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OSCILLATION CRITERIA FOR THIRD-ORDER NONLINEAR

DIFFERENCE EQUATIONS WITH AN UNBOUNDED

SUBLINEAR NEUTRAL TERM

G.AYYAPPAN, G.E.CHATZARAKIS, T.KUMAR AND E.THANDAPANI

Abstract. New sufficient conditions are obtained for the oscillation of all
solutions of third-order difference equations with a sublinear neutral term. We

derive these criteria by a reduction of order, reducing the third-order equations
into first-order delay difference equations with a known oscillatory behavior.
We provide examples, illustrating these results.

1. Introduction

In this paper, we investigate the oscillatory behavior of the solutions of the
third-order nonlinear difference equation with a sublinear neutral term

∆
(
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

)
+ ξ(ℓ)νλ(ℓ− σ) = 0, ℓ ≥ ℓ0 (1)

where χ(ℓ) = ν(ℓ) + µ(ℓ)να(ℓ− τ) and ℓ0 is a positive integer.
Throughout the paper, we assume that:

(E1) Each of the α, β and λ is a ratio of odd positive integers with 0 < α ≤ 1;
(E2) {φ(ℓ)}, {ψ(ℓ)}, {µ(ℓ)} and {ξ(ℓ)} are positive real sequences with µ(ℓ) ≥ 1

and µ(ℓ) → ∞ as ℓ→ ∞;
(E3) σ and τ are positive integers with τ < σ;

(E4)
∑∞
ℓ=ℓ0

φ− 1
β (ℓ) =

∑∞
ℓ=ℓ0

1
ψ(ℓ) = ∞.

By a solution of (1), we mean a nontrivial sequence {ν(ℓ)} defined for all ℓ ≥
ℓ0 − θ, where θ = max{τ, σ}, which satisfies (1) for all ℓ ≥ ℓ0. A solution of
(1) is called oscillatory if it is neither eventually positive nor eventually negative.
Otherwise, it is nonoscillatory. A difference equation is called oscillatory if all its
solutions are oscillatory.

In recent years, there has been a great interest in the study of the oscillatory
and asymptotic behavior of the solutions to different classes of third-order neutral
difference equations. We refer the reader to the papers in [1, 3, 6, 7, 4, 10, 8, 9,
11, 12, 14, 18, 19, 20, 21, 22, 24, 25] and the references cited therein. However, the
majority of the criteria thus far, for this type of equations, are limited equations
having a linear neutral term, that is, α = 1. Only a few results have been reported
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on equations with a nonlinear neutral term, that is, α ̸= 1; see [17] for sublinear
neutral term (α < 1) and [27] for a superlinear neutral term (α > 1).

To the best of authors knowledge, there have been no results on third-order
difference equations with a sublinear neutral term except [17], where equation (1)
was studied in the case where ψ(ℓ) = 1, β = 1 and 0 < µ(ℓ) ≤ µ < 1.

In view of the above observations, the main objective in this work is to derive
sufficient conditions which ensure that all solutions of (1) are oscillatory. We ob-
tain these results by a comparison method and a summation averaging criterion.
We reduce the third-order equations into first-order delay difference equations with
known oscillatory characteristics. Examples illustrating the main results are in-
cluded in the text of the paper.

2. Main Results

We begin with the following lemmas that will paly an important part in estab-
lishing our main results. For easy of reference, we let,

B(ℓ) =
ℓ−1∑
s=ℓ1

φ− 1
α (s), D(ℓ) =

ℓ−1∑
s=ℓ2

B(s)

ψ(s)

for ℓ ≥ ℓ2 ≥ ℓ1 ≥ ℓ0, and there exist integers η and ζ such that ℓ+ τ − σ < ℓ− η <
ℓ− ζ. Let

R(ℓ) =

(
ℓ−η−1∑
t=ℓ+τ−σ

1

ψ(t)

)ℓ−ζ−1∑
t=ℓ−η

φ
1
β (t)

 .

Furthermore, we assume that for every positive constants γ and δ

(E5) Φ(ℓ) = 1
µ(ℓ+τ)

[
1− D

1
α (ℓ+2τ)
D(ℓ+τ)

γ
1
α

−1

µ
1
α (ℓ+2τ)

]
> 0

and

(E6) Ψ(ℓ) = 1
µ(ℓ+τ)

[
1− δ

1
α

−1

µ
1
α (ℓ+2τ)

]
> 0

for all sufficiently large ℓ.

Lemma 2.1. Assume that (E1) − (E4) hold and {ν(ℓ)} is an eventually positive
solution of (1). Then there exists an integer ℓ1 ≥ ℓ0 such that the corresponding
sequence {χ(ℓ)}, satisfies one of the following cases:

(A) χ(ℓ) > 0, ∆χ(ℓ) > 0, ∆(ψ(ℓ)∆χ(ℓ)) > 0, and ∆
(
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

)
<

0;
(B) χ(ℓ) > 0, ∆χ(ℓ) < 0,∆(ψ(ℓ)∆χ(ℓ)) > 0, and ∆

(
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

)
<

0

for all ℓ ≥ ℓ1.

