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DHAGE ITERATION METHOD FOR AN ALGORITHMIC

APPROACH TO THE LOCAL SOLUTION OF THE NONLINEAR

SECOND ORDER ORDINARY HYBRID DIFFERENTIAL

EQUATIONS

JANHAVI B. DHAGE, SHYAM B. DHAGE, AND BAPURAO C. DHAGE

Abstract. It is known that the Dhage iteration method is very much useful

for proving the existence and approximation results for nonlinear hybrid dif-
ferential and integral equations. In this paper, we introduce a notion of the

local solution for the initial value problems of nonlinear second order ordi-

nary differential equations and establish a couple of approximation results for
local existence and uniqueness of the solution via Dhage monotone iteration

method. Again, various hybrid fixed point theorems are involved in the Dhage

iteration method as per the demand of the nonlinear hybrid equations. Here,
we base our Dhage monotone iteration method on the recent hybrid fixed point

theorems of Dhage (2022) and Dhage et al. (2022). There are different no-
tions of stability of the nonlinear equations. Here we discuss the Ulam-Hyers

stability of the local solution of the considered hybrid differential equation is

also established by construction of an algorithm. Finally, our main abstract
results are also illustrated with a couple of numerical examples.

1. Introduction

The iterative methods useful for finding the approximate solution of nonlinear differ-
ential and integral equations are very popular among the mathematicians all over the
world. There are different iteration methods used in nonlinear analysis have different
characterizations. The iteration methods used in Al-Jawary et al. [1] are due to Temimi
and Ansari [16, 17] and Bhalekar and Daftardar-Gejji [2] and involve no condition on the
nonlinearity of the second order differential equations, however these methods yield the
power series expansion of the solution. Similarly, the Picard’s iteration used in Lyons et
al. [15] employ the Lipschitz condition on the nonlinear function involved in the equa-
tions and the solution is obtained in the form of a sequence of successive approximations
(see also Coddington [3]). The main objective of the is to paper we discuss the nonlin-
ear second order ordinary differential equations via Dhage iteration method under certain
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monotonicity condition but without the usual strong Lipschitz condition on the nonlinear
function involved in the equations.

Given a closed and bounded interval J = [t0, t0 + a] in R for some t0, a ∈ R with
a > 0, we consider the IVP of nonlinear second order hybrid ordinary differential equation
(HDE),

x′′(t) = f(t, x(t)), t ∈ J,

x(t0) = α0, x′(t0) = α1,

}
(1.1)

where α0, α2 are real constants and the function f : J × R → R satisfies some mixed
hypotheses from algebra, analysis and topology to be specified later.

Definition 1.1. A function x ∈ C(J,R) is said to be a solution of the HDE (1.1 if it
satisfies the equations in (1.1) on J , where C(J,R) is the space of continuous real-valued

functions defined on J . If the solution x lies in a closed ball Br(x0) centered at some point
x0 ∈ C(J,R) of radius r > 0, then we say it is a local solution or neighbourhood solution
(in short nbhd solution) of the HDE (1.1 on J .

The HDE (1.1 is familiar in the subject of nonlinear analysis and can be studied for
a variety of different aspects of the solution by using different methods form nonlinear
functional analysis. The existence of local solution can be proved by using the Schauder
fixed point principle, see for example, Coddington [3], Lakshmikantham and Leela [14],
Granas and Dugundji [12] and references therein. The approximation result for uniqueness
of solution can be proved by using the Banach fixed point theorem under a Lipschitz
condition which is considered to be very strong in the area of nonlinear analysis. But to
the knowledge the present authors, the approximation results for the local existence and
uniqueness theorems without using the Lipschitz condition or under its weaker form is not
discussed in the literature as for the theory of nonlinear differential and integral equations.
In this paper, we discuss the approximation results for local existence and uniqueness of
solution for the HDE (1.1) under weaker Lipschitz condition but via construction of the
algorithms based on monotone iteration method and a hybrid fixed point theorem of Dhage
[7]. Also see Dhage et al. [11] and references therein.

The rest of the paper is organized as follows. Section 2 deals with the auxiliary re-
sults and main hybrid fixed point theorems involved in the Dhage iteration method. The
hypotheses and main approximation results for the local existence and uniqueness of solu-
tion are given in Section 3. The approximation of the Ulam-Hyer stability is discussed in
Section 4 and a couple of illustrative examples are presented in Section 5. Finally, some
concluding remarks are mentioned in Section 6.

