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Abstract. In this paper, we propose a SEIHR model of covid-19 in which

we introduce the unreported infected people and persons who are hospitalized.
We introduce a function that represents the effect on the compartments of

different measures taken after the epidemic beginning. Then, we find the
disease free equilibrium point and study its global stability. Also, we introduce

two controls strategies in the model, namely: the vaccination and treatment

strategies. After computing the pair of optimal functions of the controls, we
perform some numerical simulations for illustrations.

1. Introduction

Caused by severe acute respiratory syndrome corona virus 2 (SARS-Cov 2), the
COVID-19 is a disease of global concern according to the World Health Organization
as of 30 January 2020. This pandemic first appeared in Wuhan in December 2019.
Its virus spreads by many different routes like nose and mouth secretions, including
tiny droplets of water from coughing, sneezing and speech. The disease becomes
more contagious during the first three days after the onset of symptoms.
The first cases confirmed of COVID-19 in Burkina Faso date of 09 March 2020. It is
begun by the capital Ouagadougou and spread in other towns like Bobo-Dioulasso
and Hounde.
Basing on Guiro and al [6] work, we propose a more detailed model of COVID-19.

Mathematical modeling are much used to describe the dynamics of epidemic
diseases [8, 9]. This domain is fast growing and has been playing capital roles in
discovering relations between species and their interactions. The epidemiological
models type are numerous [7]. According to the method of transmission(sexual
contact, simple contact, etc) the nature of the disease (killer or curable disease), we
can create a model basing on the satndard Susceptible-Infectious-Susceptible(SIS),
Susceptible-Infectious-Recovered(SIR) and Susceptible-Exposed-Infectious-
Recovered(SEIR)[4, 14]. Differential equations whether ordinary, partial or stochas-
tic are fundamental tools in the modeling of infectious diseases. The main objective
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of our epidemiological model is to take into account unlisted patients (Iu) living
in the population and patients in intensive care (HD). Thus, we approximate the
dynamics of infected people as well as possible.
Optimal control has long and been widely used as a control strategy in epidemic
outbreaks [1, 3, 5, 11]. The principals idea by using the optimal control in epidemics
are to show the real impact of the strategies by simulations and to search for among
the possibles strategies, the most effective strategy that reduces the infection rate
to a minimum level while optimizing the cost of deploying a therapy or vaccine that
is used for controlling the disease progression [3]. In epidemic diseases, strategies
can include therapies, vaccines, isolation, social distancing, etc [2, 19].

In this work, we consider a optimal control problem described by a system of
differential equations with a function mi(t), which reflects the effect of the social dis-
tancing, the mask wearing and any other measure in the aim to break the spread
of the disease. The equations of different states are described in a SEIHR-type
model with four infected sub-compartments, two recovered sub-compartments and
one compartment for deceased persons. By using Pontryangin’s maximum principle
[13], we compute the optimal control after showing its existence.

Our paper is organized as follows. We present in section 2, the model without
control and some properties. The global stability of the disease free equilibrium
point is studied in section 3. We analytically solved an optimal control problem in
section 4. Then in section 5, with real data, we show the efficiency of the proposed
optimal control through numerical simulations. We end by conclusion in section 6.

2. Model

The COVID-19 health crisis is too complex and the SEIR model too simple
to describe it. Indeed, unidentified infected individuals require a separate com-
partment. We therefore add three compartments to represent unidentified infected
individuals, identified infected individuals and those hospitalised in intensive care.
Then we propose the following diagram :
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S(t) E(t) I(t) Id(t)

Iu(t)

HR(t)

HD(t)

RId(t)

RIu(t)

D(t)

f(S,X) αE β1βI ω1θId

ω2θId

ξρHR

νHD

β2βI ηIu

(1
−
ξ)ρ

H
R

γ
H
D

Figure 1. Transfer diagram

with

f(S,X) =
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mIu(t)βIuIu(t) +mId(t)βIdId(t)

+ mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t))− αE(t).

Then, according to Figure 1 we obtain the following system of ten differential
equations:

Ṡ(t) = −S(t)

N

(
mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t)

+ mHD
(t)βHD

HD(t)

)
,

Ė(t) =
S(t)

N

(
mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t)

+ mHD
(t)βHD

HD(t)

)
− αE(t),

İ(t) = αE(t)− βI(t),

İd(t) = β1βI(t)− θId(t),
İu(t) = β2βI(t)− ηIu(t),

ḢR(t) = ω1θId(t)− ρHR(t),

ḢD(t) = ω2θId(t) + (1− ξ)ρHR(t)− (γ + ν)HD(t),

ṘId(t) = ξρHR(t) + νHD(t),

ṘIu(t) = ηIu(t),

Ḋ(t) = γHD(t),

(1)
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with the initial conditions
S(t0) = S0 > 0, E(t0) = E0 > 0, I(t0) = I0 > 0, Id(t0) = Id0 > 0,
Iu(t0) = Iu0 > 0, HR(t0) = HR0 > 0, HD(t0) = Hd0 > 0, RId(t0) = RIu0

> 0,

D(t0) = D0 > 0 where :
•S(t) (Susceptible) represents the persons who are not infected by the disease
pathogen,
•E(t) (Exposed) design the person is in the incubation period after being infected
by the disease pathogen and has no visible clinical signs. The individual could
infect other people but with a lower probability than people in the infectious com-
partments. After the incubation period, the person passes to one of the infectious
states,
•I(t) Infectious that will be detected design the person who starts developing clin-
ical sign, these persons are symptomatic infectious,
•Id(t) Infectious that will be detected design the person can infect other peo-
ple, starts developing clinical signs and will be detected and reported by authori-
ties(when arriving to the compartments HR or HD). After this period, people in
this compartment are taken in charge by sanitary authorities and we classify them
as Hospitalized,
•Iu(t) is the number of unreported symptomatic infectious individuals (i.e symp-
tomatic infectious with mild symptoms) at time t,
•Hospitalized or in quarantine at home (but detected and reported by authorities)
that will recover (denoted by HR): The person is in hospital (or quarantine at
home) and can still infect other people. At the end of this state, a person passes to
the Recovered state,
•Hospitalized that are in intensive cares (denoted by HD): The person is hospital-
ized and can still infect other people. At the end of this state, a person passes to
the Dead state,
•Dead(denoted by D): The person has not survived the disease,
•Recovered(denoted by R): The person has survived the disease, is no longer in-
fectious and has developed a natural immunity to the disease pathogen.
We assume that β1 + β2 = 1 and ω1 + ω2 = 1.
Here, N = S +E + I +HR +HD +RId +RIu +D is the total population number
at time t. The parameters are defined in the table below
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Parameter Definition
mE ,mI ,mIu ,mId ,mHR