Proof. The proof is not difficult and thus, the details are omitted. �
Lemma 2.2. Assume that (E1)−(E4) hold and {χ(ℓ)} satisfies Case (A) of Lemma
2.1 for all ℓ ≥ ℓ1. Then

∆χ(ℓ) ≥ B(ℓ)

ψ(ℓ)
φ

1
β (ℓ)∆(ψ(ℓ)∆χ(ℓ)), (2)

χ(ℓ) ≥ D(ℓ)φ
1
β (ℓ)∆(ψ(ℓ)∆χ(ℓ)), (3)
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χ(ℓ) ≥ D(ℓ)

B(ℓ)
ψ(ℓ)∆χ(ℓ), (4)

and {
χ(ℓ)

D(ℓ)

}
is nonincreasing for all ℓ ≥ ℓ1. (5)

Proof. Since φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β > 0 and nonincreasing, we have

ψ(ℓ)∆χ(ℓ) = ψ(ℓ1)∆χ(ℓ1) +

ℓ−1∑
s=ℓ1

φ
1
β (s)∆(ψ(s)∆χ(s))

φ
1
β (s)

≥ B(ℓ)φ
1
β (ℓ)∆(ψ(ℓ)∆χ(ℓ)),

which proves (2). Dividing the last inequality by ψ(ℓ) and summing up the resulting
inequality from ℓ1 to ℓ− 1, we obtain

χ(ℓ) ≥ D(ℓ)φ
1
β (ℓ)∆(ψ(ℓ)∆χ(ℓ))

which proves (3). From (2), it is easy to see that

ψ(ℓ)∆χ(ℓ)

B(ℓ)
is nonincreasing. (6)

Therefore, from (6), it follows that

χ(ℓ) = χ(ℓ1) +
ℓ−1∑
s=ℓ1

ψ(s)∆χ(s)

B(s)

B(s)

ψ(s)

≥ D(ℓ)
ψ(ℓ)∆χ(ℓ)

B(ℓ)
,

which proves (4). Again from the last inequality, we see that

∆

(
χ(ℓ)

D(ℓ)

)
=
D(ℓ)ψ(ℓ)∆χ(ℓ)− χ(ℓ)B(ℓ)

ψ(ℓ)D(ℓ)D(ℓ+ 1)
≤ 0

which implies that
{
χ(ℓ)
D(ℓ)

}
is nonincreasing. The proof of the lemma is complete.

�
Lemma 2.3. Assume that (E1)−(E5) hold and {ν(ℓ)} is an eventually positive so-
lution of (1) with the corresponding sequence {χ(ℓ)} satisfying Case (A) of Lemma
2.1 for all ℓ ≥ ℓ1. Then {χ(ℓ)} satisfies the inequality

∆
(
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

)
+ ξ(ℓ)Φ

λ
α (ℓ− σ)χ

λ
α (ℓ+ τ − σ) ≤ 0 (7)

for large ℓ.

Proof. Assume {ν(ℓ)} is an eventually positive solution of (1). Thus, ν(ℓ) >
0, ν(ℓ − τ) > 0 and ν(ℓ − σ) > 0 for ℓ ≥ ℓ1 for some integer ℓ1 ≥ ℓ0. From the
definition of χ(ℓ), we have

να(ℓ) ≥ 1

µ(ℓ+ τ)

(
χ(ℓ+ τ)− χ

1
α (ℓ+ 2τ)

µ
1
α (ℓ+ 2τ)

)
, ℓ ≥ ℓ1. (8)

Since χ(ℓ)
D(ℓ) is nonincreasing, (8) becomes

να(ℓ) ≥ 1

µ(ℓ+ τ)

(
χ(ℓ+ τ)− D

1
α (ℓ+ 2τ)

D
1
α (ℓ+ τ)

χ
1
α (ℓ+ τ)

µ
1
α (ℓ+ 2τ)

)
. (9)
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Moreover, there exists a constant γ > 0 so that χ(ℓ+τ)
D(ℓ+τ) ≤ γ. From this and (9), we

obtain

να(ℓ) ≥ χ(ℓ+ τ)

µ(ℓ+ τ)

(
1− D

1
α (ℓ+ 2τ)

D
1
α (ℓ+ τ)

γ
1
α−1

µ
1
α (ℓ+ 2τ)

)
= Φ(ℓ)χ(ℓ+ τ).

Using the last inequality in (1) we obtain (7). This completes the proof. �
Lemma 2.4. Assume that (E1) − (E4) and (E6) hold. If {ν(ℓ)} is an eventually
positive solution of (1) with the corresponding sequence {χ(ℓ)} satisfying Case (B)
of Lemma 2.1 for all ℓ ≥ ℓ1 ≥ ℓ0, then {χ(ℓ)} satisfies the inequality

∆
(
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

)
+ ξ(ℓ)Ψ

λ
α (ℓ− σ)χ

λ
α (ℓ+ τ − σ) ≤ 0 (10)

for large ℓ.

