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OPTIMAL CONTROLS FOR SOME IMPLUSIVE STOCHASTIC
INTEGRODIFFERENTIAL EQUATIONS DRIVEN BY ROSENBLATT

PROCESS

E. KPIZIM, K. EZZINBI, V. VINODKUMAR AND M. A. DIOP

ABSTRACT. We study optimal control issues for a class of impulsive stochastic integrod-
ifferential equations driven by a Rosenblatt process with non-instantaneous impulses. We
begin by investigating the existence of mild solutions for the stochastic system, with the
primary tools being stochastic analysis theory, the theory of resolvent operators, and a
fixed point approach. Following that, we derive the optimal control findings of the sto-
chastic system without considering the uniqueness of mild solutions. Finally, an example
is provided to demonstrate the key findings of this research.

1. INTRODUCTION

In this work, we consider the following stochastic integrodifferential equations driven
by Rosenblatt process with impulses

dz(t) =
[

Az(t)+C(t)u(t)+
∫ t

0
B(t− s)z(s)ds

]
dt +F(t,z(t))dW (t)

+G(t)dRH
Q(t), for t ∈ ∪m

k=0(ek, tk+1],

z(t) = Ik(t,z(t−k )), t ∈ ∪m
k=1(tk,ek],

z(0) = z0,

(1)

where the state z(·) takes values in a separable Hilbert space Y and 0 = e0 = t0 < t1 <

e1 < t2 < .. . < tm < em < tm+1 = b < ∞, J = [0,b]. The operator A is a generator of a
C0-semigroup (S(t))t≥0 on Y. {W (t) : t ≥ 0} denotes a Wiener process in a real and
separable Hilbert space X1 and RH

Q = {RH
Q(t) : t ≥ 0} is Rosenblatt process with Hurst index

H ∈ (1/2,1) on a real and separable Hilbert space X2. The function Ik(t,z(t−k )) represents
impulses during the intervals (tk,ek], k = 1, 2, . . . , m. Further, u is the control function
which takes value in reflexive and separable Hilbert space K and C is linear operator
from K into Y. The processes RH and W are independent. The functions F : J×Y→
L 1

2 (X1,Y), G : J→L 2
2 (X2,Y), Ik : (tk,ek]×Y→Y, k = 1,2, . . . ,m are satisfying some

suitable conditions which will be specified later.
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Stochastic differential equations have become an active area of study due to their var-
ious applications in the fields like electrical engineering, mechanics, medical biolology,
economical systems etc. For more informations see [1–3,14,19,25,26,28]. Moreover many
authors investigated the existence, uniqueness, stability, controllability and others qualita-
tive and quantitative properties of SDEs and stochastic integro-differential equations (SIEs
for short) by using stochastic analysis, fixed point technique and the concept of resolvent
operators in the case of SIEs. See for example [11, 13, 16, 18, 20, 25].

The theory of impulsive partial equations or inclusions appears as a natural description
of many real processes subject to some perturbations whose duration is negligible in com-
parison with the duration of the process. It has seen a great deal of development during the
last decennary [10]. Moreover, besides impulsive effects, stochastic effects also exist in
real systems.Thus, impulsive stochastic differential equations describing these dynamical
systems subject to both impulsive and stochastic modifications have attracted significant
attention. Especially, the papers [7,24,31] studied the existence of mild solutions for some
impulsive neutral stochastic functional integro-differential equations with infinite delay in
Hilbert spaces.

Rosenblatt process with Hurst parameter H ∈ (0,1) is a centered Gaussian {RH
Q(t), t ≥

0} which is employed to model numerous complex phenomena in applications as the sys-
tems have rough external forcing. There is another process with non-Gaussian character,
which contributes the other properties for H> 1/2, the long memory property.

A lot of exciting applications of Rosenblatt process have been established in several
fields such as hydrology, telecommunications, economics and finance. The observations
of stock prices processes suggest that they are not self-similar.

On the other hand, the optimal control problem requires the minimization of a criterion
function of the states and control inputs of the system over a set of admissible control
functions.

The concept of optimal control problem plays an important role in many scientific fields
such as biomedical, engineering, biology, physics, economy, etc. (see [22]).Recently, many
works have been considerable interest in the study of the existence of optimal controls for
different kinds of nonlinear SDEs and SIEs in infinite dimensional spaces.Yan and Lu [32]
proved the existence of optimal controls for a fractional stochastic partial integrodiffer-
ential equation with infinite delay. Balasubramanian and Tamilalagan [8] investigated the
solvability and optimal controls for impulsive fractional stochastic integrodifferential equa-
tions in Hilbert space. Very recently, Yan Z. and Yan X. [34] studied optimal controls of
a class of impulsive partial stochastic differential equations with weighted pseudo almost
periodic coefficients in Hilbert spaces. Furthermore, solvability and optimal control results
of stochastic integrodifferential equations driven by the Rosenblatt process with impulses
are rarely available in the literature; this fact serves as a motivation for our research work
in this manuscript.

The rest of this paper is organized as follows. In Section 2, we recall some preliminaries,
definitions and lemmas that are to used later to proved our main results. In Section 3, we
prove existence of mild solutions for stochastic system (1). In Section 4, the existence of
an optimal control pair for the proposed stochastic system is studied. Finally in Section 5,
an example is provided to illustrate the main results.
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2. PRELIMINARIES

In this segment, we present some mathematical tools which are required to prove the
main results. For more details, we refer the reader to [12] and the references therein.
Throughout this paper, let L2(Ω,Y) stands for the space of all Y-valued random variables

G such that E ‖ z ‖2=
∫

Ω

‖ z ‖2 dP < ∞. Let L (X2,Y) denotes the space of all bounded

linear operators from X2 to Y and Q ∈L (X2,X2) represents a non-negative self-adjoint
operator. Let L 0

Q(X2,Y) be the space of all functions Ψ ∈ (X2,Y) such that ΨQ
1
2 is a

Hilbert-Schmidt operator. The norm is given by ‖Ψ ‖2
L 0

Q(X2,Y)
= ‖ΨQ

1
2 ‖2= Tr

(
ΨQψ∗

)
and Ψ is called a Q-Hilbert-Schmidt operator from X2 to Y.

2.1. Rosenblatt process. Now, we recall basic properties of the Rosenblatt process as
well as Wiener integral with respect to it. Let [0,b] denote a time interval with arbitrary
fixed horizon b and let {R(t) : t ∈ [0,b]} be a one-dimensional Rosenblatt process with

parameter H ∈ (
1
2
,1). Also, the Rosenblatt process with parameter H >

1
2

admits the
following representation [27]:

RH(t) = q(H)
∫ t

0

∫ t

0

[∫ t

z1∨z2

∂NH′

∂u
(u,z1)

∂NH′

∂u
(u,z2)du

]
dB(z1)dB(z2), (2)

where NH(t,s) is given by

NH(t,s) = cHs
1
2−H

∫ t

s
(u− s)H−3/2uH−1/2du for t > s,

with

cH =

√
H(2H−1)

Γ(2−2H,H− 1
2 )
,

Γ(·, ·) denotes the Gamma function, NH(t,s)= 0 when t ≤ s, {B(t), t ∈ [0,b]} is a Brownian
motion, H′ = H+1

2 and q(H) = 1
H+1

√
H

2(2H−1) is a normalizing constant. The covariance of

the Rosenblatt process {RH(t), t ∈ [0,b]} is

E(RH(t)RH(s)) =
1
2
(
s2H+ t2H−|s− t|2H

)
.

The covariance structure of the Rosenblatt process allows to construct Wiener integral
with respect to it. We refer to Maejima and Tudor [5] for the definition of Wiener integral
with respect to general Hermite processes and to Kruk, Russo, and Tudor [4] for a more
general context (see also Tudor [6]).

Notice that

RH(t) =
∫ b

0

∫ b

0
I(1[0,t])(z1,z2)dB(z1)dB(z2),

where the operator I is defined on the set of functions G : [0,b]→R, which takes its values
in the set of functions G : [0,b]2→ R2 and is given by

I(G )(z1,z2) = q(H)
∫ b

z1∨z2

G (u)
∂NH′

∂u
(u,z1)

∂NH′

∂u
(u,z2)du.
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Let G be an element of the set E of step functions on [0,b] of the form

G =
n−1

∑
i=0

ai1(ti,ti+1], ti ∈ [0,b].

Then, define its Wiener integral with respect to RH as∫ b

0
G (u)dNH(u) :=

n−1

∑
i=0

ai(RH(ti+1)−RH(ti)) =
∫ b

0

∫ b

0
I(G )(z1,z2)dB(z1)dB(z2).

Let H be the set of functions G such that

‖G ‖2
H := 2

∫ b

0

∫ b

0
(I(G )(z1,z2))

2dz1dz2 < ∞.

