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ON EIGENVALUE, SINGULAR VALUE AND NORMS OF A

REAL SKEW-SYMMETRIC MATRIX

AHMET İPEK

Abstract. Many problems in applied mathematics are solved by computing
the eigenvalues, singular values, spectral and Euclidean norms of the skew-

symmetric matrices. In this article, we first introduce the eigenvalues and

singular values of the matrix A = [xi − xj ]
n
i,j=1. Then we obtain the spectral

norm and Euclidean norms of A. Finally, some numerical examples are taken

to illustrate the correctness of the concluded results.

1. Introduction and Preliminaries

There has been a lot of interest in the the symmetric, skew-symmetric, Cauchy,
Hankel, Toeplitz and Circulant matrices and some profound results were established
[1], [3], [4], [7].

Toeplitz matrices has attracted the continuous attention of the scholars in the
filed of applied mathematics [1], [3], [6], [8].

In this paper we obtain some new results on the eigenvalues, singular values, the
spectral and Euclidean norms of the n -by- n real skew-symmetric matrix for any
n ≥ 2

A = [xi − xj ]
n
i,j=1 =


0 x1 − x2 x1 − x3 · · · x1 − xn

x2 − x1 0 x2 − x3 · · · x2 − xn

· · · · · · · · · · · · · · ·
xn − x1 xn − x2 xn − x3 · · · 0

 . (1)

When xi = i, i = 1, 2, ..., n, for the elements of the matrix A, the matrix A
becomes the n -by- n real skew-symmetric Toeplitz matrix.

We recall some basic definitions and properties of the spectral and Euclidean
norms of matrices. For a comprehensive exposition of the subject we refer the
reader to [2] and [5].

Let Cn×n denote the space of n × n complex matrices. The conjugate Ā of
A = [aij ] ∈ Cn×n is the matrix such that Āij = āij , 1 ≤ i, j ≤ n. The transpose
of A is the n × n matrix A⊤ such that A⊤

ij = aji, 1 ≤ i, j ≤ n. The conjugate

transpose of A is the n× n matrix A∗ such that A∗ = (A⊤) = (Ā)⊤. When A is a
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real matrix (A ∈ Rn×n), A∗ = A⊤. A matrix A is Hermitian if A∗ = A. If A is a
real matrix (A ∈ Rn×n), we say that A is symmetric if A⊤ = A. The trace of A is
the sum of its diagonal elements tr(A) = a11 + · · ·+ ann.

Hermitian matrices AA∗ ∈ Cn×n and A∗A ∈ Cn×n have the same eigenval-
ues. The singular values of A are uniquely determined by the eigenvalues of A∗A
(equivalently, by the eigenvalues of AA∗ ). Let A = [aij ] ∈ Cn×n have eigenvalues
λ1, . . . , λn ordered so that |λ1| ≥ · · · ≥ |λn| and singular values σ1, . . . , σn ordered
so that σ1 ≥ · · · ≥ σn. Then, it is well known that

n∑
i,j=1

|aij |2 = trA∗A =

n∑
i=1

σ2
i .

A matrix A ∈ Cn×n is called normal if A∗A = AA∗. If A∗ = −A, we have
A∗A = AA∗ = −A2. Hence matrices for which A∗ = −A, called skew-Hermitian,
are normal. σi = |λi| for all i = 1, . . . , n if and only if A is normal.

The Euclidean norm of A is given by

∥A∥E =

√√√√ n∑
i,j=1

|aij |2 =

√√√√ n∑
i

σ2
i (A) =

√
tr (AA∗). (2)

The specral radius ρ(A) of a matrix A ∈ Cn×n is defined as:

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

The spectral norm ∥ · ∥2 is defined on Cn×n by

∥A∥2 = σ1(A).

The spectral norm of normal matrices are equal to the maximum eigenvalue in
absolute value which is the spectral radius ρ(A) :

ρ(A) = ∥A∥2.

We now outline the organization of the paper and the results obtained there.
Section 2 presents some new results on the eigenvalues, singular values, spectral
and Euclidean norms of a real skew-symmetric matrix A = [xi − xj ]

n
i,j=1. Section

3 presents two numerical examples illustrated Theorem 1 and Thereom 2, respec-
tively. Section 4 presents the conclusions of this study.

2. Main Results

With the help of preliminaries given in Section 1, we are now ready to prove the
following theorem characterizing the eigenvalues and singular values of the matrix
considered in (1).