Proof. Assume {ν(ℓ)} is an eventually positive solution of (1) such that ν(ℓ) >
0, ν(ℓ − τ) > 0 and ν(ℓ − σ) > 0 for ℓ ≥ ℓ1 for some integer ℓ1 ≥ ℓ0. Proceeding
as in the proof of Lemma 2.3, we see that (8) holds for all ℓ ≥ ℓ1. Since {χ(ℓ)} is
decreasing, it follows from (8) that

να(ℓ) ≥ χ(ℓ+ τ)

µ(ℓ+ τ)

(
1− χ

1
α−1(ℓ+ τ)

µ
1
α (ℓ+ 2τ)

)
. (11)

Also there exists a constant δ > 0 such that χ(ℓ) ≤ δ and 1
α > 1. We see that

χ
1
α−1(ℓ+ τ) ≤ δ

1
α−1 for all ℓ ≥ ℓ1. Using this in (11), we obtain

να(ℓ) ≥ Ψ(ℓ)χ(ℓ+ τ). (12)

Combining (12) with (1) yields (10). This completes the proof. �
Theorem 2.5. Assume that (E1) − (E6) hold. If for all sufficiently large integer
ℓ1 ≥ ℓ0, and for some integer ℓ2 ≥ ℓ1,

∞∑
ℓ=ℓ2

ξ(ℓ)Φ
λ
α (ℓ− σ) = ∞ (13)

and
∞∑
ℓ=ℓ1

ξ(ℓ)Ψ
λ
α (ℓ− σ) = ∞, (14)

then every solution of (1) is either oscillatory or limℓ→∞ ν(ℓ) = 0.

Proof. Assume that {ν(ℓ)} is a nonoscillatory solution of (1). Without loss of
generality, we can assume ν(ℓ) > 0, ν(ℓ − τ) > 0 and ν(ℓ − σ) > 0 for ℓ ≥ ℓ1 for
some integer ℓ1 ≥ ℓ0. Then, in view of Lemma 2.1, {χ(ℓ)} satisfies either Case (A)
or Case (B) for all ℓ ≥ ℓ1.
Case (A). From Lemma 2.3, we see that inequality (7) holds for all ℓ ≥ ℓ1. Since
{χ(ℓ)} is increasing, there exists a constant M > 0 and an integer ℓ2 ≥ ℓ1 such
that χ(ℓ) ≥ M for all ℓ ≥ ℓ2. Using this in (7) and then summing the resulting
inequality from ℓ2 to ℓ− 1 yields

φ(ℓ) (∆(ψ(ℓ)∆χ(ℓ)))
β ≤ φ(ℓ2) (∆(ψ(ℓ2)∆χ(ℓ2)))

β −M
λ
α

ℓ−1∑
s=ℓ2

ξ(s)Φ
λ
α (s− σ)
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which tends to → −∞ as ℓ→ ∞. This contradiction eliminates Case (A).

Next, consider Case (B). Since {χ(ℓ)} is decreasing there exists a constant c such
that limℓ→∞ χ(ℓ) = c ≥ 0. If c > 0, then χ(ℓ) ≥ c for all ℓ ≥ ℓ1 ≥ ℓ0. Using this in
(10), we have

∆
(
φ(ℓ) (∆(ψ(ℓ)∆χ(ℓ)))

β
)
≤ −c λ

α ξ(ℓ)Ψ
λ
α (ℓ− σ), ℓ ≥ ℓ1.

Summing up the last inequality from ℓ1 to ℓ− 1 yields

φ(ℓ) (∆(ψ(ℓ)∆χ(ℓ)))
β ≤ φ(ℓ1) (∆(ψ(ℓ1)∆χ(ℓ1)))

β − c
λ
α

ℓ−1∑
s=ℓ1

ξ(s)Ψ
λ
α (s− σ)

which tends to → −∞ as ℓ→ ∞, which is a contradiction.
If c = 0, then ν(ℓ) ≤ χ(ℓ) implies that ν(ℓ) → 0 as ℓ → ∞. This completes the

proof of the theorem. �
Next, we present a new criteria for the oscillation of all solutions of (1) using a

comparison with first-order delay difference equations whose oscillatory properties
are known.

Before presenting our results, let us assume that

(E7) limℓ→∞
D

1
α (ℓ+2τ)

D(ℓ+τ)µ
1
α (ℓ+2τ)

= 0.

Since {D(ℓ)} is positive and increasing and 1
α > 1, we can easily see that (E7)

implies

lim
ℓ→∞

1

µ
1
α (ℓ+ 2τ)

= 0. (15)

We can use these conditions to simplify Φ(ℓ) and Ψ(ℓ) as follows.
In view of (E7), there exists ϵ ∈ (0, 1) and an integer ℓ1 ≥ ℓ0 such that

D
1
α (ℓ+ 2τ)

D(ℓ+ τ)µ
1
α (ℓ+ 2τ)

≤ γ1−
1
α (1− ϵ).

Using this with Φ(ℓ), we obtain

Φ(ℓ) ≥ ϵ

µ(ℓ+ τ)
, ℓ ≥ ℓ1. (16)

Again from (15), there exists ϵ1 ∈ (0, 1) and an integer ℓ2 ≥ ℓ1 such that

1

µ
1
α (ℓ+ 2τ)

≤ γ1−
1
α (1− ϵ1).

