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OSCILLATION THEORY FOR NONLINEAR ADVANCED

DIFFERENTIAL EQUATIONS

NURTEN KILIÇ

Abstract. The purpose of this paper is to investigate the first order nonlinear

advanced differential equations with several arguments. Moreover, some new

conditions for the solutions of oscillation of these equations are presented.
Unlike other research in the literature, advanced arguments are not necessarily

monotone. Finally, two examples are given to demonstrate the importance of

the main results.

1. Introduction

The theory of oscillation of differential equations is a prominent research area in
applied mathematics. Many scientists have focused their efforts in recent decades on
developing more complicated numerical and analytical methods for solving math-
ematical models that arise in all sectors of science, technology, and engineering.
Differential equations with advanced type appear by nature physical, biological,
and chemical models and have applications in dynamical systems such as network
mathematics and optimization, as well as engineering problems such as electrical
power systems, energy, and materials. For instance, see from [1] to [16]] and the
references cited therein. Advanced differential equations are differential equations
in which derivate functions are based on both the present and future values. For
broad information on oscillation theory, the reader is directed to monograph [7].
Consider the first order nonlinear advanced differential equation

z′(ξ)− ρ(ξ)Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ))) = 0, ξ ≥ ξ0, (1.1)

where the functions ρ, $i ∈ C ([ξ0,∞),R+) and $i(ξ) are not necessarily monotone
for 1 ≤ i ≤ n such that

$i(ξ) ≥ ξ for ξ ≥ ξ0, lim
ξ→∞

$i(ξ) =∞, 1 ≤ i ≤ n (1.2)

and Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ))) is a continuous function on Rn such that

zΦ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ))) > 0 for z 6= 0. (1.3)
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We refer to a continuously differentiable function defined on [$i(T0),∞) for some
T0 ≥ ξ0 such that (1.1) holds for ξ ≥ T0, 1 ≤ i ≤ n by a solution of (1.1). A solution
of (1.1) is said to be oscillatory if it has arbitrarily large zeros. If not, it is called
nonoscillatory.
If n = 1 in (1.1), we have

z′(ξ)− ρ(ξ)Φ(z ($1(ξ))) = 0, ξ ≥ ξ0. (1.4)

When Φ(z) = z, we have the following equation which is the linear form of (1.4).

z′(ξ)− ρ(ξ)z ($1(ξ)) = 0, ξ ≥ ξ0. (1.5)

Many studies have been conducted to define oscillation criterion for all solutions of
(1.5). You can see these results in [1],[3],[6],[11],[16].
The result given below was obtained by Fukagai and Kusano [6] in 1984 for following
type of (1.4).

z′(ξ) + ρ(ξ)Φ(z ($1(ξ))) = 0, ξ ≥ ξ0. (1.6)

Suppose that ρ(ξ) ≤ 0, $1(ξ) ≥ ξ is nondecreasing for ξ ≥ ξ0 and lim sup
|z|→∞

|z|
|Φ(z)| =

N1 <∞. Furthermore, assume that

Φ ∈ C(R,R), zΦ(z) > 0 for z 6= 0. (1.7)

If

lim inf
ξ→∞

$1(ξ)∫
ξ

[−ρ(s)] ds >
N1

e

then, all solutions of (1.6) oscillate.

In 2019, Öcalan et. al [14] obtained the criteria given below for the oscillatory
solution of (1.4). Assume that (1.2), (1.7) hold and lim sup

|z|→∞

z
Φ(z) = N2. If $1(ξ) is

not necessarily monotone and

lim inf
ξ→∞

$1(ξ)∫
ξ

ρ(s)ds >
N2

e
, 0 ≤ N2 <∞

or

lim sup
ξ→∞

σ(ξ)∫
ξ

ρ(s)ds > N2, 0 < N2 <∞

where σ(ξ) := inf
s≥ξ
{$1(s)} , ξ ≥ 0, then all solutions of (1.4) oscillate.

Fukagai and Kusano [6] also proved the following theorem in 1984 for the following
form of (1.1).

z′(ξ) + ρ(ξ)Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ))) = 0, ξ ≥ ξ0. (1.8)

Theorem: Suppose that ρ(ξ) ≤ 0, (1.2), (1.3) hold, $i(ξ) are nondecreasing for
1 ≤ i ≤ n and

N3 = lim sup
|z|→∞

|z ($1(ξ))|β1 |z ($2(ξ))|β2 ... |z ($n(ξ))|βn

|Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ)))|
<∞ (1.9)
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where βi are nonnegative constants with
n∑
i=1

