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ON S-METRIC SPACES WITH SOME TOPOLOGICAL ASPECTS

N. ÖZGÜR AND N. TAŞ

Abstract. The notion of a metric space is an important tool in functional

analysis, nonlinear analysis and especially in topology. New generalizations
of metric spaces have been introduced in recent years. For instance, S-metric

and b-metric spaces are among the recent generalizations of a metric space.

Fixed point theory has been intensively studied and generalized using various
approaches on these new spaces. In this paper we consider the relationships

among a metric, an S-metric and a b-metric. In this context, we define the
topological equivalence between a metric and an S-metric. Especially, we focus

on the fact that every S-metric does not always generate a metric. This is the

main motivation of the recent fixed point studies for self-mappings on an S-
metric space. Also we revisit the notion of a metric generated by an S-metric.

We support our theoretical findings by necessary illustrative examples. As a

consequence, existing studies based on the metric generated by an S-metric
can be updated using a general S-metric whether generate a metric or not.

1. Introduction and Preliminaries

Let (X, d) be a metric space. Many generalizations of a metric space have been
appeared in the literature, for example, a quasi-metric space, a rectangular metric
space, a G-metric space, an S-metric space, a b-metric space, and so on. Fixed point
theory has been intensively studied and generalized using various approaches on
these generalized metric spaces (see [4], [7], [8], [9], [10] and the references therein).
In this paper, mainly, we consider the relationships among a metric, an S-metric
and a b-metric.

The notion of an S-metric space has been introduced as follows:

Definition 1.1. [19] Let X ̸= ∅. An S-metric on X is a function such that
S : X ×X ×X → [0,∞) satisfying the following conditions for all x, y, z, a ∈ X :

(S1) S(x, y, z) = 0 if and only if x = y = z,
(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
Then the pair (X,S) is called an S-metric space.
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Recently, new fixed-point results have been proved using various approaches to
find the existence and uniqueness conditions for a fixed point of a self-mapping
on an S-metric space (see [4], [5], [6], [13], [14], [15], [19], [20] and [21]). By a
geometric viewpoint, some geometric properties of the fixed point set of a self-
mapping on an S-metric space have been studied in the non unique fixed point case
(see [1], [3], [11], [12], [16], [17], [18], [22] and the references therein).

Some properties and relationships between a metric and an S-metric were studied
by several authors (see [5], [6], [14], [19], [20] and [21] for more details). Topological
equivalence is an important issue both for studies on fixed point theory and on
topology (for example, see [23] and the references therein). Hence, we present the
topological equivalence between a metric and an S-metric along with the relation-
ships among a metric, an S-metric and a b-metric.

On the other hand, we focus on the fact that there exist some examples of an
S-metric which does not always generate a metric (for example, see [14] for more
details). We revisit the notion of a metric generated by an S-metric. Hence, the
existing studies based on the metric generated by an S-metric can be updated using
a general S-metric whether generate a metric or not.

At first, we recall the following definitions and lemmas which will be needed in
the sequel.

Definition 1.2. [2] Let X ̸= ∅. A b-metric on X is a function d : X ×X → [0,∞)
if there exists a real number b ≥ 1 such that the following conditions are satisfied
for all x, y, z ∈ X :

(B1) d(x, y) = 0 if and only if x = y,
(B2) d(x, y) = d(y, x),
(B3) d(x, z) ≤ b [d(x, y) + d(y, z)].
Then the pair (X, d) is called a b-metric space.

For more details on the recent fixed point results on b-metric spaces see the
recent survey [9] and the references therein.

Definition 1.3. [19] Let (X,S) be an S-metric space.

(1) A sequence {xn} in X converges to x if and only if S(xn, xn, x) → 0 as n →
∞. That is, there exists n0 ∈ N such that for all n ≥ n0, S(xn, xn, x) < ε
for each ε > 0. We denote this by lim

n→∞
xn = x or lim

n→∞
S(xn, xn, x) = 0.

(2) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm) → 0
as n,m → ∞. That is, there exists n0 ∈ N such that for all n,m ≥ n0,
S(xn, xn, xm) < ε for each ε > 0.

(3) The S-metric space (X,S) is called complete if every Cauchy sequence is
convergent.

Lemma 1.4. [19] Let (X,S) be an S-metric space. Then we have

S(x, x, y) = S(y, y, x).

Lemma 1.5. [19] Let (X,S) be an S-metric space. If lim
n→∞

xn = x and lim
n→∞

yn = y

then lim
n→∞

S(xn, xn, yn) = S(x, x, y).
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2. Comparisons between metric and some generalized metrics

Let (X,S) be an S-metric space. In [5], it was shown that every S-metric on X
defines a metric dS on X as follows:

dS(x, y) = S(x, x, y) + S(y, y, x) = 2S(x, x, y), (1)

for all x, y ∈ X. However, in [14] it was noticed that the function dS defined in (1)
does not always define a metric because of the reason that the triangle inequality
is not satisfied for all elements of X everywhen. Also, an example of an S-metric
which does not generate a metric was given (see [14] for more details). We give
another examples.