,mHD
The effect of measures (hands washing,
public spaces closing, social distancing,

mask carrying, ...) applying in
the corresponding states

βE , βI , βIu , βId , βHR
, βHD

The disease contact rates (days−1) of
person in the corresponding states

α The transition rate from (day−1)
state E to state I

β The rate of infected people that
is detected and unreported

β1 Proportion of infected people that
is detected

β2 Proportion of infected people that
is unreported

θ Transition rate from state Id
ω1 Proportion of infected detected Id people

who are hospitalized
and will recover HR

ω2 Proportion of infected detected Id
people who are hospitalized in

intensive cares HD

η Transition rate from state Iu to RIu
ρ Transition rate from state HR

ξ Proportion of HR people among
RIu people

ν Transition rate from state HD to RId
γ Transition rate from state HD to D

Table 1. The definitions of parameters.

2.1. Positivity and boundedness of the solutions.

For showing the positivity of solutions, we state the following lemma.

Lemma 2.1. [18] Suppose Ω ⊂ R× Cn is open, fi ∈ C (Ω,R).
If fi|xi(t)=0,Xt∈Cn

+0
> 0, Xt = (x1t, x2t, x3t, ..., xnt)

T , i = 1, 2, 3, ..., n, then

Cn+0 = {φ = (φ1, ..., φn) : φ ∈ C([−τ, 0] ,Rn+0)} is the invariant domain of the fol-
lowing equations

dxi(t)

dt
= fi(t,Xt), t > σ, i = 1, 2, 3, ..., n

where Rn+0 = {(x1, ..., xn), xi > 0, i = 1, 2, 3, ..., n}.

Proposition 2.1. The system (1) is invariant in R10
+ .

Proof. By re-writing the system (1), we get
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dX

dt
= B(X(t)) with B(X(t)) = (B1(X), B2(X), ..., B10(X))T

X0 = (S0, E0, I0, HR0
, HD0

, RId0 , RIu0
, D0)T > 0.

(2)

We have :

dS

dt
|S=0 = 0 > 0,

dE

dt
|E=0 =

S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mIu(t)βIuIu(t) +mId(t)βIdId(t))

+
S(t)

N
(mHR

(t)βHR
HR(t) +mHD

(t)βHD
HD(t)) > 0,

dI

dt
|I=0 = αE(t) > 0,

dId
dt
|Id=0 = β1βI(t) > 0,

dIu
dt
|Iu=0 = β2βI(t) > 0,

dHR

dt
|HR=0 = ω1θId(t) > 0,

dHD

dt
|HD=0 = ω2θId(t) + (1− ξ)ρHR(t) > 0,

dRId
dt
|RId

=0 = ξρHR(t) + νHD(t) > 0,

dRIu
dt
|RIu=0 = ηIu(t) > 0,

dD

dt
|D=0 = γHD(t) > 0.

Then it follows that according to the lemma 2.1, R10
+ is a invariant set for

model (1).

Proposition 2.2. The system (1) is bounded in the region
Ω = {X = (S,E, I, Id, Iu, HR, Hd, RId , RIu , D) ∈ R10

+ /S + E + I + Id + Iu +HR +
Hd +RId +RIu +D 6 c, c ∈ R+}.

Proof. We observe that

dS

dt
+
dE

dt
+
dI

dt
+
dHR

dt
+
dHD

dt
+
dRId
dt

+
dRIu
dt

+
dD

dt
= 0,

then
dN

dt
= 0. Consequently N is a constant. Hence the model (1) is bounded.

2.2. Basic reproduction number R0.

Proposition 2.3. The basic reproduction number R0 of model (1) is :

R0 =
1

α
mE(t)βE +

1

β
mI(t)βI +

β2
η
mIu(t)βIu +

β1
θ
mId(t)βId +

ω1β1
ρ

mHR
(t)βHR

+
β1

γ + ν
(ω2 + ω1(1− ξ))mHD

(t)βHD
.
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Proof. We use the next-generation matrix method [16] to calculate the repro-
duction number R0 of model (1). Let F and V, the transmission and flow matrix
between the infectious compartments E, I, Iu, Id, HR and HD :

F =


F1

F2

F3

F4

F5

F6

 =



S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mIu(t)βIuIu(t) +mId(t)βIdId(t))

+
S(t)

N
(mHR

(t)βHR
HR(t) +mHD

(t)βHD
HD(t))

0
0
0
0
0


and

V =


V1
V2
V3
V4
V5
V6

 =


−αE(t)

αE(t)− βI(t)
β1βI(t)− θId(t)
β2βI(t)− ηIu(t)
ω1θId(t)− ρHR(t)

ω2θId(t) + (1− ξ)ρHR(t)− γHD(t)− νHD(t)

 .