2. Auxiliary Results

We place the problem of HDE (1.1) in the function space C(J,R) of continuous, real-
valued functions defined on J . We introduce a supremum norm ∥ · ∥ in C(J,R) defined
by

∥x∥ = sup
t∈J

|x(t)|, (2.1)

and an order relation ⪯ in C(J,R) by the cone K given by

K = {x ∈ C(J,R) | x(t) ≥ 0 ∀ t ∈ J}. (2.2)

Thus,

x ⪯ y ⇐⇒ y − x ∈ K, (2.3)

or equivalently,

x ⪯ y ⇐⇒ x(t) ≤ y(t) ∀ t ∈ J.

It is known that the Banach space C(J,R) together with the order relations ⪯ becomes
an ordered Banach space which we denote for convenience, by

(
C(J,R),K

)
. We denote

the open and closed spheres centered at x0 ∈ C(J,R) of radius r, for some r > 0, by

Br(x0) = {x ∈ C(J,R) | ∥x− x0∥ < r},

and

Br[x0] = {x ∈ C(J,R) | ∥x− x0∥ ≤ r},
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receptively. It is clear that Br[x0] = Br(x0). Let M > 0 be a real number. Denote

BM
r [x0] =

{
x ∈ Br[x0]

∣∣ |x(t1)− x(t2)| ≤ M |t1 − t2| for t1, t2 ∈ J
}
. (2.4)

Then, we have the following result.

Lemma 2.1. The set BM
r [x0] is compact in C(J,R).

Proof. By definition, Br[x0] is a closed and bounded subset of the Banach space C(J,R).
Moreover, BM

r [x0] is an equicontinuous subset of C(J,R) in view of the condition (2.1).
Now, by an application of Arzelá-Ascoli theorem, BM

r [x0] is compact set in C(J,R) and
the proof of the lemma is complete. □

It is well-known that the hybrid fixed point theoretic technique is very much useful in
the subject of nonlinear analysis for dealing with the nonlinear equations qualitatively.
See Granas and Dugundji [12] and the references therein. Here, we employ the Dhage
monotone iteration method or simply Dhage iteration method based on the following two
hybrid fixed point theorems of Dhage [7] and Dhage et al. [11].

Theorem 2.1 (Dhage [7]). Let S be a non-empty partially compact subset of a regular
partially ordered Banach space

(
E, || ·∥,⪯,

)
with every chain C in S is Janhavi set and let

T : S → S be a monotone nondecreasing, partially continuous mapping. If there exists
an element x0 ∈ S such that x0 ⪯ T x0 or x0 ⪰ T x0, then the hybrid mapping equation
T x = x has a solution ξ∗ in S and the sequence {T nx0}∞0 of successive iterations converges
monotonically to ξ∗.

Theorem 2.2 (Dhage [7]). Let Br[x] denote the partial closed ball centered at x of radius
r, in a regular partially ordered Banach space

(
E, || · ∥,⪯,

)
and let T : E → E be a

monotone nondecreasing and partial contraction operator with contraction constant q. If
there exists an element x0 ∈ X such that x0 ⪯ T x0 or x0 ⪰ T x0 satisfying

∥x0 − T x0∥ ≤ (1− q)r,

for some real number r > 0, then T has a unique comparable fixed point x∗ in Br[x0] and
the sequence {xn}∞n=0 of successive iterations converges monotonically to x∗. Furthermore,
if every pair of elements in X has a lower or upper bound, then x∗ is unique.

If a Banach X is partially ordered by an order cone K in X, then in this case we simply
say X is ordered Banach space which we denote it by (X,K). Then, we have the following
useful results proved in Dhage [5, 6].

Lemma 2.2 (Dhage [5, 6]). Every ordered Banach space (X,K) is regular.

Lemma 2.3 (Dhage [5, 6]). Every partially compact subset S of an ordered Banach space
(X,K) is a Janhavi set in X.

As a consequence of Lemmas 2.2 and 2.3, we obtain the following hybrid fixed point
theorem which we need in what follows.

Theorem 2.3 (Dhage [7] and Dhage et al. [11]). Let S be a non-empty partially compact
subset of an ordered Banach space (X,K) and let T : S → S be a partially continuous and
monotone nondecreasing operator. If there exists an element x0 ∈ S such that x0 ⪯ Tx0

or x0 ⪰ Tx0, then T has a fixed point x∗ ∈ S and the sequence {xn}∞n=0 of successive
iterations converges monotonically to x∗.

