1. Introduction

Throughout this article, the phrase ”entire function” means that the function
is analytic everywhere in C. The fundamentals of Nevanlinna theory and stan-
dard notations can be read in ( [7, 8, 11]). The notation E = {x : x ∈ R+}
set of positive real numbers of finite linear measure. Let F = {f : f is non −
constant meromorphic function in C}. For f, g ∈ F and b ∈ C ∪ {∞}, if f − b
and g− b have the identical zeros including multiplicities then f and g share b CM
(counting multiplicities), if the multiplicities are ignored, then f and g share b IM
and if 1/f and 1/g share 0 CM then, f and g share ∞ CM [12]. N(r, 1

f−b ) denotes

the counting function of f whose b-points are counted according to multiplicity
and the corresponding reduced counting function when multiplicity is ignored is
denoted by N(r, 1

f−b ). For ϕ(z) ∈ F , if T (r, ϕ) = S(r, f) then ϕ is called a

”small function” of f where T (r, ϕ) is the Nevanlinna characteristic function and
S(r, f) = o(T (r, f)), as r → ∞, r ̸∈ E.

Hayman [7] established the following theorem by investigating Picard values of
entire functions and their derivatives.
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Theorem 1. [7] If f(z) is a transcendental entire function, n ≥ 3 is an integer,

and a( ̸= 0) is a constant, then f
′
(z) − afn(z) assumes all finite values infinitely

often.

Zheng and Chen [14] proved the following theorem for difference function for
entire functions

Theorem 2. [14] If f(z) is a transcendental entire function of finite order, and let
a, c be non-zero constants. Then, for any integer n ≥ 3, f(z+ c)− afn(z) assumes
all finite values b ∈ C infinitely often.

The last few years have seen many papers examining complex differences. In
applying the value distribution theory of meromorphic functions, they have derived
new results on differences one can refer ([1],[13],[15]). In 2018, Renukadevi and
Madhura[4] considered general differential-difference polynomial of f(z) and its
shifts as follows

P (z, f) =
∑
λ∈I

aλ(z)f(z)
λ0,0f ′(z)λ0,1 . . . f (m)(z)λ0,m

× f (z + c1)
λ1,0 f ′ (z + c1)

λ1,1 . . . f (m) (z + c1)
λ1,m

. . . f (z + ck)
λk,0 f ′ (z + ck)

λk,1 . . . f (m) (z + ck)
λk,m

=
∑
λ∈I

aλ(z)

k∏
i=0

m∏
j=0

f (j) (z + ci)
λi,j

(2)

where I is a finite set of multi-indices λ = (λ0,0, . . . , λ0,m, λ1,0, . . . , λ1,m, . . . , λk,0, . . . , λk,m),
c0(= 0) and c1, . . . , ck are distinct complex constants. We assume that the
meromorphic coefficients aλ(z), λ ∈ I of P (z, f) are of growth S(r, f). We denote

the degree of the monomial
k∏

i=0

m∏
j=0

f (j) (z + ci)
λi,j of P (z, f) by d(λ) =

k∑
i=0

m∑
j=0

λi,j .

Then we denote the degree and the lower degree of P (z, f) by

d(P ) = max
λ∈I

{d(λ)}, d∗(P ) = min
λ∈I

{d(λ)}

respectively. In particular, we call P (z, f) a homogeneous differential-difference
polynomial if d(P ) = d∗(P ). Otherwise, P (z, f) is non-homogeneous. Renukadevi
and Madhura proved the following Theorems.

Theorem 3. [4] Let f(z) be a finite order transcendental meromorphic function, let
α(z) be a small function with respect to f(z). Let P (z, f)(̸≡ α(z)) be a differential-
difference polynomial of the form (2) and δ(∞, f) > 1− 1

2k+7 . Then the differential-
difference polynomial

Q(z, f) = f(z)n + P (z, f), n ≥ d(P ) + 2

satisfies δ(α,Q(z, f)) < 1 and hence Q(z, f)− α(z) has infinitely many zeros. The
condition δ(∞, f) > 1− 1

2k+7 in Theorem 1.1 can be relaxed by adding the condition

N̄
(
r, 1

f

)
= S(r, f), and we obtain the following theorem.

