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FIXED POINT RESULTS FOR GENERALIZED (α, ψ) -

GERAGHTY CONTRACTION IN B-RECTANGULAR METRIC

SPACES

M. A. MAHAMUD AND K. K. TOLA

Abstract. In this paper, we introduce generalized (α,ψ)-Geraghty Contrac-
tion mappings in b-rectangular metric spaces and study fixed point results for

the mappings introduced. Our results extend and generalize related fixed point
results in the existing literature. Finally, we provide an example in support of
our main findings.

1. Introduction

Fixed point theory is one of the most important topic in Mathematics, specially
in analysis. Due to its application in various disciplines like engineering, computer
science, biological sciences, economics etc., many researchers took interest in fixed
point theory and its application. It is well known that Banach Contraction Principle
is the most important result in fixed point theory [13]. During the last many years
this result was extended in different directions. Taking the key role of the notion of
the metric in mathematics and hence in quantitative sciences, it has been extended
and generalized in several distinct directions by many authors. One of the gener-
alization of metric spaces was rectangular metric spaces which was introduced by
Branciari [3]. In 1993, Czerwik [4] introduced and studied b-metric spaces, which is
an interesting generalization of metric space. The concept of b-rectangular metric
space was introduced as a generalization of metric, b-metric space and rectangular
metric space by Geoge et al. [6]. Useful results on rectangular metric, b-metric and
rectangular b-metric spaces can be seen in ([14]-[22]). Inspired and motivated by
the works of Erhan [11] and Baiya and Kaewcharoen [2] the main purpose of this
paper is to define generalized (α, ψ)-Geraghty contraction and establish new fixed
point results for the class of map that satisfy generalized (α,ψ)-Geraghty contrac-
tion condition in the setting of b-rectangular metric spaces and prove the existence
and uniqueness of fixed points for the maps introduced.
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2. Preliminaries

Notation: We need the following symbols and class of functions to prove certain
results of this section:

• ℜ+ = [0,∞);
• N is the set of all natural numbers;
• Ψ1 = {ψ = (0,∞) → (1,∞), such that, ψ is nondecreasing, for each
sequence {tn} ⊂ (0,∞), ψ(tn) → 1 if and only if tn → 0 and there exist

r ∈ (0, 1) and l ∈ (0,∞] such that lim
t−→0

ψ(t)−1
tr = l};

• Ψ2 = {ψ = (0,∞) → (1,∞), such that, ψ is continuous and nondecreas-
ing};

• Ψ = {ψ : ℜ+ → ℜ+ , such that, ψ is continuous and non-decreasing };
• Θ = {θ : ℜ+ → [0, 1), such that, θ(tn) → 1 ⇒ tn → 0, as n→ ∞};
• Θs ={θ : ℜ+ → [0, 1s ), such that, θ(tn) → 1

s ⇒ tn → 0 as n→ ∞ for s ≥ 1}.
Definition 1 [5] Let X be a nonempty set and d : X ×X → ℜ+ be a function

satisfying the following conditions:
(a) d(x, y) = 0 if and only if x = y;
(b) d(x, y) = d(y, x);
(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
Then the pair (X, d) is called a metric space.
Definition 2 [5] Let X be a nonempty set and d : X × X → ℜ+ be a function
satisfying the following conditions:
(a) d(x, y) = 0 if and only if x = y;
(b) d(x, y) = d(y, x);
(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
Then the pair (X, d) is called a metric space.
Definition 3 [4] Let X be a nonempty set and s ≥ 1 be a given real number. A
function d : X ×X → ℜ+ is said to be a b-metric if and only if for all x, y, z ∈ X,
the following conditions are satisfied:
(a) d(x, y) = 0 if and only if x = y;
(b) d(x, y) = d(y, x);
(c) d(x, z) ≤ s[d(x, y) + d(y, z)].
The pair (X, d) is called a b-metric space.
Definition 4 [3] Let X be a nonempty set and let d : X ×X → ℜ+ be a mapping
such that for all x, y ∈ Xand all distinct points u, v ∈ X, each distinct from x and
y:
(a) d(x, y) = 0 if and only if x = y;
(b) d(x, y) = d(y, x);
(c) d(x, y) ≤ [d(x, u) + d(u, v) + d(v, y)](rectangular inequality).
The pair (X, d) is called a rectangular metric space.
Definition 5 [6] Let X be a nonempty set, s ≥ 1 be a given real number, and
d : X × X → ℜ+ be a mapping such that for all x, y ∈ X and all distinct points
u, v ∈ X, each distinct from x and y:
a) d(x, y) = 0 if and only if x = y;
b) d(x, y) = d(y, x);
c) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)](b-rectangular inequality).
The pair (X, d) is called a b-rectangular metric space.
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Definition 6 [6] Let X be a b-rectangular metric space and {xn} be a sequence
in X, we say that
a. {xn} is a b-rectangular converges to x ∈ X if d(xn, x) → 0 as n→ ∞;
b. {xn} is a b-rectangular Cauchy sequence if d(xn, xm) → 0 as n,m→ ∞;
c. (X, d) is a b-rectangular complete if every b-rectangular Cauchy sequence in X
is b-rectangular convergent.