Theorem 2.4 (Dhage [7]). Let Br[x] denote the partial closed ball centered at x of radius
r for some real number r > 0, in an ordered Banach space

(
X,K

)
and let T : (X,K) →

(X,K) be a monotone nondecreasing and partial contraction operator with contraction
constant q. If there exists an element x0 ∈ X such that x0 ⪯ T x0 or x0 ⪰ T x0 satisfying

∥x0 − T x0∥ ≤ (1− q)r, (2.5)

for some real number r > 0, then T has a unique comparable fixed point x∗ in Br[x0] and
the sequence {xn}∞n=0 of successive iterations converges monotonically to x∗. Furthermore,
if every pair of elements in X has a lower or upper bound, then x∗ is unique.

The details of the notions of partial order, Janhavi set, regularity of ordered space,
monotonicity of mappings, partial continuity, partial closure, partial boundedness, partial
completeness, partial compactness and partial contraction etc. and related applications
appear in Dhage [4, 5, 6], Dhage and Dhage [8, 9], Dhage et al. [11] and references therein.
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3. Approximation Results

We consider the following set of hypotheses in what follows.

(H1) The function f is continuous and bounded on J × R with bound Mf .
(H2) There exists a constant k > 0 such that

0 ≤ f(t, x)− f(t, y) ≤ k(x− y)

for all x, y ∈ R with x ≥ y, where k a2 < 1.
(H3) f(t, x) is nondecreasing in x for each t ∈ J .
(H4) f(t, α0) ≥ 0 and α1 ≥ 0 for all t ∈ J .

Then, we have the following useful lemma.

Lemma 3.1. If h ∈ L1(J,R), then the IVP of ordinary second order linear differential
equation

x′′(t) = h(t), t ∈ J, x(t0) = α0, x′(t0) = α1, (3.1)

is equivalent to the integral equation

x(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s)h(s) ds, , t ∈ J. (3.2)

Theorem 3.1. Suppose that the hypotheses (H1), (H3) and (H4) hold. Furthermore, if
the inequalities |t0 + a| |α1|+Mf a

2 ≤ r and |α1|+2Mf a ≤ M hold, then the HDE (1.1)
has a solution x∗ in BM

r [α0], where x0 ≡ α0, and the sequence {xn}∞n=0 of successive
approximations defined by

x0(t) = α0, t ∈ J,

xn+1(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s) f(s, xn(s)) ds, t ∈ J,

 (3.3)

where n = 0, 1, . . .; converges monotone nondecreasingly to x∗.

Proof. Set X = C(J,R). Clearly, (X,K) is a partially ordered Banach space. Let x0 be a
constant function on J such that x0(t) = α0 for all t ∈ J and define a closed ball BM

r [x0]
in X defined by (2.3). By Lemma 2.1, BM

r [x0] is a compact subset of X. By Lemma 3.1,
the HDE (1.1) is equivalent to the nonlinear hybrid integral equation (HIE)

x(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s) f(s, x(s)) ds, t ∈ J. (3.4)

Now, define an operator T on BM
r [x0] into X by

T x(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s) f(s, x(s)) ds, t ∈ J. (3.5)

We shall show that the operator T satisfies all the conditions of Theorem 2.3 on BM
r [x0]

in the following series of steps.

Step I: The operator T maps BM
r [x0] into itself.

Firstly, we show that T maps BM
r [x0] into itself. Let x ∈ BM

r [x0] be arbitrary element.
Then,

|T x(t)− x0(t)| = |α1(t− t0) +

∣∣∣∣∫ t

t0

(t− s) f(s, x(s)) ds

∣∣∣∣
≤ |t0 + a| |α1|+

∫ t

t0

|t− s|
∣∣f(s, x(s))∣∣ ds

< |t0 + a| |α1|+Mf a

∫ t0+a

t0

ds

= |t0 + a| |α1|+Mf a
2

≤ r,

for all t ∈ J . Taking the supremum over t in the above inequality yields

∥T x− x0∥ ≤ |t0 + a| |α1|+Mf a
2 ≤ r



APPROXIMATION OF LOCAL SOLUTIONS 5

which implies that T x ∈ Br[x0] for all x ∈ BM
r [x0]. Next, let t1, t2 ∈ J be arbitrary.