Theorem 4. [4] Let f(z) be a finite order transcendental meromorphic function, let
α(z) be a small function with respect to f(z). Let P (z, f)(̸≡ α(z)) be a differential-

difference polynomial of the form (2) and let δ(∞, f) > 1 − 1
2k+5 and N̄

(
r, 1

f

)
=
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S(r, f), then the differential-difference polynomial

Q(z, f) = f(z)n + P (z, f), n ≥ d(P ) + 1

satisfies δ(α(z), Q(z, f)) < 1 and hence Q(z, f)− α(z) has infinitely many zeros.

Wu and Xu[10] obtained the following theorem by considering the non linear
difference monomial

Φ(z) = fd1(z + c1)f
d2(z + c2) · · · fdm(z + cm), (3)

and

d = d1 + d2 + · · ·+ dm,

where c1, c2, · · · , cm are complex constants satisfying at least one of them is non
zero and d1, d2, · · · , dm ∈ N.

Theorem 5. [10] Let f(z) be a transcendental meromorphic function of finite order,
and assume that δ(∞, f) = 1. Suppose that Ψ(z) is a nonlinear difference monomial
of the form (3). Then,

(1) for δ(0, f) > 0,Ψ(z) assumes every non-zero value α infinitely often and
λ(α,Ψ(z)) = σ(f)

(2) for δ(0, f) = 1,Ψ(z) assumes every non-zero value α infinitely often and

T (r,Ψ(z)) ∼ dT (r, f) ∼ N

(
r,

1

Ψ(z)− α

)
,

as r /∈ E, r → ∞, where E is a possible exception set of r with finite logarithmic
measure.

2. Preliminary Lemmas

Lemma 2.1. [6] Let f(z) be a transcendental meromorphic function of finite order,
then

m

(
r,
f(z + c)

f

)
= S(r, f).

Lemma 2.2. [3] Let f be a transcendental meromorphic function of finite order.
Then

N(r, f(z + c)) = N(r, f) + S(r, f),

T (r, f(z + c)) = T (r, f) + S(r, f),

where S(r, f) = o(T (r, f))(r → ∞), possibly outside a set E of r with finite loga-
rithmic measure.

Lemma 2.3. [5] Let f be a transcendental meromorphic function of finite order.
Then for any positive integer n, we have

m

(
r,
∆n

c f(z)

f(z)

)
= S(r, f).

Lemma 2.4. [11] Suppose that f(z) is a transcendental meromorphic function in
the complex plane and P (z) = a0z

n + a1z
n−1 + · · ·+ an, where a0(̸≡ 0), a1, · · · , an

are constants. Then

T (r, P (f)) = nT (r, f) + S(r, f)
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Lemma 2.5. [9] Let f(z) be a transcendental meromorphic solution of finite order
of a difference equation of the form

U(z, f)P (z, f) = Q(z, f), (4)

where U(z, f), P (z, f) and Q(z, f) are difference polynomials such that the total
degree degf U(z, f) = n in f(z) and its shifts and deqf Q(z, f) ≤ n. Moreover,
we assume that all coefficients aλ(z) in (4) are small in the sense that T (r, aλ) =
S(r, f) and that U(z, f) contains just one term of maximal total degree in f(z) and
its shifts. Then, for each ε > 0, we have

m(r, P (z, f)) = S(r, f)

possibly outside of an exceptional set of finite logarithmic measure.

Lemma 2.6. [2] Let F (r) and G(r) be monotone increasing function such that
F (r) ≤ G(r) outside of exceptional set E that is of finite logarithmic measure.
Then for any α > 0, there exists r0 > 1 such that F (r) ≤ G(αr) for all r > r0.