Definition 7 [7] An operator T : X → X is called a Geraghty contraction if
there exists a function θ ∈ Θ which satisfies for all x, y ∈ X the condition;

d(Tx, Ty) ≤ θ(d(x, y))d(x, y).

Theorem 1 [7] Let (X, d) be a complete metric space. If T : X → X is a Ger-
aghty contractive mapping, then T has a unique fixed point.

Definition 8 [10] Let X be a nonempty set, α : X × X → ℜ+ be a function.
A mapping T : X → X is said to be α- admissible, if for all x, y ∈ X, α(x, y) ≥ 1
implies α(Tx, Ty)) ≥ 1.

Definition 9 Let X be a nonempty set, α : X × X → ℜ+ be a functional. A
mapping T : X → X is said to be α-orbital admissible, if for all x ∈ X, α(x, Tx) ≥ 1
implies α(Tx, T 2x) ≥ 1.

Definition 10 [9] Let X be a nonempty set, T : X → X and α : X ×X → ℜ+.
We say that T is triangular α-orbital admissible if:
i. T is α-orbital admissible;
ii. for all x, y ∈ X,α(x, y) ≥ 1 and α(y, Ty) ≥ 1 imply that α(x, Ty) ≥ 1.

Lemma 1 [9] Let X be a nonempty set, T : X → X and α : X × X → ℜ+.
Suppose that T is a triangular α-orbital admissible mapping and assume that there
exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence {xn} by xn+1 = Txn
for all n ∈ N ∪ {0}. Then α(xn, xm) ≥ 1 for all m,n ∈ N with n < m.

Theorem 2 [8] Let (X, d) be a complete rectangular metric space and T : X →
X. Suppose that there exist ψ ∈ Ψ1 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ̸= 0 implies ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ,

where R(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}. Then T has a fixed point.
Theorem 3 [2] Let (X, d) be a complete rectangular metric space, T : X → X

and α : X ×X → ℜ+. Suppose that the following conditions hold:
(i) there exist ψ ∈ Ψ2 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ̸= 0 implies α(x, y).ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ,

where R(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)};
(ii) there exists x1 ∈ X such that α(x1Tx1) ≥ 1;
(iii) T is a triangular α-orbital admissible mapping;
(iv) T is continuous.
Then T has a fixed point.

Theorem 4 [2] Let (X, d) be a complete rectangular metric space, T : X → X
and α : X ×X → ℜ+. Suppose that the following conditions hold:
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(i) there exist ψ ∈ Ψ2 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ̸= 0 implies α(x, y).ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ,

where R(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)};
(ii) there exists x1 ∈ X such that α(x1Tx1) ≥ 1;
(iii) T is a triangular α-orbital admissible mapping;
(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X
as n → ∞, then there exists a subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1

for all k ∈ N ∪ {0}.
Then T has a fixed point.

Theorem 5 [1] Let (X, d) be a complete rectangular metric space, T : X → X
and α : X ×X → ℜ+. Suppose that the following conditions hold:
(i) there exist ψ ∈ Ψ1 and λ ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ̸= 0 implies α(x, y).ψ(d(Tx, Ty)) ≤ [ψ(R(x, y))]λ,

where R(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Tx)d(y,Ty)1+d(x,y) };
(ii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1, and α(x1, T

2
x1
) ≥ 1;

(iii) T is a triangular α -orbital admissible mapping;
(iv) if {Tnx1

} is a sequence in X such that α(Tnx1
, Tn+1
x1

) ≥ 1 for all n and xn →
x ∈ Xas n → ∞, then there exists a subsequence {Tn(k)x1 } of {Tnx1

} such that

α(T
n(k)
x1 , x) ≥ 1 for all k ∈ N ∪ {0}. Then T has a fixed point z in X and {Tnx1

}
converges to z.

Theorem 6 [11] Let (X, d) be a complete b-rectangular metric space with a
constant s ≥ 1 and α : X × X → ℜ+ and θ ∈ Θs be two given functions. Let
T : X → X be a continuous α-admissible mapping satisfying
α(x, y)d(Tx, Ty) ≤ θ(M(x, y))M(x, y),for all x, y ∈ X,
where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.
Assume that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T

2x0) ≥ 1.
Then T has a fixed point.