Then,

∣∣T x(t1)− T x(t2)
∣∣

≤ |α1| |t1 − t2|+
∣∣∣∣∫ t

t0

(t1 − s) f(s, x(s)) ds−
∫ t2

t0

(t2 − s) f(s, x(s)) ds

∣∣∣∣
≤ |α1| |t1 − t2|+

∣∣∣∣∫ t1

t0

(t1 − s) f(s, x(s)) ds−
∫ t1

t0

(t2 − s) f(s, x(s)) ds

∣∣∣∣
+

∣∣∣∣∫ t1

t0

(t2 − s) f(s, x(s)) ds−
∫ t2

t0

(t2 − s) f(s, x(s)) ds

∣∣∣∣
≤ |α1| |t1 − t2|+

∫ t1

t0

|t1 − t2| |f(s, x(s))| ds+
∣∣∣∣∫ t2

t1

|t2 − s| |f(s, x(s))| ds
∣∣∣∣

≤ |α1| |t1 − t2|+
∫ t0+a

t0

|t1 − t2|Mf ds+

∣∣∣∣∫ t2

t1

aMf ds

∣∣∣∣
≤ |α1| |t1 − t2|+ 2Mf a |t1 − t2|
=

(
|α1|+ 2Mf a

)
|t1 − t2|

≤ M,

where, |α1| + 2Mf a ≤ M . Therefore, T x ∈ BM
r [x0] for all x ∈ BM

r [x0] As a result, we
have T (BM

r [x0]) ⊂ BM
r [x0].

Step II: T is a monotone nondecreasing operator.

Let x, y ∈ BM
r [x0] be any two elements such that x ⪰ y. Then,

T x(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s) f(s, x(s)) ds

≥ α0 + α1(t− t0) +

∫ t

t0

(t− s) f(s, y(s)) ds

= T y(t),

for all t ∈ J . So, T x ⪰ T y, that is, T is monotone nondecreasing on BM
r [x0].

Step III: T is partially continuous operator.

Let C be a chain in BM
r [x0] and let {xn} be a sequence in C converging to a point

x ∈ C. Then, by dominated cnonvergence theorem, we have

lim
n→∞

T xn = lim
n→∞

[
α0 +

∫ t

t0

(t− s) f(s, xn(s)) ds

]
= α0 + α1(t− t0) + lim

n→∞

∫ t

t0

(t− s) f(s, xn(s)) ds

= α0 + α1(t− t0) +

∫ t

t0

(t− s)
[
lim

n→∞
f(s, xn(s))

]
ds

= α0 + α1(t− t0) +

∫ t

t0

(t− s) f(s, x(s)) ds

= T x(t),

for all t ∈ J . Therefore, T xn → T x pointwise on J . As {T xn} ⊂ BM
r [x0], {T xn} is an

equicontinuous sequence of points in X. As a reult, we have that T xn → T x uniformly
on J . Hence T is partially continuouus operator on BM

r [x0].

Step IV: The element x0 ∈ BM
r [x0] satisfies the relation x0 ⪯ T x0 .
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Since (H4) holds, one has

x0(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s)f(s, x0(s)) ds

≤ x0(t) + α1(t− t0) +

∫ t

t0

(t− s)f(s, α0) ds

= α0 + α1(t− t0) +

∫ t

t0

(t− s)f(s, x0(s)) ds

= T x0(t),

for all t ∈ J . This shows that the constant function x0 in BM
r [x0] serves as to satisfy the

operator inequality x0 ⪯ T x0.

Thus, the operator T satisfies all the conditions of Theorem 2.3, and so T has a fixed
point x∗ in BM

r [x0] and the sequence {T nx0}∞n=0 of successive iterations converges mono-
tone nondecreasingly to x∗. This further implies that the HIE (3.4) and consequently the
HDE (1.1) has a local solution x∗ and the sequence {xn}∞n=0 of successive approximations
defined by (3.3) is monotone nondecreasing and converges to x∗. This completes the proof.
□

Next, we prove an approximation result for existence and uniqueness of the solution
simultaneously under weaker form of Lipschitz condition.

Theorem 3.2. Suppose that the hypotheses (H1), (H2) and (H4) hold. Furthermore, if

|t0 + a| |α1|+Mfa ≤ (1− ka2)r, ka2 < 1, (3.6)

for some real number r > 0, then the HDE (1.1) has a unique solution x∗ in Br[x0] defined
on J and the sequence {xn}∞n=0 of successive approximations defined by (3.3) is monotone
nondecreasing and converges to x∗.