It follows from [6] that

‖G ‖2
H = H(2H−1)

∫ b

0

∫ b

0
G (u)G (v)|u− v|2H−2dudv.

It has been proved in [5] that the mapping

G →
∫ b

0
G (u)dRH(u)

defines an isometry from E to L2(Ω) and it can be extended continuously to an isometry
from H to L2(Ω) because E is dense in H . We call this extension as the Wiener integral
of G ∈H with respect to RH.
Notice that the space H contains not only functions but its elements could be also distri-
butions.
Therefore it is suitable to know subspaces |H | of H :

|H |=
{

G : [0,b]→ R|
∫ b

0

∫ b

0
|G (u)||G (v)|u− v|2H−2dudv < ∞

}
.

The space |H | is not complete with respect to the norm ‖.‖H but it is a Banach space
with respect to the norm

‖G ‖2
|H | = H(2H−1)

∫ b

0

∫ b

0
|G (u)||G (v)|u− v|2H−2dudv.

As a consequence, we have

L2([0,b])⊂ L1/H([0,b])⊂ |H | ⊂H .

For any G ∈ L2([0,b]), we have

‖G ‖2
|H | ≤ 2Hb2H−1

∫ b

0
|G (s)|2ds

and
‖G ‖2

|H | ≤ cH‖G ‖2
L1/H([0,b]), (3)

for some constant cH > 0. Let cH > 0 stand for a positive constant depending only on H
and its value may be different in different appearances.

Define the linear operator N∗H from E to L2([0,b]) by

(N∗HG )(z1,z2) =
∫ b

z1∨z2

G (t)
∂N

∂ t
(t,z1,z2)dt,
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where N is the kernel of Rosenblatt process in representation (2)

N (t,z1,z2) = 1[0,t](z1)1[0,t](z2)
∫ t

z1∨z2

∂NH′

∂u
(u,z1)

∂NH′

∂u
(u,z2)du.

Note that (N∗H1[0,t])(z1,z2) =N (t,z1,z2)1[0,t](z1)1[0,t](z2). The operator N∗H is an isometry
between E to L2([0,b]), which can be extended to the Hilbert space H . Also, for any
s, t ∈ [0,b] we have〈

N∗H1[0,t],N
∗
H1[0,s]

〉
L2([0,b]) =

〈
N (t, ., .)1[0,t],N (s, ., .)1[0,s]

〉
L2([0,b])

=
∫ t∧s

0

∫ t∧s

0
N (t,z1,z2)N (s,z1,z2)dz1dz2

= H(2H−1)
∫ t

0

∫ s

0
|u− v|2H−2dudv

=
〈
1[0,t],1[0,s]

〉
H

.

Further, for G ∈H , we have

RH(G ) =
∫ b

0

∫ b

0
(N∗HG )(z1,z2)dB(z1)dB(z2).

Let
(
κn(t)

)
n∈N be a sequence of two-sided one dimensional Rosenblatt process mutually

independent on (Ω,F ,P). We consider a X2-valued stochastic process RH
Q(t) given by the

following series:

RQ(t) =
∞

∑
n=1

κn(t)Q1/2en, t ≥ 0.

Moreover, if Q is a non-negative self-adjoint trace class operator, then this series converges
in the space X2, that is, it holds that RQ(t) ∈ L2(Ω,X2). Then, we say that the above RQ(t)
is a X2-valued Q- Rosenblatt process with covariance operator Q. For exemple, if {δn}n∈N
is a bounded sequence of non-negative real numbers such that Qen = δnen, by assuming
that Q is a nuclear operator in X2, then the stochastic process

RQ(t) =
∞

∑
n=1

κn(t)Q1/2en =
∞

∑
n=1

√
δnκn(t)en, t ≥ 0,

is well-defined as a X2-valued Q- Rosenblatt process.

Definition 2.1. (Tudor [6]). Let ϕ : [0,b]→L0
Q(X2,Y) such that

∞

∑
n=1
‖N∗H(ϕQ1/2en)‖L2([0,b];Y)<

∞. Then, its stochastic integral with respect to the Rosenblatt process RQ(t) is defined for
t ≥ 0 as follows:∫ t

0
ϕ(s)dRQ(s) : =

∞

∑
n=1

∫ t

0
ϕ(s)Q1/2endκn(s)

=
∞

∑
n=1

∫ t

0

∫ t

0
(N∗H(ϕQ1/2en))(z1,z2)dB(z1)dB(z2). (4)

Lemma 2.1. [30] For ψ : [0,b]→ L0
Q(X2,Y) such that

∞

∑
n=1
‖ψQ1/2en‖L1/H([0,b];Y) <∞ hold

and for any α,β ∈ [0,b] with β > α , we have

E
∥∥∥∥∫ β

α

ψ(s)dRQ(s)
∥∥∥∥2

≤ cH(β −α)2H−1
∞

∑
n=1

∫
β

α

‖ψ(s)Q1/2en‖2ds.
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If, in addition,
∞

∑
n=1
‖ψ(t)Q1/2en‖ is uniformly convergent for t ∈ [0,b], then

E
∥∥∥∥∫ β

α

ψ(s)dRQ(s)
∥∥∥∥2

≤ cH(β −α)2H−1
∫

β

α

‖ψ(s)‖2
L0

Q(X2,Y)
ds.

Lemma 2.2. [16] For any p≥ 1 and for arbitrary L 1
2 -valued predictable process X (·),

we have that

sup
r∈[0,t]

E
∥∥∥∥∫ r

0
X (µ)dW (µ)

∥∥∥∥2p

≤ (p(2p−1))p
(∫ t

0

(
E‖X (s)‖2p

L 1
2

)1/pds
)p

, t ∈ [0,b].

(5)

In particular, for p = 1, we have sup
r∈[0,t]

E
∥∥∥∥∫ r

0
X (µ)dW (µ)

∥∥∥∥2

≤
∫ t

0
E‖X (s)‖2

L 1
2

ds.

Now, we define the space PC (Y) formed by all Ft -adapted, Y-valued measurable
stochastic processes {z(t) : t ∈ [0,b]} such that z is continuous at t 6= tk, z(t−k ) = z(tk) and
z(t+k ) exists for all k = 1, . . . ,m endowed with the norm

‖z‖PC =

(
sup

0≤t≤b
E‖z(t)‖2

)1/2

.

Then, (PC (Y),‖ · ‖PC ) is Banach space.
The operator C ∈ L∞(J,L(K ,Y)), where L∞(J,L(K ,Y)) denotes the space of all op-

erator valued functions, which are measurable and uniformly bounded equipped with the
norm ‖ · ‖. The control function u ∈ L2

F (J,K ), where L2
F (J,K ) represents the space of

all K -valued stochastic processes, which are measurable and Ft -adapted satisfying the

condition E
∫ b

0
‖u(t)‖2

K dt < ∞, and endowed with the following norm:

‖u‖2
L2

F
=

(
E
∫ b

0
‖u(t)‖2

K dt
)1/2

.

Let U be a nonempty closed bounded convex subset of K . We define the admissible
control set

Uad = {u ∈ L2
F (J,K ); u(t) ∈U a.e. t ∈ J}.

Then, Cu ∈ L2(J,Y) for all u ∈Uad .

Theorem 2.3. (Bellman, 1943) [Gronwall-Beilman inequality]
We begin by giving one of the simplest and most frequently used integral inequalities. Let
ρ(t) and ϖ(t) be nonnegative continuous functions for t > 0, and let

ρ(t)≤ κ +
∫ t

0
ϖ(s)ρ(s)ds (6)

where κ > 0 is a constant. Then

ρ(t)≤ κ exp
(∫ t

0
ϖ(s)ds

)
, t ≥ 0 (7)
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Proof. Let κ > 0. Then (6) implies the inequality

ϖ(τ)ρ(τ)

κ +
∫

τ

0
ϖ(s)ρ(s)ds

≤ ϖ(τ), τ > 0

Integrating this from 0 to t yields

log
[

κ +
∫ t

0
ϖ(s)ρ(s)ds

]
− logκ ≤

∫ t

0
ϖ(s)ds

Together with (6) this implies (7). Let κ = 0. Then ρ(t) = ε +
∫ t

0
ϖ(s)ρ(s)ds for any

t > 0. Hence

ρ(t)≤ ε exp
(∫ t

0
ϖ(s)ds

)
and letting ε −→ 0 we find ρ(t)≤ 0.

We will prove some generalizations of the linear integral Gronwall’s inequality. In the
following we need Lemma2.4.