Lemma 2.7. Let f be finite order transcendental meromorphic function and if
Ψ(z) as defined in (1), then for every α ∈ C \ {0}, we have

KT (r, f) ≤ KN

(
r,

1

f

)
+ 4KN(r, f) +N

(
r,

1

Ψ(z)− α

)
+ S(r, f). (5)

Proof. Since the meromorphic function Ψ(z) is not constant, there is a β ∈ C \ {0}
such that ∆βΨ(z) = ∆β (Ψ(z)− α) ̸= 0. Observe that

1

fK
=
Ψ(z)

αfK
− Ψ(z)− α

αfK
,

=
Ψ(z)

αfK
− ∆βΨ(z)

αfK

Ψ(z)− α

∆β(Ψ(z)− α)
, (6)

where

∆βΨ(z)

αfK
=

m∏
j=0

(
∆ηjf(z + β)kj

)
αfK

− Ψ(z)

αfK

=
1

α

m∏
j=0

(
∆ηjf(z + β)

f

)kj

− Ψ(z)

αfK

and

Ψ(z)
αfK = 1

α

∏m
j=0

(
∆ηj

f(z)

f

)kj

,

the definition of proximity function and lemma 2.3, it follows that

m

(
r,
Ψ(z)

αfK

)
= m

r,
m∏
j=0

(
∆ηjf(z)

f

)kj


≤

m∑
j=0

kjm

(
r,
∆ηj

f

f

)
+ S(r, f)

= S(r, f). (7)
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Similarly, we get

m

(
r,
∆βΨ(z)

αfK

)
= S(r, f). (8)

From (7), (8) and (6), we get

m
(
r, 1

fK

)
≤ m

(
r, Ψ(z)−α

∆β(Ψ−α)

)
+ S(r, f).

Thus

T

(
r,

1

fK

)
≤ m

(
r,

Ψ(z)− α

∆β(Ψ− α)

)
+N

(
r,

1

fK

)
+ S(r, f)

= KN

(
r,

1

f

)
+m

(
r,

Ψ(z)− α

∆β(Ψ− α)

)
+ S(r, f). (9)

Also from (1), we get

T (r,Ψ) ≤ 2KT (r, f) + S(r, f). (10)

Thus

ρ(Ψ) ≤ ρ(f) and S(r,Ψ) = S(r, f). (11)

Nevanlinna’s first fundamental theorem gives us

m

(
r,

Ψ(z)− α

∆β(Ψ− α)

)
≤ m

(
r,
∆β(Ψ− α)

Ψ(z)− α

)
+N

(
r,
∆β(Ψ− α)

Ψ(z)− α

)
+O(1). (12)

Combining above inequality with lemma 2.3, we get

m

(
r,

Ψ(z)− α

∆β(Ψ− α)

)
= S(r, f). (13)

Since ∆β (Ψ(z)− α) = ∆βΨ(z), it follows that

N

(
r,
∆β(Ψ(z)− α)

Ψ(z)− α

)
≤ N

(
r,

1

Ψ− α

)
+N (r,∆β(Ψ(z)− α))

≤ N

(
r,

1

Ψ− α

)
+N(r,Ψ(z + β)) +N(r,Ψ(z)) + S(r, f)

= N

(
r,

1

Ψ− α

)
+ 4KN(r, f) + S(r, f) (14)

From 2.4,(9) and (12)-(14), we get

KT (r, f) =T

(
r,

1

fK

)
+ S(r, f)

= KN

(
r,

1

f

)
+ 4KN(r, f) +N

(
r,

1

Ψ(z)− α

)
+ S(r, f). (15)