On the disease free equilibrium X0 = (S0, 0, 0, 0, 0, 0, 0, 0, 0, 0), we obtain:

DF =



∂F1

∂E

∂F1

∂I

∂F1

∂Iu

∂F1

∂Id

∂F1

∂HR

∂F1

∂HD

∂F2

∂E

∂F2

∂I

∂F2

∂Iu

∂F2

∂Id

∂F2

∂HR

∂F2

∂HD

∂F3

∂E

∂F3

∂I

∂F3

∂Iu

∂F3

∂Id

∂F3

∂HR

∂F3

∂HD

∂F4

∂E

∂F4

∂I

∂F4

∂Iu

∂F4

∂Id

∂F4

∂HR

∂F4

∂HD

∂F5

∂E

∂F5

∂I

∂F5

∂Iu

∂F5

∂Id

∂F5

∂HR

∂F5

∂HD

∂F6

∂E

∂F6

∂I

∂F6

∂Iu

∂F6

∂Id

∂F6

∂HR

∂F6

∂HD



,

F = DF ,

F =
S0

N


mE(0)βE mI(0)βI mIu(0)βIu mId(0)βId mHR

(0)βHR
mHD

(0)βHD

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,



EJMAA-2023/11(1) OPTIMAL CONTROL OF SEIHR MATHEMATICAL MODEL 141

DV =



∂V1
∂E

∂V1
∂I

∂V1
∂Iu

∂V1
∂Id

∂V1
∂HR

∂V1
∂HD

∂V2
∂E

∂V2
∂I

∂V2
∂Iu

∂V2
∂Id

∂V2
∂HR

∂V2
∂HD

∂V3
∂E

∂V3
∂I

∂V3
∂Iu

∂V3
∂Id

∂V3
∂HR

∂V3
∂HD

∂V4
∂E

∂V4
∂I

∂V4
∂Iu

∂V4
∂Id

∂V4
∂HR

∂V4
∂HD

∂V5
∂E

∂V5
∂I

∂V5
∂Iu

∂V5
∂Id

∂V5
∂HR

∂V5
∂HD

∂V6
∂E

∂V6
∂I

∂V6
∂Iu

∂V6
∂Id

∂V6
∂HR

∂V6
∂HD



,

and

V = DV =


−α 0 0 0 0 0
α −β 0 0 0 0
0 β1β −θ 0 0 0
0 β2β 0 −η 0 0
0 0 ω1θ 0 −ρ 0
0 0 ω2θ 0 (1− ξ)ρ −γ − ν

 .

Then, we get

V −1 =



−1

α
0 0 −1

η
0 0

−1

β

−1

β
0 0 −1

ρ
0

−β1
θ

−β1
θ

−1

θ
0 − 1− ξ

γ + ν

−1

γ + ν

−β2
η

−β2
η

0 0 0 0

−ω1β1
ρ

−ω1β1
ρ

−ω1

ρ
0 0 0

a1 a2 a3 0 0 0



, (3)
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a1 =
−β1
γ + ν

(ω2 + ω1(1− ξ)),

a2 =
−β1
γ + ν

(ω2 + ω1(1− ξ)),

a3 =
−1

γ + ν
(ω2 + ω1(1− ξ)),

V −11 =

 0 0 0
0 0 0
0 0 0

 , V −12 =


−1

η
0 0

0 −1

ρ
0

0 − 1− ξ
γ + ν

−1

γ + ν


and

−FV −1 =

(
A B
C D

)
with

A = −S
0

N


−1

α
mE0

βE −
1

β
mI0βI −

β2
η
mIu0

βIu −
β1
θ
mId0

βId −
ω1β1
ρ

mHR0
βHR

− β1
γ + ν

(ω2 + ω1(1− ξ))mHD0
βHD

 ∈M1,1(R),

B = (0) ∈M1,5(R), C = (0) ∈M5,1(R), D = (0) ∈M5,5(R).

The basic reproduction number R0 [16] is defined as the dominant eigeinvalue of
the matrix −FV −1. Therefore,

R0 =
S0

N

(
1

α
mE0

βE +
1

β
mI0βI +

β2
η
mIu0

βIu +
β1
θ
mId0

βId +
ω1β1
ρ

mHR0
βHR

+
β1

γ + ν
(ω2 + ω1(1− ξ))mHD0

(t)βHD

)
and the effective reproduction number Re(t) [6] is given by

Re(t) =
S(t)

N

(
1

α
mE(t)βE +

1

β
mI(t)βI +

β2
η
mIu(t)βIu +

β1
θ
mId(t)βId +

ω1β1
ρ

mHR
(t)βHR

+
β1

γ + ν
(ω2 + ω1(1− ξ))mHD

(t)βHD

)
.

3. Global stability of X0

Theorem 3.1. The disease free equilibrium point X0 of the system (1) is globally
asymptotically stable when R0 < 1.

Proof. Let us consider the infected classes E, I, Id, Iu, HR and HD. By the
equations corresponding to these states, we have at X0, the following system :
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Ė(t) =
S0

N

(
mE0

βEE(t) +mI0βII(t) +mId0
βIdId

+ mIu0
βIuIu(t) +mHR0

βHR
HR(t)

+ mHD0
βHD

HD(t)

)
− αE(t),

İ(t) = αE(t)− βI(t),

İd(t) = β1βI(t)− θId(t),
İu(t) = β2βI(t)− ηIu(t),

ḢR(t) = ω1θId(t)− ρHR(t),

ḢD(t) = ω2θId(t) + (1− ξ)ρHR(t)− (γ + ν)HD(t),

(4)

The matrix M associated to the linearized system (4) is :

M =



S0

N
mE0βE − α

S0

N
mI0βI

S0

N
mIu0

βIu
S0

N
mId0

βId
S0

N
mHR0

βHR

S0

N
mHD0

βHD

α −β 0 0 0 0
0 β1β −θ 0 0 0
0 β2β 0 −η 0 0
0 0 ω1θ 0 −ρ 0
0 0 ω2θ 0 (1− ξ)ρ −γ − ν


,

and the linearized system (4) can be rewritten

Ẏ 6 MY, (5)

where Y = (E, I, Id, Iu, HR, HD)t. Let M = A+B , with :

A =



S0

N
mE0

βE
S0

N
mI0βI

S0

N
mIu0

βIu
S0

N
mId0

βId
S0

N
mHR0

βHR

S0

N
mHD0

βHD

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

and

B =


−α 0 0 0 0 0
α −β 0 0 0 0
0 β1β −θ 0 0 0
0 β2β 0 −η 0 0
0 0 ω1θ 0 −ρ 0
0 0 ω2θ 0 (1− ξ)ρ −γ − ν

 .