Theorem 7 [11] Let (X, d) be a complete b-rectangular metric space with a
constant s ≥ 1 and α : X × X → ℜ+ and θ ∈ Θs be two given functions. Let
T : X → X be an α-admissible mapping satisfying
α(x, y)d(Tx, Ty) ≤ θ(M(x, y))M(x, y),for all x, y ∈ X,
where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.
Suppose also that
(i) there exists x0 ∈ X such thatα(x0, Tx0) ≥ 1and α(x0, T

2x0) ≥ 1.
(ii) for any sequence {xn} ∈ X such that lim

n→∞
d(xn, x) = 0 and satisfying α(xn, xn+1) ≥

1 for all n ∈ N ∪ {0}, we have α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.
(iii) for every pair x and y of fixed points of T , α(x, y) ≥ 1.
Then T has a unique fixed point.

3. Main Results

In this section, we define generalized (α, ψ) - Geraghty contraction mappings
in the setting of b-rectangular metric spaces and prove fixed point results for the
mappings introduced.
Definition 11 Suppose that ψ ∈ Ψ, α : X × X → ℜ+ and θ ∈ Θs. A self-
mapping T on a b-rectangular metric space (X, d) is called generalized (α, ψ) -
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Geraghty contraction if it satisfies for all x, y ∈ X the following condition:

α(x, y)ψ(s2d(Tx, Ty)) ≤ θ(M(x, y))ψ(M(x, y)), (1)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Tx).d(y,Ty)1+d(x,y) , d(x,Tx).d(y,Ty)1+d(Tx,Ty) }.
Theorem 8 Let (X, d) be a complete b-rectangular metric space, T : X → X and
α : X ×X → ℜ+. Suppose that the following conditions hold:

(1) T is a triangular α- orbital admissible mapping;
(2) T is generalized (α, ψ)-Geraghty contraction mapping;
(3) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(4) for every pair x and y of fixed points of T , α(x, y) ≥ 1 ;
(5) T is continuous.

Then T has a unique fixed point.

Proof. By (3) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Define iterative
sequence {xn} as xn+1 = Txn, for n ∈ N∪{0}. Suppose that xn0 = xn0+1 for some
n0 ∈ N. Since Txn0 = xn0+1 = xn0 the point xn0 forms a fixed point of T that
completes the proof. From now on we suppose that xn ̸= xn+1 for all n ∈ N ∪ {0}.
By condition (3), we have α(x0, Tx0) ≥ 1. Using Lemma 1, we obtain that

α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}. (2)

From (1) and (2), for all n ∈ N ∪ {0}, we have the following.

ψ(d(xn, xn+1)) = ψ(d(Txn−1, Txn))

≤ α(xn−1, xn)ψ(s
2d(Txn−1, Txn))

≤ θ(M(xn−1, xn))ψ(M(xn−1, xn))

<
1

s
ψ(M(xn−1, xn)).

So, we obtain

ψ(d(xn, xn+1)) <
1

s
ψ(M(xn−1, xn)). (3)

Where

M(xn−1, xn) = max

{
d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),

d(xn−1, Txn−1).d(xn, Txn)

1 + d(xn−1, xn)
,
d(xn−1, Txn−1).d(xn, Txn)

1 + d(Txn−1, Txn)

}

= max

{
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn).d(xn, xn+1)

1 + d(xn−1, xn)
,
d(xn−1, xn).d(xn, xn+1)

1 + d(xn, xn+1)

}
= max {d(xn−1, xn), d(xn, xn+1)} .

If M(xn−1, xn) = d(xn, xn+1), then by (3) we get,
ψ(d(xn, xn+1)) <

1
sψ(d(xn, xn+1)) ≤ ψ(d(xn, xn+1)) which is a contradiction.

Hence M(xn−1, xn) = d(xn−1, xn). Using (3), we have
ψ(d(xn, xn+1)) < ψ(d(xn−1, xn)).
Since ψ is non-decreasing, we have d(xn, xn+1) < d(xn−1, xn). Hence the sequence
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{d(xn, xn+1)} is decreasing. So, {d(xn, xn+1)} converges to a non-negative real
number. Thus there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r and d(xn, xn+1) ≥ r. (4)

We prove that r = 0. Suppose that r > 0. Since ψ is non-decreasing and by using
(3) and (4), we obtain that,

1

s
ψ(r) ≤ ψ(r) ≤ ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1))

≤ α(xn, xn+1)ψ(s
2d(Txn, Txn+1))

≤ θ(M(xn, xn+1))ψ(M(xn, xn+1))

= θ(d(xn, xn+1))ψ(d(xn, xn+1))

<
1

s
ψ(d(xn, xn+1)).

By applying limit as n → ∞ in the above inequality and by the property of θ, we
get
lim
n→∞

θ(d(xn, xn+1)) = 1
s , implies lim

n→∞
d(xn, xn+1) = 0 which is a contradiction.