�



64 NARASIMHA RAO. B, SHILPA N. AND SANDEEP KUMAR EJMAA-2023/11(1)

3. Main Results

In this paper we consider the difference polynomial of the form

Q(z, f) =
∑
λ∈I

aλ(z)
m∏
j=1

(
∆j

cf(z)
)lλ,j

, (16)

where I is the finite index set and the coefficients aλ(z) are small functions of f ,

lj = max
λ∈I

{lλj} and d(p) =
m∑
j=1

lj be the degree of Q(z, f), and obtained the following

theorem.
Theorem 1 Let f(z) be a finite order transcendental meromorphic function and
Q(z, f)(̸≡ q(z)) be difference polynomial defined in (16) and q(z) be a small function
of f . assume that δ(∞, f) > 1− 1

(m2+m+5) and the difference polynomial

P (z, f) = fn +Q(z, f), n ≥ d(p) + 2, (17)

satisfying δ(q, P (z, f)) < 1 and P (z, f)− q(z) has infinitely many zeros.
Proof. Since δ(0, f) > 0, we claim that Ψ(z) is a transcendental meromorphic
function. Otherwise, then there is a rational function q(z) such that q(z)Ψ(z) ≡ 1,

1

fK
= q(z)

Ψ(z)

fK

= q(z)
m∏
j=0

(
∆ηjf(z)

f

)kj

.

Since f is transcendental and from lemma 2.3, we get m
(
r, 1

fK

)
= S(r, f), from

first fundamental theorem of nevanlinna, we get

KT (r, f) =T
(
r, fK

)
= T

(
r,

1

fK

)
+ S(r, f)

≤ N

(
r,

1

fK

)
+ S(r, f)

KT (r, f) ≤ KN
(
r, 1

f

)
+ S(r, f).

Which is contradiction to δ(0, f) > 0. Hence Ψ(z) is transcendental meromorphic
function.
(1) Since δ(0, f) > 0 and δ(∞, f) = 1, in this case a positive number κ < 1 exists
such that

N

(
r,

1

f

)
< κT (r, f), (18)

N(r, f) = o(1)T (r, f). (19)

From lemma 2.7, (18) and (19), we get

K(1− 4(o(1))− κ)T (r, f) ≤ N

(
r,

1

Ψ− α

)
+ S(r, f), (20)

r /∈ E, r → ∞, where E is a possible exceptional set with finite logarithmic measure.
Since f is transcendental, combining lemma 2.6 and (20), we can get that Ψ(z)
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assumes every non-zero value α infinitely often and λ(α,Ψ(z)) = ρ(f).
(2) Since δ(0, f) = 1 and δ(∞, f) = 1,

N

(
r,

1

f

)
= S(r, f), (21)

N(r, f) = S(r, f). (22)

From (1) and lemma 2.3, we have

T (r,Ψ) = m(r,Ψ) +N(r,Ψ)

≤ m

(
r,

Ψ

αfK

)
+m

(
r, αfK

)
+N(r,Ψ) + S(r, f)

= Km(r, f) + 2KN(r, f) + S(r, f)

T (r, f) ≤ KT (r, f) + S(r, f) (23)

From (21)-(23) and lemma 2.7, we get

KT (r, f) ≤ N

(
r,

1

Ψ− α

)
+ S(r, f),

≤ N(r,Ψ) + S(r, f)

≤ KT (r, f) + S(r, f). (24)

Since f is transcendental, (24) means that Ψ(z) assumes every non-zero value α
infinitely often and

T (r,Ψ(z)) ∼ KT (r, f) ∼ N
(
r, 1

Ψ−α

)
as r /∈ E, r → ∞, where E is a possible exceptional set of r with finite logarithmic
measure.
Theorem 2 Let Ψ(z) be a non linear difference monomial of the form (1), If
δ(∞, f) = 1 and f(z) be a finite-order transcendental meromorphic function, then

(1) for δ(0, f) > 0,Ψ(z) assumes every non-zero value α infinitely often and
λ(α,Ψ(z)) = σ(f)

