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ROUGH STATISTICAL CONVERGENCE FOR GENERALIZED

DIFFERENCE SEQUENCES

GÖKAY KARABACAK AND AYKUT OR

Abstract. In this work, we introduce the rough statistical convergence for

normed linear spaces with generalized difference sequences. We also define the
set of r−statistical limit points for generalized difference sequences and discuss

some topological properties of this set.

1. Introduction

Although it is said that the notion of statistical convergence, which has remark-
able applications in many parts of mathematics, was put forward independently
by Fast [6] and Steinhaus[9], in many studies today, the starting point of the idea
was called ”almost convergence” in the book ”Trigonometric Series” published by
Zygmund [2] in 1935. After these studies, Schoenberg [12] revised the definition
of statistical convergence and expressed this concept as a summability method.
Salat [28] first studied the statistical convergent sequence space and some topolog-
ical properties of this space and obtained some results. Freedman and Sember [1]
defined the concept of density, which is closely related to statistical convergence.
Fridy [14] defined the notion of ”Statistical Limit Points” and Fridy and Orhan [16]
defined the notions of ”Statistical limit superior and limit inferior”. Many mathe-
maticians, especially Connor [17], Kolk [4], Fridy [13], and Fridy and Orhan [15],
have contributed to the development of statistical convergence.

Kızmaz [8] defined c0(∆), c(∆) and l∞(∆) sequence spaces, ∆xk = (xk − xk+1)
for (xk) real number sequence, and showed that the considered spaces were Banach
spaces according to ∥x∥∆ = |x1| + ∥∆x∥∞ norm. Et and Colak [21] defined the
generalized difference sequence spaces l∞(∆m), c(∆m) and c0(∆

m) for a positive
number m, formed by generalizing these sequence spaces to ∆m-sequence spaces,
l∞, c, and c0 being bounded, convergent and null convergent sequence spaces, re-
spectively. Besides, Et and Nuray [19] introduced the notion of ∆m− statistical
convergence by combining the notion of generalized difference sequences with statis-
tical convergence. Aside from the mentioned authors, many others, such as Aydın
and Başarır [3], Gümüş and Nuray [7], Et [18], and Et and Başarır [20], researched
various properties of this concept.

2010 Mathematics Subject Classification. 40G15, 40A35.
Key words and phrases. Statistical convergence, Rough convergence, Statistical limit points.
Submitted Sep. 15, 2022. Jan. 31, 2023.

222



EJMAA-2023/11(1) ROUGH STATISTICAL CONVERGENCE 223

Rough convergence in finite-dimensional normed space was conceptualized by
Phu [10]. With the help of this concept he gave in finite-dimensional normed spaces,
Phu defined the rough limit set of a series and stated that this set is bounded, closed,
and convex. In another work, Phu [11] extended rough convergence and related
properties to infinite-dimensional normed spaces. Additionally, Aytar [25] defined
the concept of rough statistical convergence in normed spaces and examined the
basic properties of the set of rough statistical limit points. In his other work Aytar
[26] revealed the relations between the rough convergence of a (xk) real number
sequence and its classical kernel. Moreover, Aytar [27] studied rough limit set and
rough cluster points. Demir [24] and Demir and Gümüş [22] have examined the
idea of rough convergence in difference sequences. On the other hand, Demir and
Gümüş [23] defined the rough statistical convergence of the (∆xk) sequences and
examined some topological and algebraic properties of the obtained set of rough
statistical limit points. Finally, Karabacak and Or [5] introduced the concept of
rough convergence for generalized difference sequences.

In this work, X = Rn means the real n-dimensional space with the ∥.∥. Consider
a generalized difference sequence (∆mxk) such that xk ∈ X, k ∈ N.

2. Preliminaries

Definition 2.1. [1] The natural density of the set A ⊆ N is defined by

δ(A) = lim
n→∞

|{k ∈ A : k ≤ n}|
n

where |{k ∈ A : k ≤ n}| denotes the number of elements of A that do not exceed
n. It can be observed that if the set A is finite, then δ(A) = 0.