Hence we have r = 0 and therefore

lim
n→∞

d(xn, xn+1) = 0. (5)

Now, we shall prove that xn ̸= xm for all n ̸= m or xn ̸= xn+p for all n, p ∈
N. Assume on the contrary there exist n, p ∈ N such that xn = xn+p. Since
d(xn, xn+1) > 0 for each n ∈ N ∪ {0}. Without loss of generality, we may assume
that p > 1. Using (1) and (2), we obtain that

ψ(d(xn, xn+1)) = ψ(d(xn+p, xn+p+1)) = ψ(d(Txn+p−1, Txn+p))

≤ α(xn+p−1, xn+p)ψ(S
2d(Txn+p−1, Txn+p))

≤ θ(M(xn+p−1, xn+p))ψ(M(xn+p−1, xn+p))

<
1

s
ψ(M(xn+p−1, xn+p)) ≤ ψ(M(xn+p−1, xn+p)).

So, we get

ψ(d(xn, xn+1)) = ψ(d(xn+p, xn+p+1)) < ψ(M(xn+p−1, xn+p)). (6)

Where

M(xn+p−1, xn+p) = max

{
d(xn+p−1, xn+p), d(xn+p−1, Txn+p−1), d(xn+p, Txn+p,

d(xn+p−1, Txn+p−1).d(xn+p, Txn+p)

1 + d(xn+p−1, xn+p)
,
d(xn+p−1, Txn+p−1).d(xn+p, Txn+p)

1 + d(Txn+p−1, Txn+p)

}

= max

{
d(xn+p−1, xn+p), d(xn+p−1, xn+p), d(xn+p, xn+p+1,

d(xn+p−1, xn+p).d(xn+p, xn+p+1)

1 + d(xn+p−1, xn+p)
,
d(xn+p−1, xn+p).d(xn+p, xn+p+1)

1 + d(xn+p, xn+p+1)

}
= max{d(xn+p−1, xn+p), d(xn+p, xn+p+1)}.
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If M(xn+p−1, xn+p) = d(xn+p, xn+p+1), then from (6), we obtain that

ψ(d(xn, xn+1)) = ψ(d(xn+p, xn+p+1)) < ψ(d(xn+p, xn+p+1)),

which is a contradiction. Hence M(xn+p−1, xn+p) = d(xn+p−1, xn+p).
By (6) we obtain that

ψ(d(xn, xn+1)) = ψ(d(xn+p, xn+p+1)) < ψ(d(xn+p−1, xn+p)). (7)

From (7) we get,
d(xn, xn+1) < d(xn+p−1, xn+p).
By using (1) we have,

ψ(d(xn+p−1, xn+p)) = ψ(d(Txn+p−2, Txn+p−1))

≤ α(xn+p−2, xn+p−1)ψ(s
2d(Txn+p−2, Txn+p−1))

≤ θ(M(xn+p−2, xn+p−1))ψ(M(xn+p−2, xn+p−1))

<
1

s
ψ(M(xn+p−2, xn+p−1))

≤ ψ(M(xn+p−2, xn+p−1)) = ψ(d(xn+p−2, xn+p−1)).

Since ψ is non-decreasing, we have
d(xn+p−1, xn+p) < d(xn+p−2, xn+p−1).
By continuing this process, we obtain the following inequality

d(xn, xn+1) < d(xn+p−1, xn+p) < d(xn+p−2, xn+p−1) < ... < d(xn, xn+1),

which is a contradiction. Hence xn ̸= xm for all n ̸= m. We now prove that
{d(xn, xn+2)} is bounded. Since {d(xn, xn+1)} is bounded, there exists B > 0 such
that d(xn, xn+1) ≤ B for all n ∈ N ∪ {0}.
If d(xn, xn+2) > B for all n ∈ N ∪ {0}, then from

M(xn−1, xn+1) = max

{
d(xn−1, xn+1), d(xn−1, Txn−1), d(xn+1, Txn+1),

d(xn−1, Txn−1)d(xn+1, Txn+1)

1 + d(xn−1, xn+1)
,
d(xn−1, Txn−1)d(xn+1, Txn+1)

1 + d(Txn−1, Txn+1)

}

= max

{
d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2),

d(xn−1, xn)d(xn+1, xn+2)

1 + d(xn−1, xn+1)
,
d(xn−1, xn)d(xn+1, xn+2)

1 + d(xn, xn+2)

}
= d(xn−1, xn+1)

and Lemma 1, we obtain that

ψ(d(xn, xn+2)) = ψ(d(Txn−1, Txn+1))

≤ α(xn−1, xn+1)ψ(s
2d(Txn−1, Txn+1))

≤ θ(M(xn−1, xn+1))ψ(M(xn−1, xn+1))

<
1

s
ψ(M(xn−1, xn+1))

≤ ψ(M(xn−1, xn+1)) = ψ(d(xn−1, xn+1)). (8)
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From (8) we get,
d(xn, xn+2) < d(xn−1, xn+1).
This implies that {d(xn, xn+2)} is decreasing and bounded.
If d(xn, xn+2) ≤ B for some n ∈ N ∪ {0}, then from