Lemma 2.4. (Samoilenko and Perestyuk, 1977)
Suppose that for t ≥ t0 the following inequality holds:

ρ(t)≤ κ +
∫ t

t0
ϖ(s)ρ(s)ds+ ∑

t0<tk<t
βkρ(tk)

where ρ ∈PC (R+,R), ϖ ∈PC (R+,R+), and βk ≥ 0, k ∈N, and a are constants. Then
for t ≥ t0,

ρ(t)≤ κ ∏
t0<tk<t

(
1+βk

)
exp
(∫ t

t0
ϖ(s)ds

)

Proof. The proof of this theorem can be given by induction with respect to k ∈N, applying
for t ∈ (tk, tk+1] Theorem 2.3 to the Gronwall-Beilman inequality

ρ(t)≤ κk +
∫ t

tK
ϖ(s)ρ(s)ds, tk ≤ t ≤ tk+1

where

κk = ρ(t+k )≤ κ +
∫ tk

t0
ϖ(s)ρ(s)ds+

k

∑
i=1

βiρ(ti)≤ κ

k

∏
i=1

(
1+βi

)
exp
(∫ tk

t0
ϖ(s)ds

)
. (8)

To be able to access existence of mild solutions for (1), we need to introduce partial
integrodifferential equations and resolvent operators that will be used to develop the main
results.

2.2. Partial integrodifferential equations in Banach spaces. Let M and W be two Ba-
nach spaces such that ‖w‖W = ‖Aw‖+‖w‖, w∈W . A and B(t) are closed linear operators
on M . Let C (R+,W ), L (W ,M ) stand for the space of all continuous functions from
R+ into W , the set of all bounded linear operators from W into M , respectively. In what
follows, we suppose the following assumptions:

(H1): A is the infinitesimal generator of a strongly continuous semigroup {S(t)}t≥0 on
M .
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(H2): For all t ≥ 0, B(t) is a closed linear operator from D(A) to M , and B(t) ∈
L (W ,M ). For any w ∈ W , the map t →B(t)w is bounded, differentiable and
the derivative t→B(t)′w is bounded uniformly continuous on R+.

By Grimmer [21], under the assumptions (H1) and (H2), the following Cauchy problemξ ′(t) = Aξ (t)+
∫ t

0
B(t− s)ξ (s)ds for t ≥ 0

ξ (0) = ξ0 ∈M ,
(9)

has an associated resolvent operator of bounded linear operator valued function R(t) ∈
L (V ), for t ≥ 0.

Definition 2.2. [21] A bounded linear operator valued function R(t)∈L (M ), for t ≥ 0,
is refered to be a resolvent operator associated with (9) if :

(i): R(0) = I and ‖R(t)‖L (M ) ≤ M̃eγt for some constants M̃ and γ .
(ii): For all each m ∈M , R(t)m is strongly continuous for t ≥ 0.
(iii): R(t) ∈L (W ) for t ≥ 0. For m ∈W , R(·) ∈ C 1([0,+∞[,M )∩C ([0,+∞[,W ) and

R
′
(t)m = AR(t)m+

∫ t

0
B(t− s)R(s)mds,

= R(t)Am+
∫ t

0
R(t− s)B(s)mds, t ≥ 0.

Now, we present some results on the existence of solutions for the following integrod-
ifferential equation:ξ ′(t) = Aξ (t)+

∫ t

0
B(t− s)ξ (s)ds+Ξ(t) for t ≥ 0

ξ (0) = ξ0 ∈M ,
(10)

where Ξ : R+→M is a continuous function.

Definition 2.3. A continuous function ξ : [0,∞[→M is said to be a strict solution for
equation (10) if

(1) ξ ∈ C 1(R+,M )∩C (R+,W ),
(2) ξ satisfies equation (10) for t ≥ 0.

Remark 2.1. From this definition, we deduce that ξ (t) ∈ D(A), and the function s 7→
B(t− s)ξ (s) is integrable, for all t > 0 and s≥ 0.

Theorem 2.5. [21] Suppose that hypotheses (H1) and (H2) hold. If ξ is a strict solution
of (10), then the following variation of constants formula holds.

ξ (t) = R(t)ξ0 +
∫ t

0
R(t− s)Ξ(s)ds, for t ≥ 0. (11)

Consequently, we can establish the following definition.

Definition 2.4. [21] A function ξ : R+→M is called a mild solution of (10) for ϑ0 ∈M ,
if ξ sastisfies the variation of constants formula (11).

Theorem 2.6. [21] Let Ξ ∈ C 1([0,+∞[;M ) and ξ be defined by (11). If ξ0 ∈D(A), then
ξ is a strict solution for equation (10).
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Lemma 2.7. [23] Assume that assumptions (H1) and (H2) are satisfied. The resolvent op-
erator (R(t))t≥0 is compact for t > 0 if and only if the C0-semigroup (S(t))t≥0 is compact
for t > 0.

Lemma 2.8. [23] Suppose that hypotheses (H1) and (H2) hold. If the resolvent operator
(R(t))t≥0 is compact for t > 0 then it is norm continuous (or continuous in the uniform
operator topology) for t > 0.

Lemma 2.9. [23] Let (H1) and (H2) be satisfied. Then there is a constant L = L(b) such
that

‖R(t + ε)−R(ε)R(t) ‖L (M )≤ L(ε), 0 < ε < t < b.

Let us define the bound which will be helpful throughout the calculations:
sup

t∈[0,b]
‖R(t)‖= M for some positive constant M.

Now, we give the definition of mild solution for (1).

Definition 2.5. An Ft -adapted stochastic process z : J→ Y is said to be a mild solution
of the stochastic system (1) if for every t ∈ J, z(t) satisfies z(0) = z0, z(t) = Ik(t,z(t−k )), t ∈
(tk,ek], k = 1,2, . . . ,m and

z(t) = R(t)z0 +
∫ t

0
R(t− s)C(s)u(s)ds

+
∫ t

0
R(t− s)F(s,z(s))dW (s)+

∫ t

0
R(t− s)G(s)dRH

Q(s),

for all t ∈ [0, t1], k = 0 and

z(t) = R(t− ek)Ik(ek,z(t−k ))+
∫ t

ek

R(t− s)C(s)u(s)ds

+
∫ t

ek

R(t− s)F(s,z(s))dW (s)+
∫ t

ek

R(t− s)G(s)dRH
Q(s) (12)

for all t ∈ (ek, tk+1], k = 1,2, . . . ,m.

3. EXISTENCE OF MILD SOLUTIONS

In this section, we prove the existence of mild solutions for system (1). To prove our
main results, we assume the following hypotheses:
(H3): R(t), t ≥ 0 is compact.
(H4): The functions Ik : (tk,ek]×Y→ Y, k = 1,2, . . . ,m, are continuous and there exist

constants δIk ,γk > 0, k = 1,2, . . . ,m such that

E‖Ik(t,z)‖2 ≤ δIk(1+E‖z‖2), for all z ∈ Y,

E‖Ik(t,z1)− Ik(t,z2)‖2 ≤ γkE‖z1− z2‖2, for all z1,z2 ∈ Y.

(H5): The function F : J×Y→L 1
2 (X1,Y) satisfies the following conditions:

(i): The function F(t, ·) : Y→L 1
2 (X1,Y) is continuous for a.e. t ∈ J and for all

z ∈ Y, the function t→ F(t,z) is strongly measurable.
(ii): There exists a continuous function ν ∈ L1(J,R+) such that

E‖F(t,z)‖2
L 1

2
≤ ν(t)E‖z‖2

for all (t,z) ∈ J×Y.
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(H6): The function G : J→L 2
2 (X2,Y) fulfills

∫ t

0
‖G(s)‖2

L 2
2

ds < ∞ for every t ∈ J and

there exists a constant η > 0 such that ‖G(t)‖2
L 2

2
≤ η uniformly in J.

(H7): The following inequalities hold:
(i): θ1 = max

1≤k≤m
[γk,M2

γk]< 1.

(ii): θ2 = max
1≤k≤m

{δIk +4M2
δIk +4M2

∫ b

0
ν(s)ds}< 1.

Theorem 3.1. Assume that the assumptions (H1)-(H7) hold. Then for each u ∈ Uad , the
stochastic system (1) has at least one mild solution on [0,b].

Proof. For a constant ω > 0, we define

Lω = {z ∈PC (Y) : ‖z‖2
PC ≤ ω}.