Proof. Set (X,K) =
(
C(J,R),⪯

)
which is a lattice w.r.t. the lattice join and meet

operations defined by x ∨ y = max{x, y} and x ∧ y = min{x, y}, and so every pair of
elements of X has a lower and an upper bound. Let r > 0 be a fixed real number and
consider closed sphere Br[x0] centred at x0 of radius r in the partially ordered Banach
space (X,K).

Define an operator T on X into X by (3.5). Clearly, T is monotone nondecreasing on
X. To see this, let x, y ∈ X be two elements such that x ⪰ y. Then, by hypothesis (H2),

T x(t)− T y(t) =

∫ t

t0

(t− s)
[
f(s, x(s))− f(s, y(s))

]
ds ≥ 0,

for all t ∈ J . Therefore, T x ⪰ T y and consequently T is monotone nondecresing on X.
Next, we show that T is a partial contraction on X. Let x, y ∈ X be such that x ⪰ y.

Then, by hypothesis (H2), we obtain

|T x(t)− T y(t)| =
∣∣∣∣∫ t

t0

(t− s)
[
f(s, x(s))− f(s, y(s))

]
ds

∣∣∣∣
≤

∣∣∣∣∫ t

t0

k(t− s)
(
x(s)− y(s)

)
ds

∣∣∣∣
=

∫ t

t0

k a |x(s)− y(s)| ds

< k a

∫ t0+a

t0

∥x− y∥ ds

= k a2 ∥x− y∥,

for all t ∈ J , where k a2 < 1. Taking the supremum over t in the above inequality yields

∥T x− T y∥ ≤ k a2 ∥x− y∥

for all comparable elements x, y ∈ X. This shows that T is a partial contraction on X
with contraction constant k a. Furthermore, it can be shown as in the proof of Theorem
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3.1 that the element x0 ∈ BM
r [x0] satisfies the relation x0 ⪯ T x0 in view of hypothesis

(H4). Finally, by hypothesis (H1) and condition (3.6), one has

∥x0 − T x0∥ ≤ |t0 + a| |α1|+ sup
t∈J

∣∣∣∣∫ t

t0

(t− s) f(s, α0) ds

∣∣∣∣
≤ |t0 + a| |α1|+ sup

t∈J

∫ t

t0

|t− s| |f(s, α0)| ds

≤ |t0 + a| |α1|+Mf a
2

≤ (1− k a2)r,

which shows that the condition (2.5) of Theorem 2.4 is satisfied. Hence T has a unique
fixed point x∗ in Br[x0] and the sequence {T nx0}∞n=0 of successive iterations converges
monotone nondecreasingly to x∗. This further implies that the HIE (3.4) and consequently
the HDE (1.1) has a unique local solution x∗ defined on J and the sequence {xn}∞n=0 of
successive approximations is monotone nondecreasing and converges to x∗. This completes
the proof. □

Remark 3.1. The conclusion of Theorems 3.1 and 3.2 also remains true if we replace the
hypothesis (H4) with the following one.

(H4) The function f satisfies f(t, α0) ≤ 0 for all t ∈ J .

In this case, the HDE (1.1) has a local solution x∗ defined on J and the sequence {xn}∞n=0

of successive approximations defined by (3.3) is monotone nonincreasing and converges to
the solution x∗.

Remark 3.2. If the initial condition in the equation (1.1) is such that α0 > 0, then under
the conditions of Theorem 3.1, the HDE (1.1) has a local positive solution x∗ defined
on J and the sequence {xn}∞n=0 of successive approximations defined by (3.3) converges
monotone nondecreasingly to the positive solution x∗. Similarly, under the conditions of
Theorem 3.2, the HDE (1.1) has a unique local positive solution x∗ defined on J and
the sequence of successive approximations defined by (3.3) {xn}∞n=0 converges monotone
nondecreasingly to the unique positive solution x∗.

4. Approximation of Ulam-Hyers Stability

The Ulam-Hyers stability for various dynamic systems has already been discussed by
several authors under the conditions of classical Schauder fixed point theorem (see Tripa-
thy [18], Huang et al. [13] and references therein). Here, in the present paper, we discuss
the approximation of the Ulam-Hyers stability of local solution of the HDE (1.1) under the
conditions of hybrid fixed point principle stated in Theorem 2.4. We need the following
definition in what follows.