M(xn, xn+2) = max

{
d(xn, xn+2), d(xn, Txn), d(xn+2, Txn+2),

d(xn, Txn)d(xn+2, Txn+2)

1 + d(xn, xn+2)
,
d(xn, Txn)d(xn+2, Txn+2)

1 + d(Txn, Txn+2)

}

= max

{
d(xn, xn+2), d(xn, xn+1), d(xn+2, xn+3),

d(xn, xn+1)d(xn+2, xn+3)

1 + d(xn, xn+2)
,
d(xn, xn+1)d(xn+2, xn+3)

1 + d(xn+1, xn+3)

}
= B

and Lemma 1, we obtain that

ψ(d(xn+1, xn+3)) = ψ(d(Txn, Txn+2))

≤ α(xn, xn+2)ψ(s
2d(Txn, Txn+2))

≤ θ(M(xn, xn+2))ψ(M(xn, xn+2))

<
1

s
ψ(M(xn, xn+2)) ≤ ψ(M(xn, xn+2)) = ψ(B).

Therefore, d(xn+1, xn+3) < B. This implies that {d(xn, xn+2)} is bounded. We
next prove that lim

n→∞
d(xn, xn+2) = 0. Suppose that lim

n→∞
d(xn, xn+2) ̸= 0. So there

exists a subsequence {xnk
} such that lim

k→∞
d(xnk

, xnk+2) = a for some a > 0. Using

(1) and Lemma 1 we have,

ψ(d(xnk+1, xnk+3)) = ψ(d(Txnk
, Txnk+2))

≤ α(xnk
, xnk+2)ψ(s

2d(Txnk
, Txnk+2))

≤ θ(M(xnk
, xnk+2))ψ(M(xnk

, xnk+2
))

= θ(d(xnk
, xnk+2))ψ(d(xnk

, xnk+2))

<
1

s
ψ(d(xnk

, xnk+2)).

Letting k → ∞ in above inequality we obtain that, lim
k→∞

θ(d(xnk
, xnk+2)) =

1
s

this is lim
k→∞

d(xnk
, xnk+2)) = 0, which is a contradiction. Therefore,

lim
n→∞

d(xn, xn+2) = 0. (9)

We now prove that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy
sequence. Then there exist ϵ > 0 and two subsequences {xnk

} and {xmk
} of {xn},

such that nk is the smallest index with nk > mk > k for which

d(xmk
, xnk

) ≥ ϵ. (10)

This implies that

d(xmk
, xnk−1) <

ϵ

s
. (11)
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By applying the b-rectangular inequality, using (10) and (11) we get that

ϵ ≤ d(xmk
, xnk

)

≤ sd(xmk
, xnk−1) + sd(xnk−1, xnk−2) + sd(x

k−2, xnk
)

< s.
ϵ

s
+ sd(xnk−1, xnk−2) + sd(x

k−2, xnk
)

= ϵ+ sd(xnk−1, xnk−2) + sd(xnk−2, xnk
).

Letting k → ∞ in above inequality, using (5) and (9) we get that

lim
k→∞

d(xnk
, xmk

) = ϵ. (12)

By using (5) and (12) we obtain that

lim
k→∞

M(xnk
, xmk

) = ϵ. (13)

By (12) and (13), there exists a positive integer k0 such that d(xnk+1
, xmk+1

) > 0
and M(xnk

, xmk
) > 0, for all k ≥ k0.

By Lemma 1 and using (1), for all nk > mk > k > k0 we get that

ψ(d(xnk+1, xmk+1)) = ψ(d(Txnk
, Txmk

))

≤ α(xnk
, xmk

)ψ(s2d(Txnk
, Txmk

))

≤ θ(M(xnk
, xmk

))ψ(M(xnk
, xmk

))

<
1

s
ψ(M(xnk

, xmk
)).

Letting k → ∞ in above inequality, by (12), (13), the property of θ and the conti-
nuity of ψ we obtain that,
lim
k→∞

θ(M(xnk
, xmk

)) = 1
s it follows that lim

k→∞
M(xnk

, xmk
)) = 0, which is a contra-

diction.
Therefore, {xn} is a Cauchy sequence in X. Since X is complete b-rectangular
metric space, it follows that {xn} converges to x ∈ X. Since T is continuous, we
have
x = lim

n→∞
xn+1 = lim

n→∞
Txn = T ( lim

n→∞
xn) = Tx.