Clearly, Lω is convex bounded and closed subset of PC (Y). Define the operator Γ :
Lω →PC (Y) by

(Γz)(t)=



R(t)z0 +
∫ t

0
R(t− s)C(s)u(s)ds

+
∫ t

0
R(t− s)F(s,z(s))dW (s)+

∫ t

0
R(t− s)G(s)dRH

Q(s), t ∈ [0, t1], k = 0,

Ik(t,z(t−k )), t ∈ (tk,ek], k ≥ 1,

R(t− ek)Ik(ek,z(t−k ))+
∫ t

ek

R(t− s)C(s)u(s)ds

+
∫ t

ek

R(t− s)F(s,z(s))dW (s)+
∫ t

ek

R(t− s)G(s)dRH
Q(s), t ∈ (ek, tk+1], k ≥ 1.

Now, we decompose Γ as Γ1 +Γ2, where

(Γ1z)(t) =


R(t)z0, t ∈ [0, t1], k = 0,

Ik(t,z(t−k )), t ∈ (tk,ek], k ≥ 1,

R(t− ek)Ik(ek,z(t−k )), t ∈ (ek, tk+1], k ≥ 1,
and

(Γ2z)(t)=



∫ t

0
R(t− s)C(s)u(s)ds+

∫ t

0
R(t− s)F(s,z(s))dW (s)

+
∫ t

0
R(t− s)G(s)dRH

Q(s), t ∈ [0, t1], k = 0,

0, t ∈ (tk,ek], k ≥ 1,

∫ t

ek

R(t− s)C(s)u(s)ds+
∫ t

ek

R(t− s)F(s,z(s))dW (s)

+
∫ t

ek

R(t− s)G(s)dRH
Q(s), t ∈ (ek, tk+1], k ≥ 1.
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Now we proceed as follows:

Step 1. There exists ω > 0 such that Γ(Lω)⊂Lω .
Suppose on the contrary that this is not true. We can choose zω ∈ Lω and t ∈ J such
that E‖Γ(zω)(t)‖2 > ω . Using Hölder’s inequality, (H3), (H5), (H6), Lemma 2.1 and
Lemma 2.2, we have for t ∈ [0, t1],

ω < E‖Γ(zω)(t)‖2

≤ 4E‖R(t)z0‖2 +4E
∥∥∥∥∫ t

0
R(t− s)C(s)u(s)ds

∥∥∥∥2

+4E
∥∥∥∥∫ t

0
R(t− s)F(s,zω(s))dW (s)

∥∥∥∥2

+4E
∥∥∥∥∫ t

0
R(t− s)G(s)dRH

Q(s)
∥∥∥∥2

≤ 4M2E‖z0‖2 +4E
[∫ t

0
‖R(t− s)‖‖C(s)u(s)‖ds

]2

+4M2
∫ t

0
E‖F(s,zω(s))‖2

L 1
2

ds+8cHM2t2H−1
1

∫ t

0
‖G(s)‖2

L 2
2

ds

≤ 4M2E‖z0‖2 +4M2t1‖C‖∞‖u‖L2
F

+4M2
∫ t

0
ν(s)E‖zω‖2ds+8cHM2t2H−1

1

∫ t

0
ηds

≤ 4M2E‖z0‖2 +4M2t1‖C‖∞‖u‖L2
F
+4M2

ω

∫ t

0
ν(s)ds+8cHM2t2H

1 η .

For t ∈]tk,ek], k = 1,2, . . . ,m,, we obtain

ω < E‖Γ(zω)(t)‖2 = E‖Ik(t,zω(t−k ))‖2 ≤ δIk

(
1+E‖zω‖2)

≤ δIk(1+ω).

Similarly, for t ∈ (ek, tk+1], k = 1,2, . . . ,m, we obtain

ω < E‖Γ(zω)(t)‖2 ≤ 4E‖R(t− ek)Ik(ek,zω(t−k ))‖2 +4E
∥∥∥∥∫ t

ek

R(t− s)C(s)u(s)ds
∥∥∥∥2

+4E
∥∥∥∥∫ t

ek

R(t− s)F(s,zω(s))dW
∥∥∥∥2

+4E
∥∥∥∥∫ t

ek

R(t− s)G(s)dRH
Q(s)

∥∥∥∥2

≤ 4M2E‖Ik(ek,zω(t−k ))‖2 +4E
[∫ t

ek

‖R(t− s)‖‖C(s)u(s)‖ds
]2

+4M2
∫ t

ek

E‖F(s,zω(s))‖2
L 1

2
ds+8cHM2t2H−1

1

∫ t

ek

‖G(s)‖2
L 2

2
ds

≤ 4M2
δIk(1+E‖(zω‖2)+4M2tk+1‖C‖∞‖u‖L2

F

+4M2
∫ t

ek

ν(s)E‖zω‖2ds+8cHM2t2H−1
k+1

∫ t

ek

ηds

≤ 4M2
δIk(1+ω)+4M2tk+1‖C‖∞‖u‖L2

F

+4M2
ω

∫ t

ek

ν(s)ds+8cHM2t2H
k+1η .
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For any t ∈ [0,b], we obtain

ω < E‖Γ(zω)(t)‖2 ≤ D+δIk ω +4M2
δIk ω +4M2

ω

∫ b

0
ν(s)ds, (13)

where

D = max
1≤k≤m

{
4M2E‖z0‖2

δIk +4M2
δIk +4M2b+‖C‖2

∞‖u‖2
L2

F
+8cHM2b2H

η

}
,

is independent on ω . Dividing both sides of (13) by ω and taking ω → ∞, we obtain

1 < δIk +4M2
δIk +4M2

∫ b

0
ν(s)ds,

which contradicts to (H7). Hence, for some ω > 0, Γ(Lω)⊂Lω .
Step 2. Γ1 is a contraction map on Lω .
Let z1,z2 ∈Lω . If t ∈ [0, t1]. Then we have

E‖(Γ1z1)(t)− (Γ1z2)(t)‖2 = 0. (14)

If t ∈ (tk,ek], k = 1,2, . . . ,m, then by (H4), we have

E‖(Γ1z1)(t)− (Γ1z2)(t)‖2 = E‖Ik(t,z1(t−j ))− Ik(t,z2(t−j ))‖
2

≤ γk‖z1− z2‖2
PC . (15)

Likewise, if t ∈ (ek, tk+1], k = 1,2, . . . ,m, then we have

E‖(Γ1z1)(t)− (Γ1z2)(t)‖2 = E‖R(t− ek)[Ik(t,z1(t−j ))− Ik(t,z2(t−j ))]‖
2

≤ M2
γk‖z1− z2‖2

PC . (16)

From (14) to (16), we obtain

‖Γ1z1−Γ1z2‖2
PC ≤ θ1‖z1− z2‖2

PC ,

where θ1 = max
1≤k≤m

{γk,M2γk}. By (H7), we see that θ1 < 1. Hence, Γ1 is a contraction map.

Step 3. Γ2 is continuous on Lω .
Let (zn)n≥1 be a sequence such that zn Lω→

n→∞
ẑ. By hypothesis (H5), we obtain

F(s,zn(s)) →
n→∞

F(s, ẑ),

for any s ∈ [0, t] and since

E‖F(s,zn(s))−F(s, ẑ)‖2
L 1

2
≤ ν(s)E‖zn‖2 +ν(s)E‖ẑ‖2

≤ 2ων(s).

For any t ∈ (ek, tk+1], k = 0,1, . . . ,m, we obtain

E‖(Γ2zn)(t)− (Γ2ẑ)(t)‖2 ≤ E
∥∥∥∥∫ t

ek

R(t− s)[F(s,zn(s))−F(s, ẑ(s))]dW (s)
∥∥∥∥2

ds

≤ M2
∫ t

ek

E‖F(s,zn(s))−F(s, ẑ(s))‖2
L 1

2
ds.

The Lebesgue dominated convergence theorem allows us to derive

‖Γ2zn−Γ2ẑ‖2
PC → 0 as n→ ∞.

Consequently, Γ2 is continuous on Lω .
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Step 4. {Γ2z : z ∈Lω} is equicontinuous.
Let z∈Lω and τ1,τ2 ∈ (ek, tk+1]. Then, if ek < τ1 < τ2 ≤ tk+1, k = 0,1,2, . . . ,m, we obtain

E‖(Γ2z)(τ2)− (Γ2z)(τ1)‖2

≤ 6E
∥∥∥∥∫ τ2

τ1

R(τ2− s)C(s)u(s)ds
∥∥∥∥2

+6E
∥∥∥∥∫ τ2

τ1

R(τ2− s)F(s,z(s))dW (s)
∥∥∥∥2

+6E
∥∥∥∥∫ τ2

τ1

R(τ2− s)G(s)dRH
Q(s)

∥∥∥∥2

+6E
∥∥∥∥∫ τ1

ek

[R(τ2− s)−R(τ1− s)]C(s)u(s)ds
∥∥∥∥2

+6E
∥∥∥∥∫ τ1

ek

[R(τ2− s)−R(τ1− s)]F(s,z(s))dW (s)
∥∥∥∥2

+6E
∥∥∥∥∫ τ1

ek

[R(τ2− s)−R(τ1− s)]G(s)dRH
Q(s)

∥∥∥∥2

:=C1 +C2 +C3 +C4 +C5 +C6.