Definition 4.1. The HDE (1.1) is said to be locally Ulam-Hyers stable if for ϵ > 0 and
for each solution y ∈ Br[x0] of the inequality∣∣∣y′′(t)− f(t, y(t))

∣∣∣ ≤ ϵ, t ∈ J,

y(t0) = α0, y′(t0) = α1,

 (∗)

there exists a constant Kf > 0 such that∣∣y(t)− ξ(t)
∣∣ ≤ Kf ϵ, (∗∗)

for all t ∈ J , where ξ ∈ Br[x0] is a local solution of the HDE (1.1) defined on J . The
solution ξ of the HDE (1.1) is called Ulam-Hyers stable local solution on J .

Theorem 4.1. Assume that all the hypotheses of Theorem 3.2 hold. Then the HDE (1.1)
has a unique Ulam-Hyers stable local solution x∗ ∈ Br[x0] and the sequence {xn}∞n=0 of
successive approximations given by (3.3) converges monotone nondecreasingly to x∗.

Proof. Let ϵ > 0 be given and let y ∈ Br[x0] be a solution of the functional inequality
(4.1) on J , that is, we have ∣∣∣y′′(t)− f(t, y(t))

∣∣∣ ≤ ϵ, t ∈ J,

y(t0) = α0, y′(t0) = α1,

 (4.1)
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By Theorem 3.2, the HDE (1.1) has a unique local solution ξ ∈ Br[x0]. Then by
Lemma 2.1, one has

ξ(t) = xo + α1(t− t0) +

∫ t

t0

(t− s) f(s, ξ(s)) ds, t ∈ J. (4.2)

Now, by integration of (4.1) yields the estimate:∣∣∣∣y(t)− α0 − α1(t− t0)−
∫ t

t0

(t− s) f(s, y(s)) ds

∣∣∣∣ ≤ a2

2
ϵ, (4.3)

for all t ∈ J .
Next, from (4.2) and (4.3) we obtain∣∣y(t)− ξ(t)

∣∣ = ∣∣∣∣y(t)− α0 − α1(t− t0)−
∫ t

t0

(t− s) f(s, ξ(s)) ds

∣∣∣∣
≤

∣∣∣∣y(t)− α0 − α1(t− t0)−
∫ t

t0

(t− s) f(s, y(s) ds

∣∣∣∣
+

∣∣∣∣∫ t

t0

(t− s) f(s, y(s)) ds−
∫ t

t0

(t− s) f(s, ξ(s)) ds

∣∣∣∣
≤ a ϵ+

∫ t

t0

|t− s|
∣∣f(s, y(s))− f(s, ξ(s))

∣∣ ds
≤ a2

2
ϵ+ k a2(∥y − ξ∥).

Taking the supremum over t, we obtain

∥y − ξ∥ ≤ a2

2
ϵ+ ka2∥y − ξ∥,

or

∥y − ξ∥ ≤
[

a2 ϵ/2

1− ka2

]
,

where, ka2 < 1. Letting Kf =

[
a2

2(1− ka2)

]
> 0, we obtain∣∣y(t)− ξ(t)
∣∣ ≤ Kf ϵ,

for all t ∈ J . As a result, ξ is a Ulam-Hyers stable local solution of the HDE (1.1) on
J and the sequence {xn}∞n=0 of successive approximations defined by (3.3) is monotone
nondecreasing and converges to ξ. Consequently the HDE (1.1) is a locally Ulam-Hyers
stable on J . This completes the proof. □

Remark 4.1. If the given initial condition in the equation (1.1) is such that x0 > 0, then
under the conditions of Theorem 4.1, the HDE (1.1) has a unique Ulam-Hyers stable local
positive solution x∗ defined on J and the sequence {xn}∞n=0 of successive approximations
defined by (3.3) converges monotone nondecreasingly to x∗.

5. The Examples

In this section we illustrate the hypotheses and main approximation result by giving a
couple of numerical examples.