(2) for δ(0, f) = 1,Ψ(z) assumes every non-zero value α infinitely often and

T (r,Ψ(z)) ∼ dT (r, f) ∼ N

(
r,

1

Ψ(z)− α

)
,

as r /∈ E, r → ∞, where E is a possible exception set of r with finite logarithmic
measure.
Proof. First, we prove that P (z, f) cannot be reduced to any constant. Suppose,
assume that P (z, f) = d, where d is some constant. Then from (17), we get
fn = d−Q(z, f), also it can be written as

fn−1f = d−Q(z, f). (25)

Since n ≥ d(p) + 2, then from (25) and lemma 2.5, we get

m(r, f) = S(r, f) (26)

Since δ(∞, f) = δ > 0, then for any given ϵ0(0 < ϵ0 < δ) and sufficiently large r,
we have

δ(∞, f) = lim inf
r→∞

m(r, f)

T (r, f)
= δ > 0,
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which implies that

(δ − ϵ0)T (r, f) ≤ m(r, f). (27)

From (26) and (27), we get T (r, f) = S(r, f). Which is contradiction. Hence P (z, f)

can never reduce to constant. set hj(z) =
∆j

cf
f and substituting this in (17), we get

P (z, f) = fn +

d(p)∑
t=0

bt(z)f
t(z), (28)

where bt(z) =
∑
lλ=t

aλ(z)
m∏
j=1

(hj(z))
lλj , t = 0, 1, · · · , d(p). Clearly from lemma 2.1,

we get

m(r, bt) = S(r, f), (29)

using (28),(29) and lemma 2.4, we obtain

m(r, P ) ≤ nm(r, f) + S(r, f). (30)

Also from (17) and lemma 2.2, we get

N(r, P (z, f)) ≤ N(r, fn) +N(r,Q(z, f)) + S(r, f)

≤ nN(r, f) + d(p)

m∑
j=1

N(r,∆j
cf) + S(r, f)

≤ nN(r, f) + d(p)
m∑
j=1

N(r,

j∑
i=0

(−1)i
(
j

i

)
f(z + (j − i)c)

≤ nN(r, f) + d(p)
m∑
j=1

j∑
i=0

N(r, (−1)i
(
j

i

)
f(z + (j − i)c)

= nN(r, f) + d(p)
m∑
j=1

(j + 1)N(r, f) + S(r, f)

= nN(r, f) + d(p)

(
m2 +m− 2

2

)
N(r, f) + S(r, f). (31)

From (30) and (31), implies

T (r, P (z, f)) ≤
(
n+

(
m2 +m− 2

2

)
d(p)

)
T (r, f)+S(r, f) and S(r, P ) = S(r, f).

(32)
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And also from (17) and lemma 2.2, we have

N(r, P ) ≤ N(r, f) +N(r, P (z, f)) + S(r, f)

= N(r, f) +
m∑
j=1

N(r,∆j
cf) + S(r, f)

≤ N(r, f) +

m∑
j=1

(j + 1)N(r, f) + S(r, f)

= N(r, f) +

(
m2 +m− 2

2

)
N(r, f) + S(r, f)

N(r, P ) ≤
(
m(m+ 1)

2

)
N(r, f) + S(r, f) (33)

From (17), it is possible to write

P (z, f)− q(z) = fn + P (z, f)− q(z). (34)

Differentiating (34), on simple calculation, we get

fn−1

(
nf

′
− f

(P − q)
′

P − q

)
=

(P − q)
′

P − q
Q(z, f)−Q

′
(z, f)− (P − q)

′

P − q
q + q

′
, (35)

and

fn−2

(
f

(
nf

′
− f

(P − q)
′

P − q

))
=

(P − q)
′

P − q
Q(z, f)−Q

′
(z, f)− (P − q)

′

P − q
q+q

′
. (36)

Next, we assert that nf
′ − f (P−q)