Using this with Ψ(ℓ), we have

Ψ(ℓ) ≥ ϵ1
µ(ℓ+ τ)

, ℓ ≥ ℓ2. (17)

Theorem 2.6. Assume that (E1) − (E4) and (E7) hold. Moreover, suppose that
there exist positive integers η and ζ such that ℓ+ τ − σ ≤ ℓ− η ≤ ℓ− ζ for ℓ ≥ ℓ0.
If the first-order delay difference equations

∆X(ℓ) +
ϵ

λ
α ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

D
λ
α (ℓ+ τ − σ)X

λ
αβ (ℓ+ τ − σ) = 0 (18)
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and

∆ω(ℓ) +
ϵ

λ
α
1 ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

R
λ
α (ℓ)ω

λ
αβ (ℓ− ζ) = 0 (19)

are oscillatory, then (1) is oscillatory.

Proof. Let {ν(ℓ)} be a nonoscillatory solution of (1), say ν(ℓ) > 0, ν(ℓ − τ) > 0
and ν(ℓ − σ) > 0 for all ℓ ≥ ℓ1 for some integer ℓ1 ≥ ℓ0. Then from Lemma 2.1,
{χ(ℓ)} satisfies either Case (A) or Case (B) for ℓ ≥ ℓ1.
Case(A). Proceeding as in the proof of Lemma 2.3, we arrive at (7). Using (16)
in (7), we obtain

∆
(
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

)
+

ϵ
λ
α ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

χ
λ
α (ℓ+ τ − σ) ≤ 0, ℓ ≥ ℓ1. (20)

Using (3) in (20) and letting X(ℓ) = φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β > 0, we see that {X(ℓ)}
is a positive solution of the first-order delay difference inequality

∆X(ℓ) +
ϵ

λ
α ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

D
λ
α (ℓ+ τ − σ)X

λ
α (ℓ+ τ − σ) ≤ 0.

Hence by Lemma 1.3 in [2] and Lemma 6.2.2 in [3], we conclude that equation (18)
has a positive solution, which is a contradiction.
Case (B). For s ≥ m ≥ ℓ2 ≥ ℓ1, we have

χ(m) = χ(s) +
s−1∑
t=m

ψ(t)∆χ(t)

ψ(t)
≥ −ψ(s)∆χ(s)

s−1∑
t=m

1

ψ(t)
. (21)

Setting m = ℓ+ τ − σ and s = ℓ− η in (21), we obtain

χ(ℓ+ τ − σ) ≥

(
ℓ−η−1∑
t=ℓ+τ−σ

1

ψ(t)

)
(−ψ(ℓ− η)∆χ(ℓ− η)). (22)

Since ψ(ℓ)∆χ(ℓ) < 0 and φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β > 0 is decreasing, we have

−ψ(m)∆χ(m) ≥ ψ(s)∆χ(s)− ψ(m)∆χ(m)

=
s−1∑
t=m

φ− 1
β (t)

(
φ

1
β (t)∆(ψ(t)∆χ(t))

)
≥

(
φ(s)(∆(ψ(s)∆χ(s)))β

) 1
β

s−1∑
t=m

φ− 1
β (t).

Hence,

−ψ(m)∆χ(m) ≥
(
φ(s)(∆(ψ(s)∆χ(s)))β

) 1
β

s−1∑
t=m

φ− 1
β (t).

Letting m = ℓ− η and s = ℓ− ζ in the last inequality, we have

− ψ(ℓ− η)∆χ(ℓ− η) ≥

ℓ−ζ−1∑
t=ℓ−η

φ− 1
β (t)

(φ(ℓ− ζ)(∆(ψ(ℓ− ζ)∆χ(ℓ− ζ)))β
) 1

β .

(23)
Combining (22) and (23), we get

χ(ℓ+ τ − σ) ≥ R(ℓ)
(
φ(ℓ− ζ)(∆(ψ(ℓ− ζ)∆χ(ℓ− ζ)))β

) 1
β . (24)
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Using (24) and (17) in (10), we obtain

∆
(
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

)
+

ϵ
λ
α
1 ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

R
λ
α (ℓ)

(
φ(ℓ− ζ)(∆(ψ(ℓ− ζ)∆χ(ℓ− ζ)))β

) 1
β ≤ 0.

Set ω(ℓ) = φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β . Clearly ω(ℓ) > 0. In view of this, the above
inequality takes the form

∆ω(ℓ) +
ϵ

λ
α
1 ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

R
λ
α (ℓ)ω

λ
αβ (ℓ− ζ) ≤ 0.

The rest of the proof is similar to Case (A) and hence is omitted. The proof of the
theorem is complete. �

Next, for any ϵ, ϵ1 ∈ (0, 1), let

Q(ℓ) ≤ min
{
ϵ

λ
αD

λ
α (ℓ+ τ − σ), ϵ

λ
α
1 R

λ
α (ℓ)

}
.