Theorem 2.1. Except for n − 2 zeroes, the eigenvalues and singular values of A
in (1), respectively, are

λ1 = −i
√

βn− α2, λ2 = i
√
βn− α2

and

σ1 = σ2 =
√

βn− α2 (3)

where i2 = −1, α =
∑n

k=1 xk and β =
∑n

k=1 x
2
k.
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Proof. We write the matrix A given in (1) as follows:

A =


0 x1 − x2 x1 − x3 · · · x1 − xn

x2 − x1 0 x2 − x3 · · · x2 − xn

· · · · · · · · · · · · · · ·
xn − x1 xn − x2 xn − x3 · · · 0



=


x1

x2

...
xn

 [
1 1 · · · 1

]
−


1
1
· · ·
1

 [
x1 x2 · · · xn

]
.

We know that the eigenvalues of A are 0 or purely imaginary. Thus if λ is a purely
imaginary eigenvalue of A, then its conjugate λ̄ = −λ is also an eigenvalue of A
since A is a real matrix. Thus, nonzero eigenvalues come in pairs λ,−λ. Let

v =


x1

x2

...
xn

 ∈ Rn and e =


1
1
· · ·
1

 ∈ Rn.

Except for n− 2 zeroes, the eigenvalues of A are the same as those of

B =

[
eT v −eT e
vT v −vT e

]
.

We, respectively, get the real numbers eT v, −eT e, vT v and −vT e as follows:

eT v =

n∑
k=1

xk,

−eT e = −
n∑

k=1

1 = −n,

vT v =

n∑
k=1

x2
k,

−vT e = −
n∑

k=1

xk.

Let

α =

n∑
k=1

xk and β =

n∑
k=1

x2
k. (4)

So, the B matrix will be in the form of

B =

[
α −n
β −α

]
.

The eigenvalues of the B matrix are

λ1 = −
√
α2 − βn, λ2 =

√
α2 − βn.

From Cauchy–Schwarz inequality, we have α2−βn ≤ 0. Equality occurs if and only
if x1 = x2 = ... = xn. Therefore, we get βn− α2 ≥ 0. Thus, the eigenvalues of the
B matrix are

λ1 = −i
√
βn− α2, λ2 = i

√
βn− α2,
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where i is complex unity. Since A is a skew-symmetric matrix, A is a normal matrix.
Thus, since A is a normal matrix, σi = |λi| for all i = 1, . . . , n. The proof of the
theorem is completed with this result. □

By summarizing the above discussions and using Theorem 2.1, we can obtain
the following result.

Theorem 2.2. The spectral norm and Euclidean norms of A in (1), respectively,
are

∥A∥2 =
√

βn− α2

and

∥A∥E =
√

2 (βn− α2)

with α =
∑n

k=1 xk and β =
∑n

k=1 x
2
k.

Proof. The singular values of A are the (positive) square roots of the eigenvalues
of the matrix ATA = −A2. Since the spectral norm of A is defined by the largest
singular value of A we obtain from Theorem 1 ,

∥A∥2 =
√
βn− α2.

The Euclidean norm of A is from (2) and (3)

∥A∥E =

√√√√ n∑
i

σ2
i (A)

=
√
2 (βn− α2).

Consequently, the proof of the theorem is completed. □

3. Numerical examples

The following example illustrates Theorem 1.

Example 3.1. We consider the 3 -by-3 real skew-symmetric Toeplitz matrix

C = [i− j]ni,j=1 =

 0 −1 −2
1 0 −1
2 1 0

 . (5)

The values of α and β in (4) for the C matrix are calculated as follows:

α =

3∑
k=1

xk = 6, (6)

β =

3∑
k=1

x2
k = 14, (7)

where x1 = 1, x2 = 2, x3 = 3. Except for n − 2 = 3 − 2 = 1 zero, the eigenvalues
λ1, λ2 and singular values σ1, σ2 of C from Theorem 2.1, respectively, are

λ1 = −i
√
βn− α2 = −i

√
6, λ2 = i

√
βn− α2 = i

√
6,

and

σ1 = σ2 =
√
βn− α2 =

√
6.
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Using a computer program, we get the eigenvalues and singular values of the C
matrix as

λ1 = −i
√
6, λ2 = i

√
6, λ3 = 0

and
σ1 = σ2 =

√
6, σ3 = 0,

respectively,

The following example illustrates Theorem 2.2.

Example 3.2. We consider the 3 -by-3 real skew-symmetric Toeplitz matrix in 5.
Using a computer program, we find the spectral and Euclidean norms of C as

√
6

and
√
12, respectively. For x1 = 1, x2 = 2, x3 = 3 and n = 3, we verify Theorem

(2.2) by (6) and (7).

4. Conclusion

We have obtained the eigenvalues, singular values, the spectral and Euclidean
norms of the matrix A = [xi − xj ]

n
i,j=1 in (1). Then, we have show that the results

obtained in Theorem 1 and Thereom 2 to calculate the eigenvalues, singular values,
the spectral and Euclidean norms of A are simply applicable.
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