βi = 1. If there is a continuous non-

decreasing function $∗(ξ) such that ξ ≤ $∗(ξ) ≤ $i(ξ) for 1 ≤ i ≤ n, ξ ≥ a
and

lim inf
ξ→∞

$∗(ξ)∫
ξ

[−ρ(s)] ds >
N3

e

then every solution of (1.8) is oscillatory.
The previous studies which are related to the oscillatory solution of (1.1) given in
this section and the references are under the assumption that advanced arguments
$i(ξ) are monotone for 1 ≤ i ≤ n. All well-known literature conclusions cannot
be applied to the circumstance where the advanced arguments are not necessarily
monotonous. Then there’s the question of how to look into the oscillation of (1.1)
when the arguments are not monotone.
To the best of our knowledge, this problem has yet to yield any results. The goal
of this study is to find a solution to this problem. As a result, the purpose of this
research is to radically evolve these conclusions based on the assumption that $i(ξ)
are not necessarily monotone arguments for 1 ≤ i ≤ n. Because a huge number
of oscillation conditions for higher-order and nonlinear differential equations can
be simplified to oscillation conditions for these equations, the result achieved is
significant (1.1).
The paper is arranged as noted below. Firstly, we give a chronological review of
the advanced differential equations. Next, we establish some new criteria involving
limsup and liminf for the all oscillatory solutions of (1.1). We present two examples
to confirm the importance of the main result. Finally, we give the conclusion part.

2. Main Results

In this section, we offer new sufficient criteria for the oscillatory solutions of (1.1)
when the advanced arguments $i(ξ) are not necessarily monotone for 1 ≤ i ≤ n.
Let

σi(ξ) := inf
s≥ξ
{$i(s)} and σ(ξ) = min

1≤i≤n
{σi(ξ)} , ξ ≥ 0. (2.1)

Clearly, σ(ξ) ≤ σi(ξ) ≤ $i(ξ) and σi(ξ) are nondecreasing for all ξ ≥ 0, 1 ≤ i ≤ n.
Also,

M = lim sup
|z|→∞

z($(ξ))

Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ)))
, $(ξ) = min

1≤i≤n
{$i(ξ)} . (2.2)

The lemmas which are given below will be helpful to obtain our main theorems.

Lemma 2.1 ([13], Lemma 2.2). Let (1.2) holds and

lim inf
ξ→∞

$(ξ)∫
ξ

ρ(s)ds = L

then, we obtain

lim inf
ξ→∞

$(ξ)∫
ξ

ρ(s)ds = lim inf
ξ→∞

σ(ξ)∫
ξ

ρ(s)ds = L (2.3)
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where $(ξ) = min
1≤i≤n

{$i(ξ)} .

Lemma 2.2 ([8], Lemma 2). Let z(ξ) be an eventually positive solution of (1.1).
If

lim sup
ξ→∞

σ(ξ)∫
ξ

ρ(s)ds > 0 (2.4)

where σ(ξ) is defined by (2.1), then, lim
ξ→∞

z(ξ) =∞.

Also, let z(ξ) be an eventually negative solution of (1.1). If (2.4) satisfies, then,
lim
ξ→∞

z(ξ) = −∞.

Theorem 2.3. Suppose that (1.2) and (1.3) are satisfied. If

lim inf
ξ→∞

$(ξ)∫
ξ

ρ(s)ds >
M

e
, 0 ≤M <∞ (2.5)

where σ(ξ) is defined by (2.1) and $(ξ) = min
1≤i≤n

{$i(ξ)} , then every solution of

(1.1) is oscillatory.

Proof. Assume, for the sake of contradiction, that there is an eventually positive
solution z(ξ) of (1.1). If there is an eventually negative solution of (1.1), then the
proof of theorem can be done in the same way as shown below. So, there is ξ1 > ξ0
such that z(ξ), z ($i(ξ)) , z (σi(ξ)) > 0, for all ξ ≥ ξ1, 1 ≤ i ≤ n. Therefore, from
(1.1) we get

z′(ξ) = ρ(ξ)Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ))) ≥ 0

for all ξ ≥ ξ1, which shows that z(ξ) is an eventually nondecreasing. (2.5) and
Lemma 2.2 imply that lim

ξ→∞
z(ξ) =∞.

Case I: Let M > 0. Then, by (2.2), we can take ξ2 ≥ ξ1 so large that

Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ))) ≥ 1

2M
z($(ξ)) (2.6)

for ξ ≥ ξ2. Since σ(ξ) ≤ $(ξ) and z(ξ) is nondecreasing by (2.6), we have from
(1.1)

z′(ξ)− 1

2M
ρ(ξ)z ($(ξ)) ≥ 0

or

z′(ξ)− 1

2M
ρ(ξ)z (σ(ξ)) ≥ 0. (2.7)

Also, from (2.5) and Lemma 2.1, there is a constant λ > 0 such that

σ(ξ)∫
ξ

ρ(s)ds ≥ λ > M

e
, ξ ≥ ξ3 ≥ ξ2. (2.8)

Moreover, from (2.5) there is a real number ξ∗ ∈ (ξ, σ(ξ)) for all ξ ≥ ξ3 such that