Therefore, x is a fixed point of T . Next we show uniqueness of fixed point.
Assume that T has two distinct fixed points, say x, y ∈ X, such that x ̸= y, or
d(x, y) > 0. Using (1) and the fact that α(x, y) ≥ 1 gives

ψ(d(x, y)) = ψ(d(Tx, Ty))

≤ α(x, y)ψ(s2d(Tx, Ty))

≤ θ(M(x, y))ψ(M(x, y))

<
1

s
ψ(M(x, y)) ≤ ψ(M(x, y))

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Tx)d(y, Ty)

1 + d(x, y)
,
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)

}
= max{d(x, y), 0} = d(x, y).
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This implies, ψ(d(x, y)) < ψ(d(x, y)), which is a contradiction. Hence, d(x, y) = 0
or x = y. This completes the proof of the uniqueness of the fixed point. �

Theorem 9 Let (X, d) be a complete b-rectangular metric spaces, T : X → X and
α : X ×X → ℜ+. Suppose that the following conditions hold:

(1) T is a triangular α- orbital admissible mappings;
(2) T is generalized (α, ψ)-Geraghty contraction mappings;
(3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(4) For every pair x and y of fixed points of T , α(x, y) ≥ 1 ;
(5) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}

and xn → x ∈ X as n→ ∞, then there exists a subsequence {xnk
} of {xn}

such that α(xnk
, x) ≥ 1 for all k ∈ N.

Then T has a unique fixed point.

Proof. As in the proof of Theorem 8, we can construct the sequence {xn} in X
such that xn+1 = Txn, for all n ∈ N ∪ {0}, α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}
and {xn} is Cauchy. Since X is complete there exists x ∈ X such that xn → x as
n → ∞. By (5), there exists a subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1

for all k ∈ N ∪ {0}. We can suppose that xnk
̸= Tx for all k ∈ N ∪ {0}. Using (1),

we obtain that

ψ(sd(xnk+1, Tx)) = ψ(sd(Txnk
, Tx))

≤ α(xnk
, x)ψ(s2d(Txnk

, Tx))

≤ θ(M(xnk
, x))ψ(M(xnk

, x))

<
1

s
ψ(M(xnk

, x)) ≤ ψ(M(xnk
, x)).

By taking the limit as k → ∞ in the above inequality, we have

lim
k→∞

ψ(sd(xnk+1, Tx)) ≤ lim
k→∞

θ(M(xnk
, x))ψ(M(xnk

, x)) ≤ 1

s
lim
k→∞

ψ(M(xnk
, x)). (14)

Where

M(xnk
, x) = max

{
d(xnk

, x), d(xnk
, Txnk

), d(x, Tx),

d(xnk
, Txnk

)d(x, Tx)

1 + d(xnk
, x)

,
d(xnk

, Txnk
)d(x, Tx)

1 + d(Txnk
, Tx)

}

= max

{
d(xnk

, x), d(xnk
, xnk+1), d(x, Tx),

d(xnk
, xnk+1)d(x, Tx)

1 + d(xnk
, x)

,
d(xnk

, xnk+1)d(x, Tx)

1 + d(xnk+1, Tx)

}
→ d(x, Tx), as k → ∞.

Now, We prove that x = Tx. Suppose that x ̸= Tx. Then,
d(x, Tx) ≤ sd(x, xnk

) + sd(xnk
, xnk+1) + sd(xnk+1, Tx).

It follows that

d(x, Tx) ≤ lim
k→∞

sd(xnk+1, Tx). (15)
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By using ψ, θ, (13), (14) and (15), we obtain that

ψ(d(x, Tx)) ≤ lim
k→∞

ψ(sd(xnk+1, Tx))

≤ lim
k→∞

[θ(M(xnk
, x))ψ(M(xnk

, x))]

≤ 1

s
ψ(d(x, Tx)) ≤ ψ(d(x, Tx))

thus, lim
k→∞

θ(M(xnk
, x)) = 1

s , this implies that lim
k→∞

M(xnk
, x) = d(x, Tx) = 0,

which is a contradiction. Hence x = Tx and so, x is a fixed point of T . The proof
of uniqueness is identical to the proof of Theorem 8. �

Corollary 1
Let (X, d) be a complete rectangular b- metric spaces, T : X → X, α : X×X →

ℜ+ and θ ∈ Θs. Suppose that the following conditions hold:

(1) α(x, y)d(Tx, Ty) ≤ θ(M(x, y))M(x, y),

whereM(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Tx).d(y,Ty)1+d(x,y) , d(x,Tx).d(y,Ty)1+d(Tx,Ty) };
(2) T is a triangular α- orbital admissible mapping;
(3) There exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(4) For every pair x and y of fixed points of T , α(x, y) ≥ 1 ;
(5) Either T is continuous or {xn} is a sequence in X such that α(xn, xn+1) ≥ 1

for all n ∈ N ∪ {0} and xn → x ∈ X as n → ∞, then there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k ∈ N.