(17)

By Hölder’s inequality, we have,

C1 ≤ 6M2(τ2− τ1)‖C‖2
∞E
∫

τ2

τ1

‖u(s)‖2
K ds→ 0 as τ2→ τ1. (18)

Using Lemma 2.2 and (H5), we have

C2 ≤ 6
∫

τ2

τ1

‖R(τ2− s)‖2E‖F(s,z(s))‖2
L 1

2
ds

≤ 6M2
∫

τ2

τ1

ν(s)E‖z‖2ds

≤ 6M2
ω

∫
τ2

τ1

ν(s)ds→ 0 as τ2→ τ1. (19)

For C3, by Lemma 2.1 and (H6), we have

C3 ≤ 12cHM2(τ2− τ1)
2H−1

∫
τ2

τ1

‖G(s)‖2
L 2

2
ds

≤ 12cHM2(τ2− τ1)
2H

η → 0 as τ2→ τ1. (20)

For the term C4, we have by Hölder’s inequality

C4 ≤ 6(τ2− τ1)‖C‖2
∞E
∫

τ1

ek

‖R(τ2− s)−R(τ1− s)‖2‖u(s)‖2
K ds. (21)

Since R(t) is continuous in the uniform operator topology, then C4→ 0 as τ2→ τ1.
On the other hand, in view of Lemma 2.2 and (H5), we have

C5 ≤ 6
∫

τ1

ek

‖R(τ2− s)−R(τ1− s)‖2E‖F(s,z(s))‖2
L 1

2
ds

≤ 6
∫

τ1

ek

‖R(τ2− s)−R(τ1− s)‖2
ν(s)E‖z‖2ds

≤ 6ω

∫
τ1

ek

‖R(τ2− s)−R(τ1− s)‖2
ν(s)ds. (22)

Due to the continuity in the uniform operator topology of R(t), we obtain that C5→ 0 as
τ2→ τ1.
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Using Lemma 2.1, (H6) and the continuity in the uniform operator topology of R(t), we
obtain

C6 ≤ 12cH(τ1− ek)
2H−1

∫
τ1

ek

‖R(τ2− s)−R(τ1− s)‖2‖G(s)‖2
L 2

2
ds

≤ 12cH(τ1− ek)
2H−1

η

∫
τ1

ek

‖R(τ2− s)−R(τ1− s)‖2→ 0 as τ2→ τ1. (23)

Hence, the right-hand of (17) converges to 0 as τ2→ τ1. Thus, {Γ2z : z ∈Lω} is equicon-
tinuous. Also, it is clear that {Γ2z : z ∈Lω} is bounded.
Step 5. V (t) = {(Γ2z)(t) : z ∈Lω} is relatively compact in Y.
Let 0 < s≤ t ≤ t1 be fixed and let h be a real number satisfying 0 < h < t. For z ∈Lω , we
define the operators

(Γh
2z)(t) = R(t)z0 +

∫ t−h

0
R(t− s)C(s)u(s)ds+

∫ t−h

0
R(t− s)F(s,z(s))dW (s)

+
∫ t−h

0
R(t− s)G(s)dRH

Q(s)

and

(
Γ
∗h
2 z
)
(t) = R(t)z0 +R(h)

∫ t−h

0
R(t− s−h)C(s)u(s)ds+R(h)

∫ t−h

0
R(t− s−h)F(s,z(s))dW (s)

+R(h)
∫ t−h

0
R(t− s−h)G(s)dRH

Q(s).

By Lemma 2.9 and using the compactness of
(
R(h)

)
h>0, we deduce that the set Ṽ (t) =

{(Γh
2z)(t) : z ∈Lω} is precompact in Y for every h, 0 < h < t. Moreover, by Lemma 2.9

and Hölder’s inequality, for every z ∈Lω , we have:

E‖(Γh
2z)(t)−

(
Γ
∗h
2 z
)
(t)‖2

≤ 3E
∥∥∥∥R(h)

∫ t−h

0
R(t− s−h)C(s)u(s)ds−

∫ t−h

0
R(t− s)C(s)u(s)ds

∥∥∥∥2

+3E
∥∥∥∥R(h)

∫ t−h

0
R(t− s−h)F(s,z(s))dW (s)−

∫ t−h

0
R(t− s)F(s,z(s))dW (s)

∥∥∥∥2

+3E
∥∥∥∥R(h)

∫ t−h

0
R(t− s−h)G(s)dRH

Q(s)−
∫ t−h

0
R(t− s)G(s)dRH

Q(s)
∥∥∥∥2

≤ 3E
∥∥∥∥∫ t−h

0

[
R(h)R(t− s−h)−R(t− s)

]
C(s)u(s)ds

∥∥∥∥2



84 E. KPIZIM, K. EZZINBI, V. VINODKUMAR AND M. A. DIOP EJMAA-2023/11(1)

+3E
∥∥∥∥∫ t−h

0

[
R(h)R(t− s−h)−R(t− s)

]
F(s,z(s))dW (s)

∥∥∥∥2

+3E
∥∥∥∥∫ t−h

0

[
R(h)R(t− s−h)−R(t− s)

]
G(s)dRH

Q(s)
∥∥∥∥2

≤ 3E
∫ t−h

0

∥∥R(h)R(t− s−h)−R(t− s)
∥∥2∥∥C(s)u(s)

∥∥2ds

+3E
∫ t−h

0

∥∥R(h)R(t− s−h)−R(t− s)
∥∥2∥∥F(s,z(s))

∥∥2dW (s)

+3E
∫ t−h

0

∥∥R(h)R(t− s−h)−R(t− s)
∥∥2∥∥G(s)

∥∥2dRH
Q(s)

≤ 3L(h)2E
∫ t−h

0

∥∥C(s)u(s)
∥∥2ds+3L(h)2E

∫ t−h

0

∥∥F(s,z(s))
∥∥2dW (s)

+3L(h)2E
∫ t−h

0

∥∥G(s)
∥∥2dRH

Q(s)

≤ 3L(h)2h‖C‖2
∞E
∫ t−h

0
‖u(s)‖2

K ds+3L(h)2
ω

∫ t−h

0
ν(s)ds+3L(h)2cHb2H−1E

∫ t−h

0

∥∥G(s)
∥∥2

L 0
2

ds

≤ 3L(h)2
[

h‖C‖2
∞E
∫ t−h

0
‖u(s)‖2

K ds+ω

∫ t−h

0
ν(s)ds+ cHb2H−1E

∫ t−h

0

∥∥G(s)
∥∥2

L 0
2

ds
]

−→
h−→0

0.

So the set Ṽ (t) = {(Γh
2z)(t) : z ∈Lω} is precompact in Y by using the total boundedness.

Using this idea again, we obtain

E‖(Γ2z)(t)− (Γh
2z)(t)‖2

≤ 3E
∥∥∥∥∫ t

ek

R(t− s)C(s)u(s)ds−
∫ t−h

ek

R(t− s)C(s)u(s)ds
∥∥∥∥2

+3E
∥∥∥∥∫ t

0
R(t− s)F(s,z(s))dW (s)−

∫ t−h

0
R(t− s)F(s,z(s))dW (s)

∥∥∥∥2

+3E
∥∥∥∥∫ t

0
R(t− s)G(s)dRH

Q(s)−
∫ t−h

0
R(t− s)G(s)dRH

Q(s)
∥∥∥∥2

≤ 3M2
[

h‖C‖2
∞E
∫ t

t−h
‖u(s)‖2

K ds+ω

∫ t

t−h
ν(s)ds+2cHηh2H

]
→ 0 as h→ 0.