We see that Theorem 2.6 is equivalent to:

Theorem 2.7. Assume that (E1) − (E4) and (E7) hold. Moreover, suppose that
there exist positive integers η and ζ such that ℓ+ τ − σ < ℓ− η < ℓ− ζ for ℓ ≥ ℓ0.
If the first-order delay difference equations

∆Z(ℓ) + ξ(ℓ)Q(ℓ)µ− λ
α (ℓ+ τ − σ)Z

λ
αβ (ℓ+ τ − σ) = 0 (25)

and

∆Y (ℓ) + ξ(ℓ)Q(ℓ)µ− λ
α (ℓ+ τ − σ)Y

λ
αβ (ℓ− ζ) = 0 (26)

are oscillatory, then equation (1) is oscillatory.

Corollary 2.8. Assume that (E1) − (E4) and (E7) hold. Moreover, suppose that
there exist positive integers η and ζ such that ℓ+τ−σ < ℓ−η < ℓ−ζ for all ℓ ≥ ℓ0.
If λ = αβ, and

lim
ℓ→∞

inf

ℓ−1∑
s=ℓ+τ−σ

ξ(s)Q(s)µ
−λ
α (s+ τ − σ) >

(
σ − τ

σ − τ + 1

)σ−τ+1

(27)

and

lim
ℓ→∞

inf
ℓ−1∑
s=ℓ−ζ

ξ(s)Q(s)µ
−λ
α (s+ τ − σ) >

(
ζ

ζ + 1

)ζ+1

(28)

then equation (1) is oscillatory.

Proof. Conditions (27), (28) and Theorem 7.6.1 of [15] imply that equations (25)
and (26) are oscillatory. This conclusion follows from Theorem 2.7. This completes
the proof. �

Corollary 2.9. Let the assumptions of Corollary 2.8 hold. If λ < αβ and

∞∑
ℓ=ℓ0

ξ(ℓ)Q(ℓ)µ− λ
α (ℓ+ τ − σ) = ∞ (29)

then equation (1) is oscillatory.
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Proof. Condition (29) and Theorem 1 of [23] imply that equations (25) and (26)
are oscillatory. This conclusion follows from Theorem 2.7. Thus, the proof is
complete. �

Corollary 2.10. Let the assumptions of Corollary 2.8 hold. If λ > αβ and there

exist a > 1
σ−τ ln

(
λ
αβ

)
and a1 >

1
ζ ln

(
λ
αβ

)
such that

lim
ℓ→∞

inf
[
ξ(ℓ)Q(ℓ)µ

−λ
α (ℓ+ τ − σ) exp

(
−eaℓ

)]
> 0 (30)

and

lim
ℓ→∞

inf
[
ξ(ℓ)Q(ℓ)µ

−λ
α (ℓ+ τ − σ) exp

(
−ea1ℓ

)]
> 0 (31)

then equation (1) is oscillatory.

Proof. In view of conditions (30), (31) and Theorem 2 in [23], we see that equations
(25) and (26) are oscillatory. This conclusion follows from Theorem 2.7 and the
proof is complete. �

The following result is of interest.

Theorem 2.11. Assume that (E1)− (E4) and (E7) hold. If λ = αβ

lim
ℓ→∞

sup
ℓ∑

s=N

[
ξ(s)µ− λ

α (s+ τ − σ)
D

λ
α (s+ τ − σ)

B
λ
α (s)

]
= ∞ (32)

and

lim
ℓ→∞

sup

ℓ+σ−τ∑
t=ℓ

 1

ψ(t)

t∑
s=ℓ

(
1

φ(s)

t∑
i=s

ξ(i)µ− λ
α (i+ τ − σ)

) 1
β

 > 1

ϵ1
(33)

for all ℓ ≥ N ≥ ℓ0, then equation (1) is oscillatory.

Proof. Let {ν(ℓ)} be a nonoscillatory solution of (1). Without loss of generality,
there exists an integer ℓ1 ≥ ℓ0 such that ν(ℓ) > 0, ν(ℓ − τ) > 0 and ν(ℓ − σ) > 0
for all ℓ ≥ ℓ1. Then by Lemma 2.1, {χ(ℓ)} satisfies either Case (A) or Case (B) for
ℓ ≥ ℓ1.
Case(A). Define

Z(ℓ) =
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

(ψ(ℓ)∆χ(ℓ))β
, ℓ ≥ ℓ1. (34)

Then Z(ℓ) > 0 for all ℓ ≥ ℓ1 and from (34), we have

∆Z(ℓ) =
∆(φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β)

(ψ(ℓ)∆χ(ℓ))β

−φ(ℓ+ 1)(∆(ψ(ℓ+ 1)∆χ(ℓ+ 1)))β∆(ψ(ℓ)∆χ(ℓ))β

(ψ(ℓ)∆χ(ℓ))β(ψ(ℓ+ 1)∆χ(ℓ+ 1))β

≤ −ϵ λ
α ξ(ℓ)µ− λ

α (ℓ+ τ − σ)
χ

λ
α (ℓ+ τ − σ)