Definition 2.2. [6] Let (R, |.|) be a metric space and (xk) be a sequence in R and
x∗ ∈ R. Then, a sequence (xk) is called statistical convergent to x∗, if for all ε > 0,

lim
n→∞

|{k ≤ n : |xk − x∗| ≥ ε}|
n

= 0

and is denoted by st− lim
k→∞

xk = x∗.

Definition 2.3. [14] Let (R, |.|) be a metric space and (xk) be a sequence in R
and c ∈ R. Then, the number c is referred to as a statistical cluster point of the
sequence (xk), if for all ε > 0,

δ({k ∈ N : |xk − c| < ε}) ̸= 0

and is denoted by Γx.

Definition 2.4. [19] Let (R, |.|) be a metric space and (∆mxk) be a generalized
difference sequence in R. Then, the sequence (∆mxk) is called ∆m−statistically
convergent to x∗, if for all ε > 0,

lim
n→∞

|{k ≤ n : |∆mxk − x∗| ≥ ε}|
n

= 0

Definition 2.5. [10] Let (X, ∥.∥) be a normed linear space, (xk) be a sequence in
X, x∗ ∈ X and r ≥ 0. Then, the sequence (xk) is said to be r− convergent to x∗, if
for all ε > 0, there exists kε ∈ N such that k ≥ kε implies

∥xk − x∗∥ < r + ε,
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or equivalently
lim sup ∥xk − x∗∥ ≤ r,

and is denoted by xk
r−→ x∗. The number x∗ is called the r− limit point of the

sequence (xk) and r is referred to as roughness degree. The set

LIMr
xk

= {x∗ ∈ X : xk
r−→ x∗}

is referred to as r-limit set of the sequence (xk).

Definition 2.6. [23] Let (X, ∥.∥) be a normed linear space, (∆xk) be a difference
sequence in X, x∗ ∈ X and r ≥ 0. Then, (∆xk) is said to be rough statistically
convergent to x∗, if for all ε > 0,

δ({k ∈ N : ∥∆xk − x∗∥ ≥ r + ε}) = 0

or
st− lim sup ∥∆xk − x∗∥ ≤ r

and is denoted by ∆xk
r-st−−→ x∗. The set

st− LIMr
∆xk

= {x∗ ∈ X : ∆xk
r-st−−→ x∗}

is referred to as r-statistical limit set of the sequence (∆xk).

Based on these, let’s define the concept of rough statistical convergence for gen-
eralized difference sequences and have a look at a number of its properties.

3. Main results

In this part, we defined rough statistical convergence for generalized difference
sequences. In addition, we examined some properties of the set of r-statistical limit
points of a generalized difference sequence.

Definition 3.1. Let(X, ∥.∥) be a normed linear space, (∆mxk) = (∆m−1xk −
∆m−1xk+1), where m ∈ N, be a generalized difference sequence in X, x∗ ∈ X and
r ≥ 0. Then, (∆mxk) is said to be rough statistically convergent to x∗, if for all
ε > 0,

δ({k ∈ N : ∥∆mxk − x∗∥ ≥ r + ε}) = 0

or
st− lim sup ∥∆mxk − x∗∥ ≤ r

and is denoted by ∆mxk
r-st−−→ x∗. The set

st− LIMr
∆mxk

= {x∗ ∈ X : ∆mxk
r-st−−→ x∗}

is called to be r-statistical limit set of (∆mxk).

In Definition 3.1, statistical convergence is obtained when r = 0, r is meant
the roughness degree. The following examples examine the relationship between
statistical convergence and rough statistical convergence for generalized difference
sequences.