Similarly, for any t ∈ (ek, tk+1] with k = 1, · · · ,N. Let ek < t ≤ s ≤ tk+1 be fixed and let h
be a real number satisfying 0 < h < t. For z ∈Lω , we define the operators

(Γ̃h
2z)(t) =

∫ t−h

ek

R(t− s)C(s)u(s)ds+
∫ t−h

ek

R(t− s)F(s,z(s))dW (s)

+
∫ t−h

ek

R(t− s)G(s)dRH
Q(s)

and (
Γ̃
∗h
2 z
)
(t) = R(h)

∫ t−h

ek

R(t− s−h)C(s)u(s)ds+R(h)
∫ t−h

ek

R(t− s−h)F(s,z(s))dW (s)

+R(h)
∫ t−h

ek

R(t− s−h)G(s)dRH
Q(s).
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If we using the Lemma 2.9 and compactness of
(
R(h)

)
h>0, we deduce that the set Ṽ

′
(t) is

precompact in Y for every h, 0 < h < t. Moreover, by Lemma 2.9 and Hölder’s inequality,
for every z ∈Lω we have:

E‖(Γ̃h
2z)(t)−

(
Γ̃
∗h
2 z
)
(t)‖2

≤ 3E
∥∥∥∥R(h)

∫ t−h

ek

R(t− s−h)C(s)u(s)ds−
∫ t−h

ek

R(t− s)C(s)u(s)ds
∥∥∥∥2

+3E
∥∥∥∥R(h)

∫ t−h

ek

R(t− s−h)F(s,z(s))dW (s)−
∫ t−h

ek

R(t− s)F(s,z(s))dW (s)
∥∥∥∥2

+3E
∥∥∥∥R(h)

∫ t−h

ek

R(t− s−h)G(s)dRH
Q(s)−

∫ t−h

ek

R(t− s)G(s)dRH
Q(s)

∥∥∥∥2

≤ 3
(
L(h)

)2
[

h‖C‖2
∞E
∫ t−h

0
‖u(s)‖2

K ds+ω

∫ t−h

ek

ν(s)ds+ cHb2H−1E
∫ t−h

ek

∥∥G(s)
∥∥2

L 0
2

ds
]

−→
ε−→0

0.

So the set Ṽ
′
(t) = {(Γ̃h

2z)(t) : z∈Lω} is precompact in Y by using the total boundedness.
Using this idea again, we obtain

E‖(Γ2z)(t)− (Γ̃h
2z)(t)‖2

≤ 3E
∥∥∥∥∫ t

t−h
R(t− s)C(s)u(s)ds

∥∥∥∥2

+3E
∥∥∥∥∫ t

t−h
R(t− s)F(s,z(s))dW (s)

∥∥∥∥2

+3E
∥∥∥∥∫ t

t−h
R(t− s)G(s)dRH

Q(s)
∥∥∥∥2

≤ 3M2
[

h‖C‖2
∞E
∫ t

t−h
‖u(s)‖2

K ds+ω

∫ t

t−h
ν(s)ds+2cHηh2H

]
→ 0 as h→ 0.

Therefore, as h−→ 0, there are precompact sets arbitrarily close to the set V (t)= {(Γ2z)(t) :
z ∈Lω} is relatively compact in Y. It is easy to see that the set Lω is uniformly bounded.
By using the steps 3 to 5 and the Arzela-Ascoli theorem, we get that the operator Γ2 is
completely continuous. Consequently, by Krasnoselskii’s fixed point Theorem (see [29]),
we see that the operator Γ has at least one fixed point on Lω , which is a mild solution of
stochastic system (1).

4. EXISTENCE OF A STOCHASTIC OPTIMAL CONTROL

This section is devoted to the exploration of the existence of optimal state-control pairs
of the Lagrange problem corresponding to the stochastic system(1).

Let Uz(u) be the set of all solutions of the stochastic system (1) and zu denote the mild
solution of the stochastic system (1) with respect to u ∈ Uad . We consider the following
Lagrange problem (L P)

(L P)

{
Find an optimal pair (z0,u0) ∈PC ×Uad such that
J (z0,u0)≤J (zu,u), for all u ∈Uad ,

where

J (zu,u) = E
∫ b

0
T (t,zu(t),u(t))dt.

The following hypotheses are imposed in order to discuss the Lagrange problem (L P).
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(H8): The Borel measurable function T : J×Y×K → R∪{∞} satisfies
(i): For almost all t ∈ J, T (t,z, ·) is convex function on K for each z ∈ Y.
(ii): For almost all t ∈ J, T (t, ·, ·) is sequentially lower semi-continuous on Y×

K .
(iii): There exist constants τ1≥ 0,τ2 > 0 and ϒ is nonnegative function in L1(J,R)

such that

T (t,z,u)≥ ϒ(t)+ τ1‖z‖+ τ2‖u‖2
K .

Denote

Λ = max
1≤k≤m

[
(n1 +n10)exp(n2), δIk/(1−δIk), (n2k +n1k)(1+dε)

k exp(n2)

]
,

where n1 = 4M2E‖z0‖2, n1k = 4M2tk+1‖C‖2
∞‖u‖2

L2
F
+8cHM2t2H

k+1η , n2 = 4M2‖ν‖L1 , n2k =

4M2δIk ,
dε = sup1≤k≤m{4M2δIk}, and δIk < 1.

Lemma 4.1. Assume that (H1)-(H7) hold. Then, for given u ∈Uad , there exits a constant
Λ > 0 such that ‖z‖2

PC ≤ Λ for any mild solution z of the stochastic system (1).

Proof. Let z be a mild solution of stochastic system (1) with respect to u ∈Uad on [0,b].
We split the proof into several cases.
Case 1. For any t ∈ [0, t1], we have

E‖z(t)‖2 ≤ 4E‖R(t)z0‖2 +4E
∥∥∥∥∫ t

0
R(t− s)C(s)u(s)ds

∥∥∥∥2

+4E
∥∥∥∥∫ t

0
R(t− s)F(s,z(s))dW (s)

∥∥∥∥2

+4E
∥∥∥∥∫ t

0
R(t− s)G(s)dRH

Q(s)
∥∥∥∥2

≤ 4M2E‖z0‖2 +4M2t1‖C‖2
∞‖u‖2

L2
F

+4M2
∫ t

0
E‖F(s,z(s))‖2

L 1
2

ds+8M2cHt2H−1
1

∫ t

0
‖G(s)‖2

L 2
2

ds

≤ 4M2E‖z0‖2 +4M2t1‖C‖2
∞‖u‖2

L2
F

+8M2cHt2H
1 η +4M2

∫ t

0
ν(s)E‖z(s)‖2ds.

By Gronwall’s inequality, we have

E‖z(t)‖2 ≤ max
1≤k≤m

(
4M2E‖z0‖2 +4M2t1‖C‖2

∞‖u‖2
L2

F
+8M2cHt2H

1 η

)
×exp[4M2‖ν‖L1 ] = Λ.

Case 2. For any t ∈ (tk,ek], k = 1,2, . . . ,m, we have

E‖z(t)‖2 = E‖Ik(t,z(t−k ))‖2 ≤ δIk(1+E‖z(t−k )‖2),

which implies that

‖z‖2
PC ≤

δIk
1−δIk

≤ Λ.
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Case 3. For any t ∈ (ek, tk+1], k = 1,2, . . . ,m, using Lemma 2.1, Lemma 2.2, (H4), (H5),
(H6) and Hölder’s inequality, we obtain

E‖z(t)‖2 ≤ 4E‖R(t− ek)Ik(ek,z(t−k ))‖2 +4E
∥∥∥∥∫ t

ek

R(t− s)C(s)u(s)ds
∥∥∥∥2

+4E
∥∥∥∥∫ t

ek

R(t− s)F(s,z(s))dW (s)
∥∥∥∥2

+4E
∥∥∥∥∫ t

ek

R(t− s)G(s)dRH
Q(s)

∥∥∥∥2

≤ 4M2E‖Ik(ek,z(t−k ))‖2 +4E
[∫ t

ek

‖R(t− s)C(s)u(s)‖ds
]2

+4M2
∫ t

ek

E‖F(s,z(s))‖2
L 1

2
ds

+8M2Ht2H−1
k+1

∫ t

ek

‖G(s)‖2
L 2

2
ds

≤ 4δIk(1+E‖z(t−k )‖2)+4M2tk+1‖C‖2
∞‖u‖2

L2
F

+8M2Ht2H
k+1η +4M2

∫ t

ek

ν(s)E‖z(s)‖2ds.

+4
k

∑
i=1

4M2
δIiE‖z(t

−
i )‖2.

Applying impulsive Gronwall’s inequality given by Theorem 2.4, we obtain

E‖z(t)‖2 ≤
(

4M2
δIk +4M2tk+1‖C‖2

∞‖u‖2
L2

F
+8M2cHt2H

k+1η

)
×(1+dε)

k exp[4M2‖ν‖L1 ]≤ Λ,

where dε = sup1≤i≤m(4M2δIi).
From the above, we obtain

‖z‖2
PC ≤ Λ.

We have the following result:

Lemma 4.2. The operator Π : L2
F (J,K )→PC (Y) given by

(Πu)(·) =


∫ t

0
R(t− s)C(s)u(s)ds t ∈ [0, t1],

0, t ∈ (tk,ek], k ≥ 1,∫ t

ek

R(t− s)C(s)u(s)ds, t ∈ (ek, tk+1], k ≥ 1,

is completely continuous.