We remark that B is invertible matrix and B−1 = V −1 (3). We can see that A > 0
and −B−1 > 0.
Thus, R0 = ρ(−AB−1) < 1 and from Varga theorem [17] the matrix M is asymp-
totically stable. The eigenvalue of matrix M has negative real part, by a standard
comparison theorem [10] when t → +∞, E → 0, I → 0, Id → 0, Iu → 0, HR → 0
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and HD → 0 for system (4) and substituting E = 0, I = 0, Id = 0, Iu = 0, HR = 0
in (1), we get S → S0, RId → 0, RIu → 0, D → 0 as well as t→ +∞.
Thus, (S,E, I, Id, Iu, HR, HD, RId , RIu , D) → (S0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t → ∞
for system (1), when R0 < 1.

3.1. Some numerical simulations with real data[6].

Figure 2. S(t) Figure 3. E(t)

Figure 4. I(t) Figure 5. Id(t)

Figure 6. Iu(t) Figure 7. HR(t)

Figure 8. HD(t)
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These different numerical simulations effectively show us a stability around the
free equilibrium point X0.

4. Statement of the optimal control problem

In this section, we compute the optimal function of the control (u(t), v(t)) to
determine the best measures in terms of vaccination and treatment to maximize
the population of cured individuals and minimize both the population of infected
and susceptible individuals. This optimal couple minimizes at the same time the
cost of implementing the vaccination and treatment strategies. So we consider the
following optimal control problem :

J(u∗, v∗) = min{J(u, v) : (u, v) ∈ U} (6)

where

J(u, v) =

∫ tf

0

[
I(t)−RId(t) +

A1

2
u2(t) +

A2

2
v2(t)

]
dt, (7)

subject to the equation

Ṡ(t) = −(1− u(t))
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t)

+ mHD
(t)βHD

HD(t)),

Ė(t) = (1− u(t))
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t)
+ mHD

(t)βHD
HD(t))− αE(t),

İ(t) = αE(t)− βI(t),

İd(t) = β1βI(t)− θId(t),

İu(t) = β2βI(t)− ηIu(t),

ḢR(t) = ω1θId(t)− (ρ+ v(t))HR(t),

ḢD(t) = ω2θId(t) + (1− ξ)ρHR(t)− (γ + ν + v(t))HD(t),

ṘId(t) = ξρHR(t) + νHD(t) + v(t)(HR(t) +HD(t)),

ṘIu(t) = ηIu(t),

Ḋ(t) = γHD(t).

(8)

The two functions u(t) and v(t) represent vaccination and treatment. These con-
trols function are assumed to be elements of U ,

U = {(u, v) : 0 6 u, v 6 1, t ∈ [0, tf ], tf ∈ R+, u, v are Lebesgue measurable}.
The two constants A1 > 0, A2 > 0 are weighted cost with the use of the controls
u and v respectively.

Theorem 4.1. (Existence of optimal control)
Consider the optimal control problem (6) subject to (7). Then there exists an optimal
control (u∗, v∗) in U and a corresponding solution
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X∗(t) = (S∗, E∗, I∗, I∗d , I
∗
u, H

∗
R, H

∗
D, R

∗
Id
, R∗Iu , D

∗) that minimize J(u, v) over set of
admissible controls U .

Proof. To prove the existence of optimal control, we use the lemma of
Fellippo-Cesari [12]. Then, we have to show the following points :

(1) The set of controls and the corresponding solutions is no empty.
(2) The set of admissible controls U is convex and closed in L2(0, T ).
(3) The vectors field of state system is borned by linear control fonction.
(4) The integrante of objective fonction

f0(X(t), u(t), v(t)) = I(t)−RId(t) +
A1

2
u2(t) +

A2

2
v2(t)

is convex. The hessien matrix of f0 on U is :

H =

(
A1 0
0 A2

)
.

We have spec(M) = {A1, A2} ⊂ R∗+, then f0 is strictly convex.
(5) It exists constants k1, k2 > 0 et ρ > 1 such as the integrante f0 of objective

function verifiy f0(X(t), u(t), v(t)) > k1|(u, v)|ρ − k2. We have :

f0(X(t), u(t), v(t)) = I(t)−RId(t) +
A1

2
u2(t) +

A2

2
v2(t)

>
1

2
min(A1, A2)(u(t)2 + v(t)2) + I(t)−RId(t)

>
1

2
min(A1, A2)||(u, v)||22 −RId(t)

N(t) = S(t) +E(t) + I(t) +R(t) is borned, then R(t) is borned too. Thus,
it exists τ1, τ2 ∈ R+ such as τ1 < R(t) = RId(t) +RIu(t) < τ2,∀ t ∈ R+.

Let k1 =
1

2
min(A1, A2) and k2 = τ2. We get :

f0(X(t), u(t), v(t)) > k1||(u, v)||22 − k2.

Proposition 4.1. (Hamiltonian characterization of minimization prob-
lem)
The minimization problem (6) induce to a problem of minimization of Hamiltonian
H defined by :

H(X(t), p(t), p0, u(t), v(t)) = I(t)−RId(t) +
A1

2
u2(t) +

A2

2
v2(t) +

10∑
i=1

λifi, (9)

where fi is the right side of the differential equation of ith state variable, p(·) is
absolutely continuous application defined to [0, tf ] −→ Rn \ {0}, p0 a positive or
null real and
X(t) = (S,E, I, Id, Iu, HR, HD, RId , RIu , D).

Proof. Let
p0 = 1,
p(t) = (λ1(t), λ2(t), λ3(t), ..., λ10(t)) ,

f0(X(t), u(t), v(t)) = I(t)−RId(t) +
A1

2
u2(t) +

A2

2
v2(t),

f(X(t), u(t), v(t)) = (f1(X(t), u(t), v(t)), f2(X(t), u(t), v(t)), ..., f10(X(t), u(t), v(t)))
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where

X(t) = (S,E, I, Id, Iu, HR, HD, RId , RIu , D)

and

f1(X(t), u(t), v(t)) = −(1− u(t))
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)),

f2(X(t), u(t), v(t)) = (1− u(t))
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t))− αE(t),

f3(X(t), u(t), v(t)) = αE(t)− βI(t),

f4(X(t), u(t), v(t)) = β1βI(t)− θId(t),
f5(X(t), u(t), v(t)) = β2βI(t)− ηIu(t),

f6(X(t), u(t), v(t)) = ω1θId(t)− (ρ+ v(t))HR(t),

f7(X(t), u(t), v(t)) = ω2θId(t) + (1− ξ)ρHR(t)− (γ + ν + v(t))HD(t),

f8(X(t), u(t), v(t)) = ξρHR(t) + νHD(t) + v(t)(HR(t) +HD(t)),

f9(X(t), u(t), v(t)) = ηIu(t),

f10(X(t), u(t), v(t)) = γHD(t).