Then T has a unique fixed point.

proof. The result follows by taking ψ(t) = t in Theorem 8 (or Theorem 9).
Corollary 2 Let (X, d) be a complete rectangular metric spaces, T : X → X and
ψ ∈ Ψ, α : X ×X → ℜ+, and θ ∈ Θ. Suppose that the following conditions hold:

(1) α(x, y)ψ(d(Tx, Ty)) ≤ θ(M(x, y))ψ(M(x, y)),

whereM(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Tx).d(y,Ty)1+d(x,y) , d(x,Tx).d(y,Ty)1+d(Tx,Ty) };
(2) T is a triangular α- orbital admissible mapping;
(3) There exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(4) For every pair x and y of fixed points of T , α(x, y) ≥ 1 ;
(5) Either T is continuous or {xn} is a sequence in X such that α(xn, xn+1) ≥ 1

for all n ∈ N ∪ {0} and xn → x ∈ X as n → ∞, then there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k ∈ N.

Then T has a unique fixed point.

proof. The result follows by taking s = 1 in Theorem 8 (or Theorem 9).
Corollary 3 Let (X, d) be a complete rectangular metric spaces, T : X → X and
ψ ∈ Ψ, α : X ×X → ℜ+, and θ ∈ Θ. Suppose that the following conditions hold:

(1) α(x, y)ψ(d(Tx, Ty)) ≤ θ(d(x, y))ψ(d(x, y)) ;
(2) T is a triangular α- orbital admissible mapping;
(3) There exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(4) For every pair x and y of fixed points of T , α(x, y) ≥ 1 ;
(5) Either T is continuous or {xn} is a sequence in X such that α(xn, xn+1) ≥ 1

for all n ∈ N ∪ {0} and xn → x ∈ X as n → ∞, then there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k ∈ N.

Then T has a unique fixed point.
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proof. The result follows by taking s = 1 and M(x, y) = d(x, y) in Theorem 8
(or Theorem 9).
Corollary 4 Let (X, d) be a complete rectangular metric spaces, T : X → X,
α : X ×X → ℜ+ and θ ∈ Θ. Suppose that the following conditions hold:

(1) α(x, y)d(Tx, Ty) ≤ θ(M(x, y))M(x, y),

whereM(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Tx).d(y,Ty)1+d(x,y) , d(x,Tx).d(y,Ty)1+d(Tx,Ty) };
(2) T is a triangular α- orbital admissible mapping;
(3) There exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(4) For every pair x and y of fixed points of T , α(x, y) ≥ 1 ;
(5) Either T is continuous or {xn} is a sequence in X such that α(xn, xn+1) ≥ 1

for all n ∈ N ∪ {0} and xn → x ∈ X as n → ∞, then there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k ∈ N.

Then T has a unique fixed point.

proof. The result follows by taking s = 1 and ψ(t) = t in Theorem 8 (or Theorem
9).

We now present an example for supporting our main result.
Example 1 Let X = {1, 2, 3, 4}. Defined d : X ×X → ℜ+ as
d(x, x) = 0 for all x ∈ X
d(1, 2) = d(2, 1) = 20
d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = 2
d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = 4.
Therefore (X, d) is complete rectangular b- metric spaces with s = 2 but (X, d) is
not a metric and rectangular metric space because it lacks the triangle and rectangle
inequality respectively as follows:
20 = d(1, 2) ≥ d(1, 3) + d(3, 2) = 2 + 2 = 4
20 = d(1, 2) ≥ d(1, 3) + d(3, 4) + d(4, 2) = 2 + 4 + 4 = 10.
Let T : X → X be the mapping defined by

T (x) =

{
2 if x ̸= 4

3 if x = 4.

Define α : X ×X → ℜ+, ψ : ℜ+ → ℜ+ and θ : ℜ+ → [0, 12 ) as

α(x, y) =

{
1 if x, y ∈ X\{4}
1
16 otherwise.

;

ψ(t) = t
3 and θ(t) = 1

5 .
We next illustrate that all conditions in Theorem 8 and Theorem 9 are holds.
Taking x0 = 1, we have α(x0, Tx0) = α(1, T1) = α(1, 2) = 1 ≥ 1.

We next prove that T is an α-orbital admissible.
Let x ∈ X such that α(x, Tx) ≥ 1. Therefore x, Tx ∈ X\{4} and then x ∈ {1, 2, 3}.
By definition of α, we obtain that
α(T1, T 21) = α(2, 2) = 1 ≥ 1,
α(T2, T 22) = α(2, 2) = 1 ≥ 1,
α(T3, T 23) = α(2, 2) = 1 ≥ 1.
It follows that T is an α-orbital admissible. Let x, y ∈ X such that α(x, y) ≥ 1 and
α(y, Ty) ≥ 1. By the definition of α, we have x, y, Ty ∈ X\{4}. This yields