Example 5.1. Given a closed and bounded interval J = [0, 1] in R, consider the IVP of
nonlinear first order HDE,

x′′(t) = tanhx(t), t ∈ [0, 1]; x(0) =
1

4
, x′(0) = 1. (5.1)

Here α0 = 1
4
, α1 = 1 and f(t, x) = tanhx for (t, x) ∈ [0, 1]×R. We show that f satisfies

all the conditions of Theorem 3.1. Clearly, f is bounded on [0, 1]×R with bound Mf = 1
and so the hypothesis (H1) is satisfied. Also the function f(t, x) is nondecreasing in x
for each t ∈ [0, 1]. Therefore, hypothesis (H3) is satisfied. Moreover, f(t, α0) = f(t, 1

4
) =

tanh( 1
4
) ≥ 0 and 1 · t ≥ 0 for each t ∈ [0, 1], and so the hypothesis (H4) holds. If we

take r = 2 and M = 3, all the conditions of Theorem 3.1 are satisfied. Hence, the HDE
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(5.1) has a local solution x∗ in the closed ball B3
2 [

1
4
] of the Banach space C(J,R) and the

sequence {xn}∞n=0 of successive approximations defined by

x0(t) =
1

4
, t ∈ [0, 1],

xn+1(t) =
1

4
+ t+

∫ t

0

(t− s) tanhxn(s) ds, t ∈ [0, 1],

converges monotone nondecreasingly to x∗.

Example 5.2. Given a closed and bounded interval J = [0, 1] in R, consider the IVP of
nonlinear first order HDE,

x′′(t) =
1

2
tan−1 x(t), t ∈ [0, 1]; x(0) =

1

4
, x′(0) = 1. (5.2)

Here α0 =
1

4
, α1 = 1 and f(t, x) =

1

2
tan−1 x for (t, x) ∈ [0, 1] × R. We show that f

satisfies all the conditions of Theorem 3.2. Clearly, f is bounded on [0, 1]×R with bound
Mf = 22

28
and so, the hypothesis (H1) is satisfied. Next, let x, y ∈ R be such that x ≥ y.

Then there exists a constant ξ with α1 < ξ < y satisfying

0 ≤ f(t, x)− f(t, y) ≤ 1

2
· 1

1 + ξ2
(x− y) ≤ 1

2
· (x− y),

for all t ∈ [0, 1]. So the hypothesis (H2) holds with k = 1
2
. Moreover, f(t, α0) = f

(
t, 1

4

)
=

1
2
tan−1

(
1
4

)
≥ 0 and 1 · t ≥ 0 for each t ∈ [0, 1], and so the hypothesis (H4) holds. If we

take r = 4, then we have

|t0 + a| |α1|+Mfa = 1 +
11

14
≤

(
1− 1

2

)
· 4 = (1− ka2)r,

and so, the condition (3.6) is satisfied. Thus, all the conditions of Theorem 3.2 are satisfied.
Hence, the HDE (5.2) has a unique local solution x∗ in the closed ball B4[

1
4
] of C(J,R).

This further in view of Remark 3.2 implies that the HDE (5.2) has a unique local positive
solution x∗ and and the sequence {xn}∞n=0 of successive approximations defined by

x0(t) =
1

4
, t ∈ [0, 1],

xn+1(t) =
1

4
+ t+

∫ t

0

(t− s) tan−1 xn(s) ds, t ∈ [0, 1],

is monotone nondecreasing and converges to x∗. Moreover, the unique local solution x∗

is Ulam-Hyers stable on [0, 1] in view of Definition 4.1. Consequently the HDE (5.2) is a
locally Ulam-Hyers stable on the interval [0, 1].

Remark 5.1. The approximation results of this paper may be extended to nonlinear
IVPs of higher order ordinary differential equations

x(n)(t) = f(t, x(t)), t ∈ J,

x(i)(t0) = α(i), i = 0, 1, 2, . . . , n− 1,

}
(5.3)

by using similar arguments with appropriate modifications.

6. Concluding Remark

Finally, while concluding this paper, we remark that unlike the Schauder fixed point
theorem we do not require any convexity argument in the proof of main existence theo-
rem, Theorem 3.1. Similarly, we do not require the usual Lipschitz condition in the proof
of uniqueness theorem, Theorem 3.2, but a weaker form of one sided Lipschitz condition
is enough to serve the purpose. However, in both the cases we are able to achieve the
existence of local solution by monotone convergence of the successive approximations.
Moreover, in order to illustrate the underlined ideas and the procedure of finding the ap-
proximate solution, in this paper a simple form of a differential equation (1.1) is considered
for the study, however other complex nonlinear IVPs of HDEs with integer or fractional
orders may also be considered and the present study can also be extended to such sophis-
ticated nonlinear differential equations with appropriate modifications. These and other
such problems form the further research scope in the subject of nonlinear differential and
integral equations with applications. Some of the results in this direction will be reported
elsewhere.
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