Then, the Hamiltonian of optimal problem is defined by

H(t,X, p, p0, u, v) = 〈p, f(X(t), u(t), v(t))〉+ p0f0(X(t), u(t), v(t))

= 〈(λ1, λ2, ..., λ10), (f1, f2, ..., f10)〉+ p0f0

=

10∑
i=1

λifi + I(t)−RId(t) +
A1

2
u2(t) +

A2

2
v2(t)

H(t, x, p, p0, u, v) = I(t)−RId(t) +
A1

2
u2(t) +

A2

2
v2(t) +

10∑
i=1

λifi.

Proposition 4.2. (Existence of adjoint vector p(·))

The application p(·)

p(·) : [0, tf ] −→ R10

t 7−→ (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), λ6(t), λ7(t), λ8(t), λ9(t), λ10(t))

and verify
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λ̇1 = (1− u(t))
λ1 − λ2
N

(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)),

λ̇2 = (λ1 − λ2)(1− u(t))
S(t)

N
mE(t)βE + (λ2 − λ3)α,

λ̇3 = (λ1 − λ2)(1− u(t))
S(t)

N
mI(t)βI

+ (λ3 − λ4β1 − λ5β2)β − 1,

λ̇4 = (λ1 − λ2)(1− u(t))
S(t)

N
mId(t)βId

+ (λ4 − λ6ω1 − λ7ω2)θ,

λ̇5 = (λ1 − λ2)(1− u(t))
S(t)

N
mIu(t)βIu + (λ5 − λ9)η,

λ̇6 = (λ1 − λ2)(1− u(t))
S(t)

N
mHR

(t)βHR

+ (λ6 − λ7)ρ+ (λ7 − λ8)ξρ+ (λ6 − λ8)v(t)

λ̇7 = (λ1 − λ2)(1− u(t))
S(t)

N
mHD

(t)βHD

+ (λ7 − λ8)(ν + v(t)) + (λ7 − λ10)γ,

λ̇8 = 1, λ̇9 = ˙λ10 = 0,

λi(tf ) = 0 ∀ i ∈ {1, 2, ..., 10}.

(10)

Proof. According to the theorem (4.1) the couple of controls (u∗, v∗) associated
to the solution X∗ minimize J(u, v) sur U . According to the maximum principle
of Pontryagin, it exists a absolutely continuous application

p(·) : [0, tf ] −→ R10

t 7−→ (λ1(t), λ2(t), λ3(t), λ4(t)), , λ5(t), ..., , λ10(t))

such as for almost all t ∈ [0, tf ]

ṗ(t) = −∂H
∂X

and p(tf ) = 0.
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Then,

ṗ(t) = −∂H
∂X

=⇒



λ̇1 = −∂H
∂S

,

λ̇2 = −∂H
∂E

,

λ̇3 = −∂H
∂I

,

λ̇4 = −∂H
∂Id

,

λ̇5 = −∂H
∂Iu

,

λ̇6 = − ∂H

∂HR
,

λ̇7 = − ∂H

∂HD
,

λ̇8 = − ∂H

∂RId
,

λ̇9 = − ∂H

∂RIu
,

˙λ10 = −∂H
∂D

.

(11)

Then, we have: λ̇1 = −∂H
∂S

(t,X, p, p0, u, v)

= − ∂

∂S
(I(t)−RId(t) +

A1

2
u2(t) +

A2

2
v2(t) +

10∑
i=1

λifi(X,u, v)),

= −
10∑
i=1

λi
∂fi
∂S

(X,u, v),

= −λ1
∂f1
∂S

(X,u, v)− λ2
∂f2
∂S

(X,u, v),

= (1− u(t))
λ1
N

(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t))

− (1− u(t))
λ2
N

(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t))

λ̇1 = (1− u(t))
λ1 − λ2
N

(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)).



150 Y. YODA, D. OUEDRAOGO, H. OUEDRAOGO AND A. GUIRO EJMAA-2023/11(1)

By the same method, we have :

λ̇2 = (λ1 − λ2)(1− u(t))
S(t)

N
mE(t)βE + (λ2 − λ3)α,

λ̇3 = (λ1 − λ2)(1− u(t))
S(t)

N
mI(t)βI

+(λ3 − λ4β1 − λ5β2)β − 1,

λ̇4 = (λ1 − λ2)(1− u(t))
S(t)

N
mId(t)βId

+ (λ4 − λ6ω1 − λ7ω2)θ,

λ̇5 = (λ1 − λ2)(1− u(t))
S(t)

N
mIu(t)βIu + (λ5 − λ9)η

λ̇6 = (λ1 − λ2)(1− u(t))
S(t)

N
mHR

(t)βHR

+ (λ6 − λ7(1− ξ)− λ8)ρ+ (λ6 − λ8)v(t),

λ̇7 = (λ1 − λ2)(1− u(t))
S(t)

N
mHD

(t)βHD

+ (λ7 − λ8)(ν + v(t)) + (λ7 − λ10)γ,

λ̇8 = 1,

λ̇9 = ˙λ10 = 0.

The condition of transversality at final time tf is p(tf ) = 0. Then,

p(tf ) = 0 =⇒



λ1(tf ) = 0,

λ2(tf ) = 0,

λ3(tf ) = 0,

λ4(tf ) = 0,

λ5(tf ) = 0,

λ6(tf ) = 0,

λ7(tf ) = 0,

λ8(tf ) = 0,

λ9(tf ) = 0,

λ10(tf ) = 0.