Example 3.2. Suppose that a generalized difference sequence (∆myk) is statistical
convergent to y∗. For sufficiently large k, it is impossible to calculate ∆myk exactly
by computer. In addition, (∆mxk) satisfying ∥∆mxk −∆myk∥ ≤ r for all k ∈ N.
Hence, for any ε > 0 and r ≥ 0

δ({k ∈ N : ∥∆myk − y∗∥ ≥ ε}) = 0
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and

δ({k ∈ N : ∥∆mxk −∆myk∥ > r}) = 0

Because of these, (∆mxk) is not statistical convergent. However, as the inclusion

{k ∈ N : ∥∆myk − y∗∥ ≥ ε} ⊇ {k ∈ N : ∥∆mxk − y∗∥ ≥ r + ε}

provides and δ({k ∈ N : ∥∆myk − y∗∥ ≥ ε}) = 0,

δ({k ∈ N : ∥∆mxk − y∗∥ ≥ r + ε}) = 0

is obtained. Consequently, (∆mxk) is r−statistical convergent.

Remark 3.3. If st− LIMr
∆mxk

̸= ∅, then

st− LIMr
∆mxk

= [st− lim sup∆mxk − r, st− lim inf ∆mxk + r]

Example 3.4. The unbounded sequence (∆mxk) may not rough converge however
may be rough statistically convergent. For example, define

∆mxk :=

{
k, ∃k ∈ N ∋ k = n2

0, ∀k ∈ N, k ̸= n2

in R.

A(ε) = {k ∈ N : |∆mxk − 0| ≥ r + ε}
= {k ∈ N : |∆mxk| ≥ r + ε > 0}
= {k ∈ N : ∆mxk = k}
= {1, 4, 9, 16, . . .}

and δ(A(ε)) = 0. Therefore, 0 ∈ st−LIMr
∆mxk

and we obtain st−LIMr
∆mxk

̸= ∅.
Since st− lim sup∆mxk = 0 and st− lim inf ∆mxk = 0, by Remark 3.3, we obtain

st− LIMr
∆mxk

= [−r, r]

In addition, LIMr
∆mxk

= ∅ for all r ≥ 0 because (∆mxk) is the unbounded sequence.

In the previous example, it appears that st − LIMr
∆mxk

̸= ∅ does not imply
LIMr

∆mxk
̸= ∅. However, the converse is correct, i.e,

LIMr
∆mxk

⊆ st− LIMr
∆mxk

and

diam
(
LIMr

∆mxk

)
≤ diam

(
st− LIMr

∆mxk

)
where

diam
(
LIMr

∆mxk

)
:= sup

{
∥y − z∥ : y, z ∈ LIMr

∆mxk

}
and

diam
(
st− LIMr

∆mxk

)
:= sup

{
∥y − z∥ : y, z ∈ st− LIMr

∆mxk

}
Theorem 3.5. Let(X, ∥.∥) be a normed linear space, (∆mxk), where m ∈ N, be a
generalized difference sequence in X and r ≥ 0. Then, diam

(
st− LIMr

∆mxk

)
≤ 2r.

In general, diam
(
st− LIMr

∆mxk

)
has no smaller bound.
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Proof. Suppose that diam
(
st− LIMr

∆mxk

)
> 2r. There exists g, h ∈ st− LIMr

∆mxk

such that

∥g − h∥ > 2r

and get ε ∈
(
0, ∥g−h∥

2 − r
)
. g, h ∈ st − LIMr

∆mxk
implies that δ(K) = ∅ and

δ(L) = ∅, where
K := {k ∈ N : ∥∆mxk − g∥ ≥ r + ε}

and

L := {k ∈ N : ∥∆mxk − h∥ ≥ r + ε}
From the feature of natural density, δ(Kc ∩ Lc) = 1. Therefore,

∥g−h∥ ≤ ∥∆mxk − g∥+ ∥∆mxk −h∥ < 2r+2ε < 2r+2

(
∥g − h∥

2
− r

)
= ∥g−h∥

for all k ∈ δ(Kc ∩ Lc) which is a contradictions. Therefore, assumption is wrong.
It can easy be to show that diam(Br(x∗)) = 2r where Br(x∗) := {y ∈ X :