(ψ(ℓ)∆χ(ℓ))β
, ℓ ≥ ℓ1, (35)

where we have used (20). From (6) and (4), we have

χ(ℓ+ τ − σ) ≥ D(ℓ+ τ − σ)

B(ℓ+ τ − σ)
ψ(ℓ+ τ − σ)∆χ(ℓ+ τ − σ)

≥ D(ℓ+ τ − σ)
ψ(ℓ)∆χ(ℓ)

B(ℓ)
, ℓ ≥ ℓ1.
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Using this in (35), we obtain

∆Z(ℓ) ≤ −ϵ λ
αµ− λ

α (ℓ+ τ − σ)
ξ(ℓ)D

λ
α (ℓ+ τ − σ)

B
λ
σ (ℓ)

, ℓ ≥ ℓ1.

Summing up the last inequality from ℓ1 to ℓ, we have

ϵ
λ
α

ℓ∑
s=ℓ1

ξ(s)D
λ
α (s+ τ − σ)

µ
λ
α (s+ τ − σ)B

λ
σ (s)

≤ Z(ℓ1) <∞

which contradicts (32).
Case (B). Let ℓ ≥ N ≥ ℓ0 be fixed. Using (17) in (10), we obtain

∆
(
φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

)
+ ϵ

λ
α
1 ξ(ℓ)µ

− λ
α (ℓ+ τ − σ)χ

λ
α (ℓ+ τ − σ) ≤ 0, ℓ ≥ N. (36)

Summing up the above inequality from ℓ to j, we have

φ(j + 1)(∆(ψ(j + 1)∆χ(j + 1)))β − φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β

+ϵ
λ
α
1

j∑
t=ℓ

ξ(t)µ− λ
α (t+ τ − σ)χ

λ
α (t+ τ − σ) ≤ 0.

Since {φ(ℓ)(∆(ψ(ℓ)∆χ(ℓ)))β} is positive and decreasing, the above inequality that,
as j → ∞,

−∆(ψ(ℓ)∆χ(ℓ)) + ϵ1

[
1

φ(ℓ)

∞∑
t=ℓ

ξ(t)µ− λ
α (t+ τ − σ)χ

λ
α (t+ τ − σ)

] 1
β

≤ 0.

Summing up from n to j and rearranging, we have

−ψ(j + 1)∆χ(j + 1) + ψ(ℓ)∆χ(ℓ))

+ϵ1

j∑
t=ℓ

[
1

φ(ℓ)

t∑
s=ℓ

ξ(s)µ− λ
α (s+ τ − σ)

] 1
β

χ(t+ τ − σ) ≤ 0.

Since {ψ(j)∆χ(j)} is negative and increasing, as j → ∞, we have

∆χ(ℓ) + ϵ1
1

ψ(ℓ)

∞∑
t=ℓ

[
1

φ(ℓ)

t∑
s=ℓ

ξ(s)µ− λ
α (s+ τ − σ)

] 1
β

χ(t+ τ − σ) ≤ 0.

Summing the above inequality from ℓ to j and rearranging, we have

χ(j+1)−χ(ℓ)+ϵ1
j∑
t=ℓ

 1

ψ(t)

t∑
s=ℓ

(
1

φ(s)

t∑
i=s

ξ(i)µ− λ
α (i+ τ − σ)

) 1
β

χ(t+τ−σ) ≤ 0.

Since {χ(ℓ)} is positive and decreasing, we have from the last inequality, as j → ∞,
we have that

∞∑
t=ℓ

 1

ψ(t)

t∑
s=ℓ

(
1

φ(s)

t∑
i=s

ξ(i)µ− λ
α (i+ τ − σ)

) 1
β

χ(t+ τ − σ) ≤ 1

ϵ1
χ(ℓ)

or
ℓ+σ−τ∑
t=ℓ

 1

ψ(t)

t∑
s=ℓ

(
1

φ(s)

t∑
i=s

ξ(i)µ− λ
α (i+ τ − σ)

) 1
β

 ≤ 1

ϵ1

which contradicts (33) as ℓ→ ∞. This completes the proof. �
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Next, we have the following result.

Theorem 2.12. Assume that (E1)− (E4) and (E7) hold. Moreover, suppose there
exists an integer η such that ℓ + τ − σ < ℓ − η for all ℓ ≥ ℓ0. If the second-order
difference inequality

∆
(
φ(ℓ)(∆Y (ℓ))β

)
+ϵ

λ
α ξ(ℓ)

(
D(ℓ+ τ − σ)

µ(ℓ+ τ − σ)B(ℓ+ τ − σ)

) λ
α

Y
λ
α (ℓ+τ−σ) ≤ 0 (37)

has no positive increasing solution and the second-order difference inequality

∆
(
φ(ℓ)(∆Z(ℓ))β

)
− ϵ

λ
α
1 ξ(ℓ)

(
1

µ(ℓ+ τ − σ)

ℓ−η−1∑
t=ℓ+τ−σ

1

ψ(s)

) λ
α

Z
λ
α (ℓ− η) ≥ 0 (38)

has no positive decreasing solution, then equation (1) is oscillatory.