Proof. Suppose {un(·)} ⊆ Lp ([0, t1],Y) is bounded, i.e., there exists δ > 0 such that

‖u‖p
Lp([0,t1],Y)

≤ δ ∀ n ∈ N.

We define Θn(t) =
(
Πun

)
(t), t ∈ [0,b] i.e.
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Θn(t) =
∫ t

0
R(t− s)C(s)un(s)ds.

By virtue of Holder inequality one can verify that for ant fixed t ∈ [0,b], ‖Θn(t)‖ is
bounded. Similar to the proof of Theorem 3.1 it is easy to verify that Θn(t) is relatively
compact in Y and is also equicontinuous. Due to Arzela-Ascoli theorem again,

(
Πu
)
(t) is

compact in Y.
Obviously, Πu is linear and continuous. Hence, Πu is a completely continuous operator.

Theorem 4.3. Assume that hypotheses (H3)-(H8) are satisfied. Then the problem (L P)

admits at least one optimal control pair.

Proof. Whithout loss of generality, we suppose that J (u) = infzu∈Uz(u)J (zu,u) <
+∞ for u ∈Uad . Otherwise, there is nothing to prove. By (H8), we have

J (zu,u)≥
∫ b

0
ϒ(t)dt + τ1

∫ b

0
‖zu(t)‖dt +

∫ b

0
τ2‖u(t)‖2

K dt ≥−b >−∞,

where b is a nonnegative constant. Therefore J (u) ≥ −b ≥ −∞. For better readability,
we break the proof into a sequence of steps.
Step 1. By using definition of infimum, there exists a minimizing sequence {zu

n} ⊆Uz(u)
such that

J (zu
n,u)→J (u) as n→ ∞.

Let
(
zu

n
)

n denote the sequence of mild solutions of the stochastic system (1) corresponding
to the control u

(zu
n)(t)=



R(t)z0 +
∫ t

0
R(t− s)C(s)u(s)ds

+
∫ t

0
R(t− s)F(s,zu

n(s))dW (s)+
∫ t

0
R(t− s)G(s)dRH

Q(s), t ∈ [0, t1], k = 0,

Ik(t,zu
n(t
−
k )), t ∈ (tk,ek], k ≥ 1,

R(t− ek)Ik(ek,zu
n(t
−
k ))+

∫ t

ek

R(t− s)C(s)u(s)ds

+
∫ t

ek

R(t− s)F(s,zu
n(s))dW (s)+

∫ t

ek

R(t− s)G(s)dRH
Q(s), t ∈ (ek, tk+1], k ≥ 1.

Step 2. We show that there exists some z̃u ∈Uz(u) such that J (z̃u,u)= infzu∈Uz(u)J (zu,u)=
J (u). Therefore, we have to show that for each u ∈ Uad , the set {zu

n}n∈N is relatively
compact in PC (Y). Lemma 4.1 shows that the set {zu

n} is uniformely bounded. Now,
we prove that {zu

n} is equicontinuous on J. To achieve our aim, we consider the following
three cases:
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Case 1. For 0 < τ1 < τ2 ≤ t1, we have

E‖z(τ2)− z(τ1)‖2 ≤ 7‖R(τ2)−R(τ1)‖2E‖z0‖2 +7E
∥∥∥∥∫ τ2

τ1

R(τ2− s)C(s)u(s)ds
∥∥∥∥2

+ 7E
∥∥∥∥∫ τ1

0
[R(τ2− s)−R(τ1− s)]C(s)u(s)ds

∥∥∥∥2

+ 7E
∥∥∥∥∫ τ2

τ1

R(τ2− s)F(s,z(s))dW (s)
∥∥∥∥2

+ 7E
∥∥∥∥∫ τ1

0
[R(τ2− s)−R(τ1− s)]F(s,z(s))dW (s)

∥∥∥∥2

+ 7E
∥∥∥∥∫ τ2

τ1

R(τ2− s)G(s)dRH
Q(s)

∥∥∥∥2

+ 7E
∥∥∥∥∫ τ1

0
[R(τ2− s)−R(τ1− s)]G(s)dRH

Q(s)
∥∥∥∥2

= 7[‖R(τ2)−R(τ1)‖2E‖z0‖2 +N1 +N2 +N3],

where

N1 = E
∥∥∥∥∫ τ2

τ1

R(τ2− s)C(s)u(s)ds
∥∥∥∥2

+ E
∥∥∥∥∫ τ1

0
[R(τ2− s)−R(τ1− s)]C(s)u(s)ds

∥∥∥∥2

N2 = E
∥∥∥∥∫ τ2

τ1

R(τ2− s)F(s,z(s))dW (s)
∥∥∥∥2

+ E
∥∥∥∥∫ τ1

0
[R(τ2− s)−R(τ1− s)]F(s,z(s))dW (s)

∥∥∥∥2

N3 = E
∥∥∥∥∫ τ2

τ1

R(τ2− s)G(s)dRH
Q(s)

∥∥∥∥2

+ E
∥∥∥∥∫ τ1

0
[R(τ2− s)−R(τ1− s)]G(s)dRH

Q(s)
∥∥∥∥2

.

For N1, we have

N1 ≤ M2(τ2− τ1)‖C‖2
∞E
∫

τ2

τ1

‖u(s)‖2
K ds

+ τ1M2‖C‖2
∞E
∫

τ1

0
‖R(τ2− s)−R(τ1− s)‖2‖u(s)‖2

K ds.

For N2, by Lemma 2.2 and (H4), we have

N2 ≤M2
Λ

∫
τ2

τ1

ν(s)ds+Λ

∫
τ1

0
‖R(τ2− s)−R(τ1− s)‖2

ν(s)ds.

Using Lemma 2.1, (H6) and Hölder’s inequality, we obtain

N3 ≤ 2cHM2
η(τ2− τ1)

2H+2cHτ
2H−1
1 η

∫
τ1

0
‖R(τ2− s)−R(τ1− s)‖2ds.
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Case 2. For tk < τ1 < τ2 ≤ ek, k = 1,2, . . . ,m, we have

E‖z(τ2)− z(τ1)‖2 = E‖Ik(τ2,z(t−k ))− Ik(τ1,z(t−k ))‖2

Case 3. For ek < τ1 < τ2 ≤ tk+1, k = 1,2, . . . ,m, we have

E‖z(τ2)− z(τ1)‖2 ≤ 7E‖R(τ2− ek)−R(τ1− ek)‖2‖Ik(ek,z(t−k ))‖2

+ 7E
∥∥∥∥∫ τ2

τ1

R(τ2− s)C(s)u(s)ds
∥∥∥∥2

+ 7E
∥∥∥∥∫ τ1

ek

[R(τ2− s)−R(τ1− s)]C(s)u(s)ds
∥∥∥∥2

+ 7E
∥∥∥∥∫ τ2

τ1

R(τ2− s)F(s,z(s))dW (s)
∥∥∥∥2

+ 7E
∥∥∥∥∫ τ1

ek

[R(τ2− s)−R(τ1− s)]F(s,z(s))dW (s)
∥∥∥∥2

+ 7E
∥∥∥∥∫ τ2

τ1

R(τ2− s)G(s)dRH
Q(s)

∥∥∥∥2

+ 7E
∥∥∥∥∫ τ1

ek

[R(τ2− s)−R(τ1− s)]G(s)dRH
Q(s)

∥∥∥∥2

= 7[‖R(τ2)−R(τ1)‖2E‖z0‖2 +N
′
1 +N

′
2 +N

′
3],

where

N
′
1 ≤ M2(τ2− τ1)‖C‖2

∞E
∫

τ2

τ1

‖u(s)‖2
K ds

+ τ1M2‖C‖2
∞E
∫

τ1

ek

‖R(τ2− s)−R(τ1− s)‖2‖u(s)‖2
K ds,

N
′
2 ≤ M2

Λ

∫
τ2

τ1

ν(s)ds+Λ

∫
τ1

ek

‖R(τ2− s)−R(τ1− s)‖2
ν(s)ds,

N
′
3 ≤ 2cHM2

η(τ2− τ1)
2H+2cHτ

2H−1
1 η

∫
τ1

0
‖R(τ2− s)−R(τ1− s)‖2ds.

By using the hypothesis (H3) and the continuity of the functions Ik we see that the right-
hand side of N

′
j, j = 1,2,3 tends to zero as τ2→ τ1. Thus, {zu

n} is equicontinuous on J. As
in the proof of steps 4 and 5 in Theorem 3.1, we can see that {zu

n} is relatively compact on
PC (Y). Consequently, there exists z̃u ∈PC (Y) such that zu

n→ z̃u in PC (Y) for each
u ∈Uad .