∥y − x∗∥ ≤ r}. Consider a sequence (∆mxk) such that statistically convergent to
x∗. For arbitrary y ∈ Br(x∗),

∥∆mxk − y∥ ≤ ∥∆mxk − x∗∥+ r, ∀k ∈ {k ∈ N : ∥∆mxk − x∗∥ < ε}

Since the sequence (∆mxk) is statistically convergent to x∗, Br(x∗) ⊆ st−LIMr
∆mxk

is obtained. Conversely, it is easily show that st − LIMr
∆mxk

⊆ Br(x∗). Conse-

quently, st − LIMr
∆mxk

= Br(x∗). This says that in general upper bound 2r of

diam
(
st− LIMr

∆mxk

)
can not be decreased anymore. □

By Phu [10], there exists a non-negative real number r such that LIMr
∆mxk

̸= ∅
for a bounded sequence. Since the fact LIMr

∆mxk
̸= ∅ implies st− LIMr

∆mxk
̸= ∅,

we have following result.

Corollary 3.6. Let(X, ∥.∥) be a normed linear space and (∆mxk), where m ∈ N,
be a generalized difference sequence in X. If a sequence (∆mxk) is bounded, then
there exists a r ≥ 0 such that st− LIMr

∆mxk
̸= ∅.

The opposite of this end result isn’t always proper. If the sequence is statistically
bounded, the opposite may correct it. Therefore, the next theorem is given:

Theorem 3.7. Let(X, ∥.∥) be a normed linear space and (∆mxk), where m ∈ N,
be a generalized difference sequence in X. Then, a sequence (∆mxk) is statistically
bounded if and only if there is a r ≥ 0 such that st− LIMr

∆mxk
̸= ∅.

Proof. Assume that (∆mxk) is statistically bounded. Therefore, there exists
a M > 0 such that δ(K) = 0, where K := {k ∈ N : ∥∆mxk∥ ≥ M}. Define
b := sup {∥∆mxk∥ : k ∈ Kc}. Then, st− LIM b

∆mxk
include the orgin of X. Hence,

st− LIMr
∆mxk

̸= ∅.
Suppose that st − LIMr

∆mxk
̸= ∅. Then, there exists x∗ ∈ st − LIMr

∆mxk
.

Hence, almost all k ∆mxk’s are contained in some ball with any radius greater
than r. Therefore, the sequence (∆mxk) is statistically bounded. □

By Phu [10], (∆mx′) = (∆mxkn
) is a subsequence (∆mxk) such that

LIMr
∆mxk

⊆ LIMr
∆mx′
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However, this condition doesn’t realize in the statistical convergence. For example,
let

∆mxk :=

{
k, ∃k ∈ N ∋ n = k2

0, ∀k ∈ N, n ̸= k2

Then, (∆mxkn
) := (kn

2) is a subsequence (∆mxk). However, st− LIMr
∆mxk

= [−r, r]
and st− LIMr

∆mx′ = ∅.
This condition only happens when the subsequence is non-thin. Now, the defi-

nition of non-thin subsequence is given:

Definition 3.8. Let(X, ∥.∥) be a normed linear space and (∆mxk), where m ∈ N,
be a generalized difference sequence in X. Then, (∆mx′) = (∆mxkn) is a non-thin
subsequence of (∆mxk) if δ({kn : n ∈ N}) ̸= 0.

Theorem 3.9. Let(X, ∥.∥) be a normed linear space, (∆mxk), where m ∈ N, be a
generalized difference sequence in X and r ≥ 0. If (∆mx′) = (∆mxkn) is a non-thin
subsequence of (∆mxk), then

st− LIMr
∆mxk

⊆ st− LIMr
∆mx′

Proof. The proof is straight forward. □

Theorem 3.10. Let(X, ∥.∥) be a normed linear space, (∆mxk), where m ∈ N, be
a generalized difference sequence in X and r ≥ 0. Then, st− LIMr

∆mxk
is closed.