ξ∗∫
ξ

ρ(s)ds >
M

2e
and

σ(ξ)∫
ξ∗

ρ(s)ds >
M

2e
. (2.9)
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Integrating (2.7) from ξ to ξ∗ by using z(ξ) and σ(ξ) are nondecreasing and (2.9),
we have

z(ξ∗)− z(ξ)− 1

2M

ξ∗∫
ξ

ρ(s)z(σ(s))ds ≥ 0,

z(ξ∗)− z(ξ)− 1

2M
z(σ(ξ))

M

2e
> 0

or

z(ξ∗) >
1

4e
z(σ(ξ)). (2.10)

Integrating (2.7) from ξ∗ to σ(ξ) to by using the same facts as above, we have

z(σ(ξ))− z(ξ∗)− 1

2M

σ(ξ)∫
ξ∗

ρ(s)z(σ(s))ds ≥ 0,

z(σ(ξ))− z(ξ∗)− 1

2M
z(σ(ξ∗))

M

2e
> 0

or

z(σ(ξ)) >
1

4e
z(σ(ξ∗)). (2.11)

Combining (2.10) and (2.11), we get

z(ξ∗) >
1

4e
z(σ(ξ)) >

1

(4e)
2 z(σ(ξ∗))

or
z(σ(ξ∗))

z(ξ∗)
< (4e)

2
, ξ ≥ ξ4. (2.12)

Let

u = lim inf
ξ→∞

z(σ(ξ))

z(ξ)
≥ 1 (2.13)

and due to 1 ≤ u < (4e)
2
, u is finite.

Dividing (1.1) with z(ξ) and integrating from ξ to σ(ξ), we obtain

σ(ξ)∫
ξ

z′(s)

z(s)
ds−

σ(ξ)∫
ξ

ρ(s)
Φ(z ($1(s)) , z ($2(s)) , ..., z ($n(s)))

z(s)
ds = 0

or

ln
z(σ(ξ))

z(ξ)
−

σ(ξ)∫
ξ

ρ(s)
Φ(z ($1(s)) , z ($2(s)) , ..., z ($n(s)))

z($(s))

z($(s))

z(s)
ds = 0.

Also, using the fact that z(ξ) is nondecreasing and σ(ξ) ≤ $(ξ), we get

ln
z(σ(ξ))

z(ξ)
−

σ(ξ)∫
ξ

ρ(s)
Φ(z ($1(s)) , z ($2(s)) , ..., z ($n(s)))

z($(s))

z(σ(s))

z(s)
ds ≥ 0
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and there is a µ such that ξ ≤ µ ≤ σ(ξ). So, we get

ln
z(σ(ξ))

z(ξ)
≥ Φ(z ($1(µ)) , z ($2(µ)) , ..., z ($n(µ)))

z($(µ))

z(σ(µ))

z(µ)

σ(ξ)∫
ξ

ρ(s)ds. (2.14)

Finally, if we take lower limit on both side of (2.14), then we obtain lnu > u
e . Since

lnx ≤ x
e for all x > 0, it is impossible.

Case II: Let M = 0. It is clear that z($(ξ))
Φ(z($1(ξ)),z($2(ξ)),...,z($n(ξ))) > 0 and

lim
|z|→∞

z($(ξ))

Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ)))
= 0. (2.15)

By (2.15), we obtain

z($(ξ))

Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ)))
< ε (2.16)

or
Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ)))

z($(ξ))
>

1

ε
(2.17)

where ε is an arbitrary real number. Because of this σ(ξ) ≤ $(ξ) and z(ξ) is
nondecreasing and using (2.17), we have from (1.1)

z′(ξ)− 1

ε
ρ(ξ)z ($(ξ)) > 0

or

z′(ξ)− 1

ε
ρ(ξ)z (σ(ξ)) > 0. (2.18)

Integrating last inequality from ξ to σ(ξ), we get

z(σ(ξ))− z(ξ)− 1

ε

σ(ξ)∫
ξ

ρ(s)z (σ(s)) ds > 0

or

z(σ(ξ))

1− 1

ε

σ(ξ)∫
ξ

ρ(s)ds

 > 0.