Proof. Let {ν(ℓ)} be a nonoscillatory solution of (1), say ν(ℓ) > 0, ν(ℓ − τ) > 0
and ν(ℓ − σ) > 0 for ℓ ≥ ℓ1 for some ℓ1 ≥ ℓ0. As in Lemma 2.1, we consider two
cases, namely Cases (A) and (B) for ℓ ≥ ℓ1.
Case (A). Proceeding as in Case (A) of Theorem 2.6, we have (20). Now using
(4) in (10), we obtain

∆
(
φ(ℓ) (∆(ψ(ℓ)∆χ(ℓ)))

β
)

+
ϵ

λ
α ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

D
λ
α (ℓ+ τ − σ)

B
λ
α (ℓ+ τ − σ)

(ψ(ℓ+ τ − σ)∆χ(ℓ+ τ − σ))
λ
α ≤ 0. (39)

Let Y (ℓ) = ψ(ℓ)∆χ(ℓ) > 0 for ℓ ≥ ℓ1. Then from (39), we see that

∆
(
φ(ℓ) (∆Y (ℓ))

β
)
+

ϵ
λ
α ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

D
λ
α (ℓ+ τ − σ)

B
λ
α (ℓ+ τ − σ)

Y
λ
α (ℓ+ τ − σ) ≤ 0

has a positive increasing solution, which is a contradiction.
Case (B). In this case as in Case (B), in the proof of Theorem 2.11, we have that
inequality (36) holds. Now from (22) and (36), we obtain the following

∆
(
φ(ℓ) (∆(ψ(ℓ)∆χ(ℓ)))

β
)

+
ϵ

λ
α
1 ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)(
ℓ−η−1∑
t=ℓ+τ−σ

1

ψ(t)

) λ
α

(−ψ(ℓ− τ)∆χ(ℓ− τ))
λ
α ≤ 0.

Define Z(ℓ) = −ψ(ℓ)∆χ(ℓ) > 0 for ℓ ≥ ℓ1 ≥ N ≥ ℓ0, then we see that

∆(φ(ℓ)(∆Z(ℓ))β)− ϵ
λ
α
1 ξ(ℓ)

µ
λ
α (ℓ+ τ − σ)

(
ℓ−η−1∑
t=ℓ+τ−σ

1

ψ(t)

) λ
α

Z
λ
α (ℓ− η) ≥ 0

has a positive decreasing solution which constitutes a contradiction. This completes
the proof. �
Corollary 2.13. Assume that (E1)− (E4) and (E7) hold. Moreover suppose there
exists an integer η such that ℓ+ τ − σ < ℓ− η for all ℓ ≥ ℓ0. If λ = αβ,

lim
ℓ→∞

sup
ℓ∑

s=N

ξ(s)

(
D(s+ τ − σ)

µ(s+ τ − σ)B(s+ τ − σ)

)β
= ∞ (40)
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and

lim
ℓ→∞

sup

ℓ−1∑
s=ℓ−η

1

φ(s)

(
ℓ−1∑
t=s

Q(t)

) 1
β

> 1 (41)

where Q(ℓ) = ϵβ1 ξ(ℓ)
(

1
µ(ℓ+τ−σ)

∑ℓ−η−1
t=ℓ+τ−σ

1
ψ(t)

)β
, for all N ≥ ℓ0, then equation (1)

is oscillatory.

Proof. In view of Theorem 2.1 in [13], condition (40) ensures that inequality
(37) has no positive increasing solution. By an extension of Theorem 2.1 of [26],
condition (41) ensures that inequality (38) has no positive decreasing solution. This
conclusion follows from Theorem 2.12. The proof of the corollary is complete. �

3. Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the third-order neutral difference equation with a sublinear
neutral term

∆

(
1

ℓ3
(∆(ℓ∆χ(ℓ)))3

)
+ ℓ2ν

1
3 (ℓ− 4) = 0, ℓ ≥ 1, (42)

where χ(ℓ) = ν(ℓ) + ℓ2ν
1
3 (ℓ − 3). Here φ(ℓ) = 1

ℓ3 , ψ(ℓ) = ℓ, µ(ℓ) = ℓ2, ξ(ℓ) =

ℓ2, τ = 3, σ = 4, α = 1
3 , β = 3, and λ = 1

3 . It is easy to see that (E1) − (E4)

hold. A simple calculation shows that B(ℓ) = ℓ−1
2 , D(ℓ) = (ℓ−1)(ℓ−2)

4 , Φ(ℓ) ≥
1

(ℓ+3)2

(
1− γ2

16(ℓ+1)(ℓ+2)

)
> 0, and Ψ(ℓ) = 1

(ℓ+3)2

(
1− δ2

(ℓ+6)2

)
> 0, that is, (E5)

and (E6) are satisfied. It follows from (13) and (14) that

∞∑
ℓ=4

ℓ2

(ℓ− 1)2

(
1− γ2

16(ℓ− 3)(ℓ− 2)

)
= ∞

and
∞∑
ℓ=4

ℓ2

(ℓ− 1)2

(
1− δ2

(ℓ+ 2)2

)
= ∞,

that is, (13) and (14) hold. Hence by Theorem 2.5, every solution {ν(ℓ)} of (42)
is either oscillatory or tends to zero, as ℓ→ ∞.