Proof. Let y∗ ∈ st− LIMr
∆mxk

. Then, there exists an arbitrary sequence (yj) in
st−LIMr

∆mxk
which converges to some point y∗. For all ε > 0, by definition, there

is a j ε
2
such that

∥yj ε
2
− y∗∥ <

ε

2
and δ

({
k ∈ N : ∥∆mxk − yj ε

2
∥ ≥ r +

ε

2

})
= 0

Take i ∈
{
k ∈ N : ∥∆mxk − yj ε

2
∥ < r + ε

2

}
. Then, ∥∆mxk − yj ε

2
∥ < r + ε

2 and

hence

∥∆mxk − y∗∥ ≤ ∥∆mxk − yj ε
2
∥+ ∥yj ε

2
− y∗∥ < r + ε

That is, i ∈ {k ∈ N : ∥∆mxk − y∗∥ < r + ε}, which proves{
k ∈ N : ∥∆mxk − yj ε

2

}
⊆ {k ∈ N : ∥∆mxk − y∗∥ < r + ε}

yj ε
2
∈ st− LIMr

∆mxk
implies that the natural density of the set on the right-hand

side of last inequality is equal to 1. Therefore,

δ
({

k ∈ N : ∥∆mxk − y∗∥ ≥ r +
ε

2

})
= 0

i.e., y∗ ∈ st− LIMr
∆mxk

Consequently, st− LIMr
∆mxk

is closed. □

Theorem 3.11. Let(X, ∥.∥) be a normed linear space, (∆mxk), where m ∈ N, be
a generalized difference sequence in X and r ≥ 0. Then, st− LIMr

∆mxk
is convex.

Proof. Assume that y0, y1 ∈ st − LIMr
∆mxk

. In this case, δ(A1) = δ(A2) = 0,
where A1 := {k ∈ N : ∥∆mxk − y0∥ ≥ r + ε} and A2 := {k ∈ N : ∥∆mxk − y1∥ ≥
r + ε}, and δ(Ac

1 ∩Ac
2) = 1. In addition,

∥∆mxk − [(1− λ)y0 + λy1]∥ = ∥(1− λ)(∆mxk − y0) + λ(∆mxk − y1)∥ < r + ε
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for all k ∈ Ac
1 ∩Ac

2 and λ ∈ [0, 1]. Since δ(Ac
1 ∩Ac

2) = 1,

δ({k ∈ N : ∥∆mxk − [(1− λ)y0 + λy1]∥ ≥ r + ε}) = 0.

Consequently, st− LIMr
∆mxk

is convex. □

Theorem 3.12. Let(X, ∥.∥) be a normed linear space, (∆mxk), where m ∈ N,
be a generalized difference sequence in X, x∗ ∈ X and r ≥ 0. Then, (∆mxk) is
r−statistical convergent to x∗ if and only if there exists a generalized difference
sequence (∆myk) such that

∆myk
st−→ x∗ and ∥∆mxk −∆myk∥ ≤ r (k ∈ N)

Proof. Suppose that ∆myk
st−→ x∗ and ∥∆mxk −∆myk∥ ≤ r. For all ε > 0,

δ({k ∈ N : ∥∆myk − x∗∥ ≥ ε}) = 0.

The inclusion

{k ∈ N : ∥∆mxk − x∗∥ ≥ r + ε} ⊆ {k ∈ N : ∥∆myk − x∗∥ ≥ ε}

provides. Since δ({k ∈ N : ∥∆myk − x∗∥ ≥ ε}) = 0, δ({k ∈ N : ∥∆mxk − x∗∥ ≥
r + ε}) = 0. Therefore, the proof is completed.