Then, from (2.8), we obtain

1 >
λ

ε
or

ε > λ (2.19)

but this contradicts with (2.15), hence this completes the proof. �

Theorem 2.4. Suppose that (1.2) and (1.3) hold. If

lim sup
ξ→∞

σ(ξ)∫
ξ

ρ(s)ds > M, 0 < M <∞, (2.20)

where σ(ξ) is defined by (2.1), then every solution of (1.1) is oscillatory.
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Proof. Assume, for the sake of contradiction, that there is an eventually positive
solution z(ξ) of (1.1). If there is an eventually negative solution of (1.1), then the
proof can be done in the same way as shown below. So, there is a ξ1 ≥ ξ0 such that
z(ξ), z($i(ξ)), z (σi(ξ)) > 0, for all ξ ≥ ξ1, 1 ≤ i ≤ n. From Theorem 2.3, z(ξ) is
an eventually nondecreasing, also from (2.20) and Lemma 2.2, lim

ξ→∞
z(ξ) = ∞. We

have the following statement for θ > 1 by (2.2),

Φ(z ($1(ξ)) , z ($2(ξ)) , ..., z ($n(ξ))) ≥ 1

θM
z($(ξ)). (2.21)

From, (2.20), there is a constant Γ > 0 such that

lim sup
ξ→∞

σ(ξ)∫
ξ

ρ(s)ds = Γ > M. (2.22)

Since Γ > M , we get M < Γ+M
2 < Γ. Also, by (2.21) and using the fact that

$(ξ) ≥ σ(ξ) and z(ξ) is nondecreasing from (1.1), we obtain

z′(ξ)− 1

θM
ρ(ξ)z ($(ξ)) ≥ 0

or

z′(ξ)− 1

θM
ρ(ξ)z (σ(ξ)) ≥ 0. (2.23)

Integrating (2.23) from ξ to σ(ξ), we have

z(σ(ξ))− z(ξ)− 1

θM

σ(ξ)∫
ξ

ρ(s)z(σ(s))ds ≥ 0

z(σ(ξ))

1− 1

θM

σ(ξ)∫
ξ

ρ(s)ds

 ≥ 0

and hence
σ(ξ)∫
ξ

ρ(s)ds < θM

for sufficiently large t. Thus,

lim sup
ξ→∞

σ(ξ)∫
ξ

ρ(s)ds ≤ θM.

Because of θ > 1 and Γ+M
2M > 1, this term can be choosen instead of θ. If the term

θ = Γ+M
2M > 1 is replaced in the last inequality, we have

lim sup
ξ→∞

σ(ξ)∫
ξ

ρ(s)ds = Γ ≤ Γ +M

2
,

which contradicts with Γ > Γ+M
2 and this completes the proof. �
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Example 2.5. Consider the first order nonlinear advanced differential equation.

z′(ξ)− 3

e
z($1(ξ)) ln (z($1(ξ))z($2(ξ)) + 3) = 0, ξ ≥ 0, (2.24)

where

$1(ξ) =

{
4ξ − 6a− 2, ξ ∈ [2a+ 1, 2a+ 2]
−2ξ + 6a+ 10, ξ ∈ [2a+ 2, 2a+ 3]

, a ∈ N0

$2(ξ) = $1(ξ) + 2

and

σ1(ξ) := inf
s≥ξ
{$1(s)} =

{
4ξ − 6a− 2, ξ ∈ [2a+ 1, 2a+ 1.5]
2a+ 4, ξ ∈ [2a+ 1.5, 2a+ 3]

, a ∈ N0.

σ2(ξ) = σ1(ξ) + 2.

Then,

$(ξ) = min
1≤i≤2

{$i(ξ)} = $1(ξ)

and

M = lim sup
|z|→∞

z($1(ξ))

z($1(ξ)) ln (z($1(ξ))z($2(ξ)) + 3)
= 0.

Now, at ξ = 2a+ 1.5, a ∈ N0, we obtain

lim inf
ξ→∞

$(ξ)∫
ξ

ρ(s)ds = lim inf
ξ→∞

ξ+2.5∫
ξ

3

e
ds =

7.5

e
> 0 =

M

e
,

then all solutions of this equation oscillate.

Example 2.6. Consider the first order nonlinear advanced differential equation.

z′(ξ)− 2

e
z($1(ξ)) ln

(
e−z($2(ξ)) + 4

)
= 0, ξ ≥ 0, (2.25)

where $1(ξ) = ξ + 1, $2(ξ) = ξ + 2 and $(ξ) = min
1≤i≤2

{$i(ξ)} = $1(ξ). Then, we

have

M = lim sup
|z|→∞

z($1(ξ))

z($1(ξ)) ln
(
e−z($2(ξ)) + 4

) =
1

ln 4

∼
= 0.72134.

Finally, we observe that

lim sup
ξ→∞

$(ξ)∫
ξ

ρ(s)ds = lim sup
ξ→∞

ξ+1∫
ξ

2

e
ds =

2

e

∼
= 0.73575 > 0.72134 = M,

then all solutions of this equation oscillate.

3. Conclusion

In this article, a first order nonlinear differential equation of advanced type is
considered. Some sufficient conditions for the oscillatory solutions of these equations
are established under the assumption that advanced arguments are not necessarily
monotone. We profited from the lemmas in order to prove the main results. These
results essentially complement and extend some well-known results in the literature.
Two examples are presented to illustrate the importance of the main results.
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