(12)

Finally, the characteristics of the vector
p(·) : t 7−→ (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), λ7(t), λ8(t), λ9(t), λ10(t)) are
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λ̇1 = (1− u(t))
λ1 − λ2
N

(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)),

λ̇2 = (λ1 − λ2)(1− u(t))
S(t)

N
mE(t)βE + (λ2 − λ3)α,

λ̇3 = (λ1 − λ2)(1− u(t))
S(t)

N
mI(t)βI + (λ3 − λ4β1 − λ5β2)β − 1,

λ̇4 = (λ1 − λ2)(1− u(t))
S(t)

N
mId(t)βId + (λ4 − λ6ω1 − λ7ω2)θ,

λ̇5 = (λ1 − λ2)(1− u(t))
S(t)

N
mIu(t)βIu + (λ5 − λ9)η,

λ̇6 = (λ1 − λ2)(1− u(t))
S(t)

N
mHR

(t)βHR

+ (λ6 − λ7)ρ+ (λ7 − λ8)ξρ+ (λ6 − λ8)v(t),

λ̇7 = (λ1 − λ2)(1− u(t))
S(t)

N
mHD

(t)βHD

+ (λ7 − λ8)(ν + v(t)) + (λ7 − λ10)γ,

λ̇8 = 1,

λ̇9 = ˙λ10 = 0,
λi(tf ) = 0 ∀ i ∈ {1, 2, ..., 10}.

(13)

Theorem 4.2. (Characterization of optimal control)
The optimal control (u∗, v∗) is defined by :

u∗ = min

(
1,max

(
0,

(λ2 − λ1)S(t)M1(X∗(t))

A1N

))
and

v∗ = min

(
1,max

(
0,
M2(X∗(t))

A2

))
where

M1(X∗, t) = mE(t)βEE
∗(t) +mI(t)βII

∗(t) +mId(t)βIdI
∗
d (t) +mIu(t)βIuI

∗
u(t)

+ mHR
(t)βHR

H∗R(t) +mHD
(t)βHD

H∗D(t)

and

M2(X∗, t) = (λ8 − λ6)H∗R(t) + (λ8 − λ7)H∗D(t).

Proof. To prove the characterizations of optimal contol, we define the La-
grangien associated to the problem. It corresponds to Hamiltonian increased by
coefficients of penality.

L(t,X, u, v, p) = H(t,X, p, p0, u, v) + w11u+ w12(1− u) + w21v + w22(1− v),

where wij(t) > 0 are penalisation coefficients that verify

w11u(t) = w12(1− u(t)) = 0 for the control u∗

and

w21v(t) = w22(1− v(t)) = 0 for the control v∗.
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The optimal control (u∗, v∗) obtained is the resultant of application of equations of
contrainte 

∂L

∂u
= 0 in u∗,

∂L

∂v
= 0 in v∗.

That imply, 
∂H

∂u
− w11 + w12 = 0 in u∗,

∂H

∂v
− w21 + w22 = 0 in v∗.

The partial derivative of H in relation to u is given by

∂H

∂u
=

∂

∂u

(
I(t)−RId(t) +

A1

2
u2(t) +

A2

2
v2(t) +

10∑
i=1

λifi(X,u, v)

)
,

= A1u(t) + λ1
∂f1
∂u

+ λ2
∂f2
∂u

,

= A1u(t) + λ1
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t))

− λ2
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)),

∂H

∂u
= A1u(t) + (λ1 − λ2)

S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)).

The partial derivative of H in relation to v is given by

∂H

∂v
=

∂

∂v

(
I(t)−RId +

A1

2
u2(t) +

A2

2
v2(t) +

10∑
i=1

λifi(X,u, v)

)
,

= A2v(t) + λ6
∂f6
∂v

+ λ7
∂f7
∂v

+ λ8
∂f8
∂v

,

= A2v(t) + λ6
∂

∂v
(ω1θId(t)− (ρ+ v(t))HR(t))

+ λ7
∂

∂v
(ω2θId(t) + (1− ξ)ρHR(t)− (γ + ν + v(t))HD(t))

+ λ8
∂

∂v
(ξρHR(t) + νHD(t) + v(t)(HR(t) +HD(t))),

= A2v(t)− λ6HR(t)− λ7HD(t) + λ8(HR(t) +HD(t)),

∂H

∂v
= A2v(t) + (λ8 − λ6)HR(t) + (λ8 − λ7)HD(t).

We obtainA1u(t) + (λ1 − λ2)
S(t)

N
M1(X(t))− w11 + w12 = 0 for u = u∗,

A2v(t) +M2(X(t))− w21 + w22 = 0 for v = v∗,
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where

M1(X(t)) = mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t) +mIu(t)βIuIu(t)

+ mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)

and

M2(X(t)) = (λ8 − λ6)HR(t) + (λ8 − λ7)HD(t).

At u∗ and v∗, we have: •A1u
∗ + (λ1 − λ2)

S∗(t)

N
M1(X∗(t))− w11 + w12 = 0

u∗ =
1

A1

(
(λ2 − λ1)

S∗(t)

N
M1(X∗(t)) + w11 − w12

)
, •A2v

∗ +M2(X∗(t))− w21 + w22 = 0

v∗ =
1

A2
(−M2(X∗(t)) + w21 − w22). Let be the set {t : 0 < u∗ < 1}. We have

: w11u
∗ = w12(1− u∗)⇒ w11 = w12 = 0, therefore

u∗ =
(λ2 − λ1)S∗(t)M1(X∗(t))

A1N
.

Let be the set {t : u∗ = 0}. We have w12(1− u∗) = 0⇒ w12 = 0, therefore

0 = u∗ =
(λ2 − λ1)S∗(t)M1(X∗(t)) + w11

A1N
.

Since w11 > 0 then
(λ2 − λ1)S∗(t)M1(X∗(t))

A1N
6 u∗ = 0.

Thus, on the set {t : 0 6 u∗ < 1}, u∗ is defined like the following :

max

(
0,

(λ2 − λ1)S∗(t)M1(X∗(t))

A1N

)
.

Let be the set {t : u∗ = 1}. We have w11 × 1 = w12 × 0 = 0 ⇒ w11 = 0 then

1 = u∗ =
(λ2 − λ1)S∗(t)M1(X∗(t))− w12

A1N
.

Since w12 > 0 then
(λ2 − λ1)S∗(t)M1(X∗(t))

A1N
6 u∗ = 1.