(z̃u)(t)=



R(t)z0 +
∫ t

0
R(t− s)C(s)u(s)ds

+
∫ t

0
R(t− s)F(s, z̃u(s))dW (s)+

∫ t

0
R(t− s)G(s)dRH

Q(s), t ∈ [0, t1], k = 0,

Ik(t, z̃u(t−k )), t ∈ (tk,ek], k ≥ 1,

R(t− ek)Ik(ek, z̃u(t−k ))+
∫ t

ek

R(t− s)C(s)u(s)ds

+
∫ t

ek

R(t− s)F(s, z̃u(s))dW (s)+
∫ t

ek

R(t− s)G(s)dRH
Q(s), t ∈ (ek, tk+1], k ≥ 1,

which gives that z̃u ∈Uz(u). Now, we claim that J (z̃u,u) = infz̃u∈Uz(u)J (z̃u,u) =J (u).
Since PC (Y) ⊂ L1(J,Y), by using the Balder’s theorem [9] and hypothesis (H8), we
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obtain

J (u) = lim
n→∞

E
∫ b

0
T (t,zu

n(t),u(t)dt ≥ E
∫ b

0
T (t, z̃u(t),u(t)dt = J (z̃u,u)≥J (u),

which implies that J (u) attains its minimum at z̃u ∈PC (Y) for each u ∈Uad .
Step 3. Next, we show that there exists û ∈Uad such that

J (û)≤J (u) for all u ∈Uad .

We assume that infu∈Uad J (u) < +∞. Otherwise there is nothing to do. Using the as-
sumptions (H8) again, we have infu∈Uad J (u) > −∞. By definition of infimum, there
exists a minimizing sequence {un} ⊆Uad such that

J (un)→ inf
u∈Uad

J (u).

Since {un} ⊆ Uad , {un} is bounded in the space L2
F (J,K ), there exists a subsequence

{unl}l≥1 of {un} which converges weakly to û ∈ L2
F (J,K ) as l→∞. Since Uad is convex

and closed, then Marzur Theorem implies that û ∈Uad . Let {z̃un} denote the sequence of
mild solutions of stochastic system (1) corresponding to the sequence control {un}

z̃un(t)=



R(t)z0 +
∫ t

0
R(t− s)C(s)u(s)ds

+
∫ t

0
R(t− s)F(s, z̃un(s))dW (s)+

∫ t

0
R(t− s)G(s)dRH

Q(s), t ∈ [0, t1], k = 0,

Ik(t, z̃un(t−k )), t ∈ (tk,ek], k ≥ 1,

R(t− ek)Ik(ek, z̃un(t−k ))+
∫ t

ek

R(t− s)C(s)u(s)ds

+
∫ t

ek

R(t− s)F(s, z̃un(s))dW (s)+
∫ t

ek

R(t− s)G(s)dRH
Q(s), t ∈ (ek, tk+1], k ≥ 1.

In the same way to the proof of the above step 2, we can demonstrate that {z̃un} is relatively
compact on PC (Y). Thus, there exists z̃û ∈PC (Y) such that z̃un → z̃û for û ∈Uad . As
n→ ∞, we have

Ik(t, z̃un(t−k ))→ Ik(t, z̃û(t−k )), k = 1,2, . . . ,m,∫ t

ek

R(t− s)C(s)un(s)ds→
∫ t

ek

R(t− s)C(s)û(s)ds, k = 0,1,2, . . . ,m,∫ t

ek

R(t− s)F(s, z̃un(s))dW (s)→
∫ t

ek

R(t− s)F(s, z̃û(s))dW (s), k = 0,1,2, . . . ,m.

Hence, z̃û denotes the solution of stochastic system (1) corresponding to û. Since PC (Y)⊂
L1(J,Y), by Balder’s theorem [9] and hypothesis (H8), we obtain

inf
u∈Uad

J (u) = lim
n→∞

E
∫ b

0
T (t, z̃un(t),un(t)dt

≥ E
∫ b

0
T (t, z̃û(t), û(t))dt = J (z̃û, û)≥ inf

u∈Uad
J (u).

Consequently, J (z̃û, û)=J (û)= infzû∈Uz(û)J (z̃û, û). Additionally, J (û)= infu∈Uad J (u),
ie, J attains its minimum at û ∈Uad .
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5. EXAMPLE

Let us consider the following impulsive stochastic control system:

dz(t,ζ ) =
[

∂ 2

∂ζ 2 z(t,ζ )+u(t,ζ )+
∫ t

0
b(t− s)

∂ 2

∂ζ 2 z(s,ζ )ds
]
dt

+

√
te−tz(t,ζ )

2(1+ |z(t,ζ )|)
dW (t)+ e−tdRH

Q(t), t ∈ (0,0.30]∪ (0.70, 1],u ∈Uad ,ζ ∈ [0,π],

z(t,ζ ) = 1
5 (sin t)z(0.30−,ζ ), t ∈ (0,0.30],ζ ∈ [0,π],

z(t,0) = z(t,π) = 0,

z(0,ζ ) = z0(ζ ), ζ ∈ [0,π],
(24)

with the following cost function

J (z,u) =
∫ 1

0

∫
π

0
‖zu(t,ζ )‖2dζ dt +

∫ 1

0

∫
π

0
‖u(t,ζ )‖2dζ dt,

where RH
Q = {RH

Q(t) : t ≥ 0} is a Rosenblatt process with H ∈ (1/2,1), W (t) is a Wiener
process, b : R+ → R is bounded and C 1 function such that b

′
is bounded and uniformly

continuous. 0 = e0 < t0 < t1 < e1 < t2 = b, with t1 = 0.30, e1 = 0.70 and t2 = 1. Let
Q = 1,X1 = X2 = R,δ1 = 1, δn = 0,n > 1. Let Y= K = L2[0,π],X1 = X2 = R. Define
the operator A : D(A)⊂ Y→ Y by Aω = ∂ 2ω

∂y2 with

D(A) =
{

y ∈ Y : y,y′are absolutely continuous, y” ∈ Y, y(0) = y(π) = 0
}
.

It is well know that A generates a C0-semi-group (S(t))t≥0 on Y, which implies that (H1)
is satisfied. Let B : D(A)⊂ Y→ Y be the operator defined by

B(t)(z) = b(t)Az for t ≥ 0 and z ∈D(A).

Now, we define the control set

Uad =

{
u(·,ζ ) : [0,1]→K is Ft -adapted and mesurable stochastic

process and ‖u‖L2
F
≤ ρ,ρ > 0

}
.

Let z(t)(ζ ) = z(t,ζ ) and the functions F,G and I1 are defined as

F(t,z)(ζ ) =

√
te−tz(t,ζ )

2(1+ |z(t,ζ )|)
,

G(t) = e−t ,

I1(t,z(t−1 ))(ζ ) =
1
5
(sin t)z(0.30−,ζ ).

For all u ∈ L2([0,1]× [0,π]), we define an operator C as follows: Cu(t,ζ ) = u(t,x). Using
these definitions, we can represent the system (24) in the abstract form of (1) for m = 1.

We assume that b = 1,M = 1,cH = 1,H = 0.75. We obtain
∫ 1

0
ν(s)ds =

1
4

∫ 1

0
se−2sds ≈

0.0371,δI1 = γ1 =
1

25
.Thus, we have δI1 ≈ 0.04< 1, θ1 =max

[
γ1,γ1

]
≈max

[
0.04,0.04

]
=

0.04 < 1 and θ2 =

[
δI1 + 4δI1 + 4

∫ b

0
ν(s)ds

]
≈
[
0.04+ 0.16+ 0.1484

]
= 0.3484 < 1.
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Hence all conditions of Theorem 3.1 and Theorem 4.3 are satisfied Thus, the problem
(L P) corresponding to stochastic system (24) admits at least one optimal state-control
pair.

6. CONCLUSION

The existence of some impulsive stochastic integro-differential equations driven by the
Rosenblatt process with non-instantaneous impulses, as well as optimal control findings
for these equations, have been examined. By employing the fixed point technique, specif-
ically Krasnoselskii’s fixed point theorem and the theory of resolvent operators, we were
able to demonstrate the existence of mild solutions to the suggested system. Furthermore,
we demonstrated the optimal control outcomes by employing the minimizing sequence
concept, which was then used to derive the optimization criteria. Finally, an example has
been used to validate the theoretical conclusions reached.

There is one direct issue which require further study. In a coming paper we will investi-
gate the approximate controllability of impulsive stochastic integro-differential equations
driven by Rosenblatt process with non-instantaneous impulses.
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