EJMAA-2022/10(2) GENERALIZED (α, ψ) - GERAGHTY CONTRACTION 153

α(1, 2) ≥ 1 and α(2, T2) ≥ 1 implies α(1, T2) ≥ 1,
α(1, 3) ≥ 1 and α(3, T3) ≥ 1 implies α(1, T3) ≥ 1,
α(2, 3) ≥ 1 and α(3, T3) ≥ 1 implies α(2, T3) ≥ 1,
α(2, 1) ≥ 1 and α(1, T1) ≥ 1 implies α(2, T1) ≥ 1,
α(3, 1) ≥ 1 and α(1, T1) ≥ 1 implies α(3, T1) ≥ 1,
α(3, 2) ≥ 1 and α(2, T2) ≥ 1 implies α(3, T2) ≥ 1.
This implies that T is triangular α-orbital admissible. Let {xn} be a sequence such
that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n→ ∞. By the definition of α,
for each n ∈ N , we get that xn ∈ X\{4} = {1, 2, 3}. We obtain that x ∈ {1, 2, 3}.
Thus we have α(xn, x) ≥ 1 for each n ∈ N . We next prove T is generalized (α, ψ)-
Geraghty contraction mapping. So we consider the following cases:
Case(i) For x, y ∈ X\{4},we have
α(x, y)ψ(s2d(Tx, Ty)) = ψ(4d(2, 2)) = 0 ≤ θ(M(x, y))ψ(M(x, y)).
Case(ii) For x, y ∈ {1, 4}

M(1, 4) = max{d(1, 4), d(1, T1), d(4, T4), d(1, T1)d(4, T4)
1 + d(1, 4)

,
d(1, T1)d(4, T4)

1 + d(T1, T4)
}

= max{4, 20, 4, 16, 80
3
} =

80

3
.

This implies that
α(1, 4)ψ(s2d(T1, T4)) = 1

16ψ(4d(2, 3)) =
1
6 ≤ θ(M(1, 4))ψ(M(1, 4)) = 80

45 .
Since d(x, y) = d(y, x) for all x, y ∈ X, we also obtain that
α(4, 1)ψ(s2d(T4, T1)) ≤ θ(M(4, 1))ψ(M(4, 1)).
Case(iii) For x, y ∈ {2, 4}

M(2, 4) = max{d(2, 4), d(2, T2), d(4, T4), d(2, T2)d(4, T4)
1 + d(2, 4)

,
d(2, T2)d(4, T4)

1 + d(T2, T4)
}

= max{4, 0, 4, 0, 0} = 4.

This implies that
α(2, 4)ψ(s2d(T2, T4)) = 1

16ψ(4d(2, 3)) =
1
6 ≤ θ(M(2, 4))ψ(M(2, 4)) = 4

15 .
Since d(x, y) = d(y, x) for all x, y ∈ X, we also obtain that
α(4, 2)ψ(s2d(T4, T2)) ≤ θ(M(4, 2))ψ(M(4, 2)).
Case(iv) For x, y ∈ {3, 4}

M(3, 4) = max{d(3, 4), d(3, T3), d(4, T4), d(3, T3)d(4, T4)
1 + d(3, 4)

,
d(3, T3)d(4, T4)

1 + d(T3, T4)
}

= max{4, 2, 4, 8
5
,
8

3
} = 4.

This implies that
α(3, 4)ψ(s2d(T3, T4)) = 1

16ψ(4d(2, 3)) =
1
6 ≤ θ(M(3, 4))ψ(M(3, 4)) = 4

15 .
Since d(x, y) = d(y, x) for all x, y ∈ X, we also obtain that
α(4, 3)ψ(s2d(T4, T3)) ≤ θ(M(4, 3))ψ(M(4, 3)).
Case(v) For x = y = 4

M(4, 4) = max{d(4, 4), d(4, T4), d(4, T4), d(4, T4)d(4, T4)
1 + d(4, 4)

,
d(4, T4)d(4, T4)

1 + d(T4, T4)
}

= max{0, 4, 4, 16} = 16.
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This implies that
α(4, 4)ψ(s2d(T4, T4)) = 1

16ψ(4d(3, 3)) = 0 ≤ θ(M(4, 4))ψ(M(4, 4)) = 16
15 .

Finally let x, y ∈ F (T ). Clearly x = y = 2, therefore, by the definition of α, we
have α(x, y) = α(2, 2) = 1 ≥ 1. Hence all assumptions in Theorem 8 and Theorem
9 are satisfied and thus T has a unique fixed point which is x = 2.

4. Conclusion

The development of the field of fixed point theory depends on the generalization
of the Banach Contraction principle on complete metric spaces. This generalization
or extension comes up by either introducing new types of contractions or by work-
ing on a more general structured space such as rectangular b-metric spaces. In this
article, we have proven some fixed point theorems for generalized (α,ψ)-Geraghty
Contraction mappings in b-rectangular metric spaces and hence our results gener-
alize many existing results in the literature.
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