Example 3.2. Consider the third-order difference equation with a sublinear neutral
term

∆

(
1

ℓ
∆(ℓ∆χ(ℓ))

)
+ ℓ6 exp(e2ℓ)ν(ℓ− 4) = 0, ℓ ≥ 1, (43)

with χ(ℓ) = ν(ℓ) + ℓ2ν
1
3 (ℓ − 1). Here φ(ℓ) = 1

ℓ , ψ(ℓ) = ℓ, µ(ℓ) = ℓ2, ξ(ℓ) =

ℓ6 exp(e2ℓ), τ = 1, σ = 4, α = 1
3 , β = λ = 1. It is easy to see that (E1) − (E4)

hold, and αβ < λ. A simple calculation shows that B(ℓ) = ℓ−1
2 , D(ℓ) = (ℓ−1)(ℓ−2)

4 ,

and limℓ→∞
D

1
α (ℓ+2τ)

D(ℓ+τ)µ
1
α (ℓ+2τ)

= limℓ→∞
ℓ3(ℓ+1)3

ℓ(ℓ−1)(ℓ+2)6 = 0 and so (E7) is holds. Also

by taking η = 2, then ζ = 1, we see that

R(ℓ) =

(
ℓ−3∑
t=ℓ−3

1

t

)(
ℓ−2∑
t=ℓ−2

t

)
=

(
ℓ− 2

ℓ− 3

)
for ℓ ≥ 4.
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Now Q(ℓ) = ϵ31

(
ℓ−2
ℓ−3

)3
. By taking a = 1, and a1 = 2, we see that 1 > 1

3 ln(3),

2 > ln(3). Then (30) and (31) become

lim
ℓ→∞

inf

[
ℓ6 exp(e2ℓ)ϵ31

(
ℓ− 2

ℓ− 3

)3(
1

ℓ− 3

)6

exp(−eℓ)

]
= ∞ > 0

and

lim
ℓ→∞

inf

[
ℓ6 exp(e2ℓ)ϵ31

(
ℓ− 2

ℓ− 3

)3(
1

ℓ− 3

)6

exp(−e2ℓ)

]
= ϵ31 > 0.

Hence by Corollary 2.10, equation (43) is oscillatory.

Example 3.3. Consider the third-order difference equation with a sublinear neutral
term

∆2(ℓ∆χ(ℓ)) + ℓ(ℓ+ 3)2ν
1
3 (ℓ− 4) = 0, ℓ ≥ 1, (44)

where χ(ℓ) = ν(ℓ) + ℓν
1
3 (ℓ − 1). Here φ(ℓ) = 1, ψ(ℓ) = µ(ℓ) = ℓ, ξ(ℓ) = ℓ(ℓ +

3)2, τ = 1, σ = 4, α = 1
3 , β = 1, and λ = 1

3 . It is easy to see that (E1)−(E4) hold.

A simple calculation shows that B(ℓ) = ℓ, D(ℓ) = ℓ, and limℓ→∞
D

1
α (ℓ+2τ)

D(ℓ+τ)µ
1
α (ℓ+2τ)

=

limℓ→∞
(ℓ+2)3

(ℓ+1)(ℓ+2)3 = 0 and so (E7) is holds. Choose η = 2, then ℓ− 3 < ℓ− 2 for

all ℓ ≥ 1, and Q(ℓ) = ϵ1
ℓ(ℓ+3)2

(ℓ−3)

∑ℓ−3
t=ℓ−3

1
t = ϵ1

ℓ(ℓ+3)2

(ℓ−3) . Now conditions (40) and

(41) become

lim
ℓ→∞

sup
ℓ∑
s=4

s(s+ 3)2
(s− 3)

(s− 3)(s− 3)
= lim
ℓ→∞

sup
ℓ∑
s=4

s(s+ 3)2

(s− 3)
= ∞

and

lim
ℓ→∞

sup
ℓ−1∑
s=ℓ−2

(
ℓ−1∑
t=s

ϵ1
t(t+ 3)2

(t− 3)2

)
≈ lim

ℓ→∞
sup

ℓ−1∑
s=ℓ−2

ϵ1

(
ℓ(ℓ− 1)

2
− s(s− 1)

2

)
≈ lim

ℓ→∞
ϵ1(3ℓ− 4) = ∞ > 1.

Hence conditions (40) and (41) are satisfied, and therefore, in view of Corollary
2.13, all solutions of (44) are oscillatory.

4. Conclusion

In this paper, we have obtained some new criteria for the solutions of equation
(1) to be oscillatory. These criteria can be extended to higher order equation of the
form

∆m−1
(
φ(ℓ)(∆(ν(ℓ) + µ(ℓ)να(ℓ− τ)))β

)
+ ξ(ℓ)νλ(ℓ− σ) = 0

where m is a positive integer. It will be of interest to study (1) with different values
for α, β and λ.
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