On the set {t : 0 6 u∗ 6 1}, u∗ is defined by :

u∗ = min

(
1,max

(
0,

(λ2 − λ1)S∗(t)M1(X∗(t))

A1N

))
.

By the same method, we get the expression of v∗ :

v∗ = min

(
1,max

(
0,
M2(X∗(t))

A2

))
.

Finally on the set U , the optimal control (u∗, v∗) is given by :

u∗ = min

(
1,max

(
0,

(λ2 − λ1)S∗(t)M1(X∗(t))

A1N

))
and

v∗ = min

(
1,max

(
0,
M2(X∗(t))

A2

))
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with

M1(X∗(t)) =
S∗(t)

N
(mE(t)βEE

∗(t) +mI(t)βII
∗(t) +mId(t)βIdI

∗
d (t) +mIu(t)βIuI

∗
u(t)

+ mHR
(t)βHR

H∗R(t) +mHD
(t)βHD

H∗D(t))

M2(X∗(t)) = (λ8 − λ6)H∗R(t) + (λ8 − λ7)H∗D(t).

5. Numerical simulations

In this section, we present the optimality system and the results of simulations
obtained by Python 3.7.(see the Annex (6)). The system is given by :

Ṡ(t) = −(1− u(t))
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t)
+ mHD

(t)βHD
HD(t)),

Ė(t) = (1− u(t))
S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t)
+ mHD

(t)βHD
HD(t))− αE(t),

İ(t) = αE(t)− βI(t),

İd(t) = β1βI(t)− θId(t),
İu(t) = β2βI(t)− ηIu(t),

ḢR(t) = ω1θId(t)− (ρ+ v(t))HR(t),

ḢD(t) = ω2θId(t) + (1− ξ)ρHR(t)− (γ + ν + v(t))HD(t),

ṘId(t) = ξρHR(t) + νHD(t) + v(t)(HR(t) +HD(t)),

ṘIu(t) = ηIu(t),

Ḋ(t) = γHD(t),

λ̇1 = (1− u(t))
λ1 − λ2
N

(mE(t)βEE(t) +mI(t)βII(t) +mId(t)βIdId(t)

+ mIu(t)βIuIu(t) +mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)),

λ̇2 = (λ1 − λ2)(1− u(t))
S(t)

N
mE(t)βE + (λ2 − λ3)α,

λ̇3 = (λ1 − λ2)(1− u(t))
S(t)

N
mI(t)βI + (λ3 − λ4β1 − λ5β2)β − 1,

λ̇4 = (λ1 − λ2)(1− u(t))
S(t)

N
mId(t)βId + (λ4 − λ6ω1 − λ7ω2)θ,

λ̇5 = (λ1 − λ2)(1− u(t))
S(t)

N
mIu(t)βIu + (λ5 − λ9)η,

λ̇6 = (λ1 − λ2)(1− u(t))
S(t)

N
mHR

(t)βHR

+ (λ6 − λ7)ρ+ (λ7 − λ8)ξρ+ (λ6 − λ8)v(t),

λ̇7 = (λ1 − λ2)(1− u(t))
S(t)

N
mHD

(t)βHD

+ (λ7 − λ8)(ν + v(t)) + (λ7 − λ10)γ,

λ̇8 = 1,

λ̇9 = ˙λ10 = 0,
λi(tf ) = 0 ∀ i ∈ {1, 2, ..., 10},

u∗ = min

(
1,max

(
0,

(λ2 − λ1)S∗(t)M1(X∗(t))

A1N

))
,

v∗ = min

(
1,max

(
0,
M2(X∗(t))

A2

))
,

(14)
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with

M1(X∗(t)) =
S∗(t)

N
(mE(t)βEE

∗(t) +mI(t)βII
∗(t) +mId(t)βIdI

∗
d (t) +mIu(t)βIuI

∗
u(t)

+ mHR
(t)βHR

H∗R(t) +mHD
(t)βHD

H∗D(t))

M2(X∗(t)) = (λ8 − λ6)H∗R(t) + (λ8 − λ7)H∗D(t).

The different values we use for simulations are estimated and sum up in the next
table:

Parameters Values Source

mE ,mI ,mIu ,mId ,mHR
,mHD

γ(t) [6]
βE 0.2 [6]
βI 0.2850 [6]
βIu 0.1222 [6]
βId 0.3373 [6]
βHR

0.126 [6]
βHD

0.126 [6]
α 0.1 [6]
β 0.2 [6]
β1 2/10 [6]
β2 8/10 [6]
θ 0.5 [6]
ω1 95/100 [6]
ω2 5/100 [6]
η 0.143 [6]
ρ 0.143 [6]
ξ 0.33 [6]
ν 0.05 [6]
γ 1/9 [6]

Table 2. The values of parameters.

where γ(t) [6] is the contact rate defined by

γ(t) =

 γ0, 0 6 t 6 2,

γ0 exp(−µ(t− 2)), t > 2.
(15)

The fonction γ(t) describes the contact between the compartments of susceptibles
and the infectious compartments. The contact curve can be seen in figure 9.
With S0 = 21499800, E0 = 198, I0 = 2, Id0 = 2, Iu0 = 0, HR0 = 0, Hd0 = 0,
RIu0

= 0, D0 = 0, we obtain :
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Figure 9. γ(t) Figure 10. S(t)

Figure 11. E(t) Figure 12. I(t)

Figure 13. Id(t) Figure 14. Iu(t)

Figure 15. HR(t) Figure 16. HD(t)
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Figure 17. RId(t) Figure 18. RIu(t)

Figure 19. RId(t) +RIu(t) Figure 20. D(t)

Comments.

Fig.9 represents the contact rate. Before the beginning of public policies, we
assume γ(t) = γ0 = 0.7 [6]. According to the measures taken by the authorities,
the value of µ increases thus reducing the contact rate. Figures 10 − 20 show the
evolution of individuals in the differents compartments with µ = 0.05, µ = 0.1,
µ = 0.25.

Fig.10 represents the different dynamics of susceptible population. The orange
color represent the population when there are vaccination and treatment (u 6= 0
and v 6= 0). The blue color represent the population when there aren’t vaccination
and treatment (u = 0 and v = 0). This show that, without vaccination and treat-
ment people leave susceptible compartment for exposed compartment. They are
therefore more exposed for covid19.