′

P−q ̸≡ 0. If not, n f
′

f = (P−q)
′

P−q , integrating this, we

get P − q = Cfn, for some constant C, substituting this in (34), we get

(C − 1)fn = Q(z, f)− q(z). (37)

Since Q(z, f) ̸≡ q(z), observe that C ̸= 1. Also we have n > d(p), from (37) and
lemma 2.5, we get m(r, f) = S(r, f). Since δ(∞, f) > 0, from (27), we conclude
that T (r, f) = S(r, f). which is a contradiction. Since d(p) ≤ n−2, from (36), (37)
and lemma 2.5, we obtain

m

(
r, nf

′
− f

(P − q)
′

P − q

)
= S(r, f). (38)

m

(
r, f

(
nf

′
− f

(P − q)
′

P − q

))
= S(r, f). (39)

Let us consider

N

(
r, nf

′ − (P−q)
′

P−q f

)
≤ N(r, f)+N(r, f)+N(r, P −q)+N

(
r, 1

P−q

)
+O(1). From

(33), above inequality implies

N

(
r, nf

′
− (P − q)

′

P − q
f

)
≤ N(r, f)+

(
m2 +m+ 2

2

)
N(r, f)+N

(
r,

1

P − q

)
+S(r, f).

(40)
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Similarly,

N

(
r, nf

′
− (P − q)

′

P − q
f

)
≤ 2N(r, f)+

(
m2 +m+ 2

2

)
N(r, f)+N

(
r,

1

P − q

)
+S(r, f).

(41)
From (38) and (40), we obtain

T

(
r, nf

′
− (P − q)

′

P − q
f

)
≤ N(r, f)+

(
m2 +m+ 2

2

)
N(r, f)+N

(
r,

1

P − q

)
+S(r, f).

(42)
Also from (39) and (41), we have

T

(
r, nf

′
− (P − q)

′

P − q
f

)
≤ 2N(r, f)+

(
m2 +m+ 2

2

)
N(r, f)+N

(
r,

1

P − q

)
+S(r, f).

(43)
Thus, from (42) and (43), we get

T (r, f) ≤ T

(
r, f

(
nf

′
− (P − q)

′

P − q
f

))
+ T

(
r, nf

′
− (P − q)

′

P − q
f

)
+ S(r, f)

= 3N(r, f) +
(
m2 +m+ 2

)
N(r, f) + 2N

(
r,

1

P − q

)
+ S(r, f),

which implies

T (r, f) ≤
(
m2 +m+ 5

)
N(r, f) + 2N

(
r,

1

P − q

)
+ S(r, f). (44)

For any given ϵ
(
< ϵ < δ − 1 + 1

m2+m+5

)
, It is possible to write (44) as

T (r, f) ≤
(
m2 +m+ 5

)
(1− δ + ϵ)N(r, f) + 2N

(
r, 1

P−q

)
+ S(r, f)

or (
1− (m2 +m+ 5)(1− δ + ϵ) +O(1)

)
T (r, f) ≤ 2N

(
r,

1

P − q

)
. (45)

From (32) and (45), we get(
1− (m2 +m+ 5)(1− δ + ϵ) +O(1)

)
T (r, P ) ≤ (2n+(m2+m−2)d(p))N

(
r, 1

P−q

)
.

Thus, lim sup
r→∞

N
(
r, 1

P−q

)
T (r, P )

≥ 1− (m2 +m+ 5)(1− δ + ϵ)

2n+ (m2 +m− 2)d(p)
choose (m2 +m+ 5)(1− δ + ϵ) < 1, then from the above inequality, we have

lim sup
r→∞

N
(
r, 1

P−q

)
T (r, P )

> 0,

therefore

δ(q, P ) < 1− lim sup
r→∞

N
(
r, 1

P−q

)
T (r, P )

< 1.

Hence, P (z, f) = fn +Q(z, f) assumes q(z) infinitely often.
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