Now, suppose that ∆mxk
r-st−−→ x∗. Define

∆myk :=

{
x∗, if ∥∆mxk − x∗∥ ≤ r

∆mxk + r x∗−∆mxk

∥x∗−∆mxk∥ , if ∥∆mxk − x∗∥ > r

If ∥∆mxk − x∗∥ ≤ r, then

∥∆myk − x∗∥ = ∥x∗ − x∗∥ = 0

If ∥∆mxk − x∗∥ > r, then

∥∆myk − x∗∥ =

∥∥∥∥(∆mxk + r
x∗ −∆mxk

∥x∗ −∆mxk∥

)
− x∗

∥∥∥∥ ≤ ∥∆mxk − x∗∥+ r

Hence,

∥∆myk − x∗∥ ≤

{
0, if ∥∆mxk − x∗∥ ≤ r

∥∆mxk − x∗∥+ r, if ∥∆mxk − x∗∥ > r

and

∥∆mxk −∆myk∥ ≤ r

for k ∈ N. ∆mxk
r-st−−→ x∗ implies

st− lim sup ∥∆mxk − x∗∥ ≤ r

Therefore,

st− lim sup ∥∆myk − x∗∥ = 0

□

Theorem 3.13. Let(X, ∥.∥) be a normed linear space, (∆mxk), where m ∈ N, be
a generalized difference sequence in X, r ≥ 0 and t ∈ Γ∆mxk

, which be the set of all
statistical cluster points of ∆mxk. Then, ∥x∗−t∥ ≤ r, for all x∗ ∈ st−LIMr

∆mxk
.
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Proof. Suppose that t ∈ Γ∆mxk
and x∗ ∈ st− LIMr

∆mxk
such that ∥x∗ − t∥ > r.

Let’s ε := ∥x∗−x∥−r
3 . In this case,

{k ∈ N : ∥∆mxk − t∥ < ε} ⊆ {k ∈ N : ∥∆mxk − x∗∥ ≥ r + ε}
Since t ∈ Γ∆mx, δ({k ∈ N : ∥∆mxk − t∥ < ε}) ̸= 0. Therefore, by last inequation,
take

δ({k ∈ N : ∥∆mxk − x∗∥ ≥ r + ε}) ̸= 0

which contrast with x∗ ∈ st− LIMr
∆mxk

. □

Theorem 3.14. Let(X, ∥.∥) be a normed linear space, (∆mxk), where m ∈ N, be a
generalized difference sequence in X, x∗ ∈ X and r ≥ 0. Then, a sequence (∆mxk)
statistical convergent to x∗ if and only if st− LIMr

∆mxk
= Br(x∗).

Proof. In Theorem 3.5, we proved that if ∆mxk
st−→ x∗, then st − LIMr

∆mxk
=

Br(x∗). Let st− LIMr
∆mxk

= Br(x∗) ̸= ∅. In this case, by Theorem 3.7, ∆mxk is
statistical bounded. Now, suppose that (∆mxk) sequence has two different cluster
point such as t∗ and x∗. Then, the point

z := x∗ +
r

∥x∗ − t∗∥
(x∗ − t∗)

implies

∥z − t∗∥ = r + ∥x∗ − t∗∥ > r

Since t∗ is a statistical cluster point, z /∈ st − LIMr
∆mxk

is obtained from the last

inequality and this contradicts with ∥z − t∗∥ = r and st − LIMr
∆mxk

= Br(x∗).
Therefore, our hypothesis is incorrect. That is x∗ is the single statistical cluster

point of ∆mxk. Consequently, ∆
mxk

st−→ x∗ □

4. Conclusion

This paper studies the concept of rough statistical convergence of the (∆mxk) =
(∆m−1xk−∆m−1xk+1) sequences, which are called generalized difference sequences.
Some topological and algebraic properties of the rough statistical limit points are
examined.

In future studies, similar properties can be examined for the concept of ideal
convergence for generalized difference sequences. Again, instead of the convergence
and statistical convergence concepts used in this study, the results obtained by
using different types of convergence can be examined.
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