Fig.11 show in orange color the exposed population, when there are vaccination
and treatment (u 6= 0 and v 6= 0) and in blue color the exposed population when
there aren’t vaccination and treatment (u = 0 and v = 0). This show that, without
vaccination and treatment people, people are more exposed to covid-19 disease.

Fig.12, 13 and 14 represent the different dynamics of infected population. The
orange color represent the population when there are vaccination and treatment
(u 6= 0 and v 6= 0). The blue color represent the population when there aren’t
vaccination and treatment (u = 0 and v = 0). This show that, without vaccination
and treatment, individuals will be more numerous to be infected by the disease.
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The curves Fig.15, 16 respectively show us the dynamics of people hospitalized in
simple and intensive care. Those in orange represent the dynamics when there are
vaccination and treatment (u 6= 0 and v 6= 0), and those in blue when there are not
vaccination and treatment (u = 0 and v = 0). It is clear that the hospitalizations
decrease drastically when there are vaccination and treatment.

Fig.17, 18 and 19 depict the dynamics of people recovering from the disease. We
get the orange color curves when there are vaccination and treatment (u 6= 0 and
v 6= 0), and the blue color curves when there aren’t vaccination and treatment
(u 6= 0 and v 6= 0). Globally, we observe that there are more people cured when
the optimal controls are applied.

Fig.20 represent the different dynamics of death compartment. The orange color
represent the population when there are vaccination and treatment (u 6= 0 and
v 6= 0). The blue color represent the population when there aren’t vaccination and
treatment (u = 0 and v = 0). This show that, without vaccination and treatment,
death rate will increase.

Consider the following tables in which we have summarize the number of person
in the different states, before and after applying the controls with a total population
N = 2150000.

States to the 15th day Without control With controls
S 2148809 2149777
E 612 50
I 231 38
Id 16 3
Iu 152 46
HR 29 3
HD 10 0
RId 10 21
RIu 126 62
D 5 0

States to the 30th day Without control With controls
S 2147987 2149724
E 504 38
I 288 22
Id 24 2
Iu 311 30
HR 72 6
HD 37 4
RId 66 27
RIu 665 142
D 46 5

Table 3. Table of different states before and after controls.
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Comments.

When there is no control, on the 15th day, 16 infected persons are detected
compared to 3 when controls are applied. The impact of the controls is still visible
on day 30. Indeed, on the 30th day without controls, the number of infected persons
detected is 288 against 22 with controls.

6. Conclusion

We have considered an optimal control problem for a SEIHR model with individ-
uals infected reported and unreported. The objective being to describe as best as
possible the reality of COVID-19, we took into account the individuals in intensive
care and those in simple care.
By applying the Pontryangin’s maximum principle, we have proposed an optimal
control pair. Then, with estimated data, we exhibited the efficiency of the optimal
functions that we determined. These results reveal the importance of the optimal
control theory in the fight against COVID-19. Indeed the results of the numerical
simulations obtained with control are clearly better than those without control.
The optimal control (u∗, v∗) drastically reduces the number of patients.
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[8] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, and A. M. Ramos. Mathematical modeling of

the spread of the coronavirus disease 2019 (covid-19) taking into account the undetected
infections. the case of china. Communications in nonlinear science and numerical simulation,

88:105303, 2020.
[9] B. Ivorra, D. Ngom, and n. Ramos. Be-codis: A mathematical model to predict the risk of

human diseases spread between countries-validation and application to the 2014-2015 ebola
virus disease epidemic. Bulletin of Mathematical Biology, 77:1668–1704, 09 2015.

[10] W. Jansen. V. lakshmikantham, s. leela, aa martynyuk: Stability analysis of nonlinear sys-
tems. marcel dekker inc., isbn: 0-8247-8067-1, 1995.

[11] L. Lemecha Obsu and S. Feyissa Balcha. Optimal control strategies for the transmission risk
of covid-19. Journal of biological dynamics, 14(1):590–607, 2020.



160 Y. YODA, D. OUEDRAOGO, H. OUEDRAOGO AND A. GUIRO EJMAA-2023/11(1)

[12] S. Nababan. A filippov-type lemma for functions involving delays and its application to

time-delayed optimal control problems. Journal of Optimization Theory and Applications,

27(3):357–376, 1979.
[13] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishchenko. The maximum principle.

The Mathematical Theory of Optimal Processes. New York: John Wiley and Sons, 1962.

[14] S. Ruan, D. Xiao, and J. C. Beier. On the delayed ross–macdonald model for malaria trans-
mission. Bulletin of mathematical biology, 70(4):1098–1114, 2008.
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Annex

Numerical method with python 3.7

In first, we implement (1), the model without control by using the function odeint
of PYTHON. We obtain for example

def F0(Y, t) :

f = [f1,

f2,

f3,

f4,

f5,

f6,

f7,

f8,

f9,

f10]

return f

sol = odeint(F0, Y 0, T ),

where Y0 is the initial condition and T the time.
Secondly, we implement the model (14) by using the method of shoot [15]. Let{

y = (S,E, I, Id, Iu, HR, HD, RId , RIu , D, λ1, ..., λ10)

y = (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, ..., y19, y20).
(16)

By re-writing the model (14), we get the two point boundary value problem :
ẏ(t) = F (t, y(t)),

y(0) = (S0, E0, I0, Id0 , ..., RId0 , RIu0
, D0, λ1(0), ..., λ10(0)) = y0,

y(T ) = (S(T ), E(T ), I(T ), Id(T ), ..., RIu(T ), D(T ), 0, ..., 0) = yT .

(17)
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The solution of (17) depends on T and y0, and be written y(T, y0).
At final time T ,

y(T, y0) = y(T ), (18)

and this means
y(T, y0)− y(T ) = 0. (19)

By posing G(y0) = y(T, y0)− y(T ), the problem becomes :
Find y0 such that

G(y0) = 0. (20)

Solving the system of differential equations (17) is the same as finding a zero of the
firing function G(y0). This is possible with the fsolve function in Python.
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