Example 2.1. Let X = {a, b, c} and the function S : X × X × X → [0,∞) be
defined as

S(a, a, c) = S(c, c, a) = 12,
S(b, b, c) = S(c, c, b) = S(a, a, b) = S(b, b, a) = 5,
S(x, y, z) = 0 if x = y = z,
S(x, y, z) = 1 if otherwise,

for all x, y, z ∈ X. Then the function S is an S-metric and the pair (X,S) is an
S-metric space. However, the function dS defined in (1) is not a metric on X.
Indeed, for x = a, y = c and z = b, we get

dS(a, c) = 24 ≰ dS(a, b) + dS(b, c) = 20.

We note that the function dS is called the metric generated by the S-metric S
in the case that dS is a metric.

Now, we give the relationship between an S-metric and a b-metric.

Proposition 2.2. Let (X,S) be an S-metric space and the function d : X ×X →
[0,∞) be defined as

d(x, y) = kS(x, x, y),
for all x, y ∈ X and some k > 0. Then the function d is a b-metric on X.

Proof. Using the condition (S1) and Lemma 1.4, we can easily seen that the condi-
tions (B1) and (B2) are satisfied. Now we show that the condition (B3) is satisfied.
From the condition (S2) and Lemma 1.4, we get

d(x, z) = kS(x, x, z) ≤ 2kS(x, x, y) + kS(z, z, y)
= 2kS(x, x, y) + kS(y, y, z) (2)

= 2d(x, y) + d(y, z)

and

d(x, z) = kS(x, x, z) = kS(z, z, x) ≤ 2kS(z, z, y) + kS(x, x, y)
= 2kS(y, y, z) + kS(x, x, y) (3)

= 2d(y, z) + d(x, y).

From the inequalities (2) and (3), we have

d(x, z) ≤ 3

2
[d(x, y) + d(y, z)] .

Consequently, the function d is a b-metric with b = 3
2 . □
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Remark 2.3. 1) If we take k = 1 in Proposition 2.2 then we get Proposition 2.1 on
page 116 in [20].

2) If we take k = 2 in Proposition 2.2 then we get the equality (1).
3) From Proposition 2.2, we deduce that the function dS defined in (1) is a b-

metric on X, but it is not always a metric since every b-metric need not to be a
metric.

The relation between a metric and an S-metric is given in [6] as follows:

Lemma 2.4. [6] Let (X, d) be a metric space. Then the following properties are
satisfied:

(1) Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.
(2) xn → x in (X, d) if and only if xn → x in (X,Sd).
(3) {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).
(4) (X, d) is complete if and only if (X,Sd) is complete.

The metric Sd is called the S-metric generated by d.
Now we present the following properties with some illustrative examples.

Proposition 2.5. Let X be a nonempty set. If an S-metric is generated by any
metric then this S-metric generates a metric dS.

Proof. Let Sd be an S-metric on X generated by a metric d. Then by Lemma 2.4
we have

Sd(x, y, z) = d(x, z) + d(y, z),

for all x, y, z ∈ X. Then we obtain

dSd
(x, y) = Sd(x, x, y) + Sd(y, y, x) = 2Sd(x, x, y)

= 2 [d(x, y) + d(x, y)] = 4d(x, y),

for all x, y ∈ X. Since d is a metric on X, then the function dSd
defines a metric

on X. □

We give the following corollary as a result of Proposition 2.5.

Corollary 2.6. Let X be a nonempty set. If an S-metric is generated by any
metric d then we have

dS(x, y) = 4d(x, y).

The converse of Proposition 2.5 is not always true as seen in the following ex-
ample.

Example 2.7. Let X = R2 and define the function

S(x, y, z) =
2∑

i=1

(∣∣x13 − z13
∣∣+ ∣∣x13 + z13 − 2y13

∣∣) ,
for all x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ R2. Then the pair (R2,S) is an
S-metric space with the S-metric which is not generated by any metric d, that is,
S ≠ Sd. On the contrary, we assume that there exists a metric d such that

S(x, y, z) = Sd(x, y, z) = d(x, z) + d(y, z),

for all x, y, z ∈ R2. Therefore we have

S(x, x, z) = 2d(x, z) and d(x, z) =

2∑
i=1

∣∣x13 − z13
∣∣
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and

S(y, y, z) = 2d(y, z) and d(y, z) =

2∑
i=1

∣∣y13 − z13
∣∣ ,

for all x, y, z ∈ R2. So we get

2∑
i=1

(∣∣x13 − z13
∣∣+ ∣∣x13 + z13 − 2y13

∣∣) = 2∑
i=1

(∣∣x13 − z13
∣∣+ ∣∣y13 − z13

∣∣) ,
which is a contradiction for x = (1, 1), y = (2, 2), z = (0, 0) ∈ R2. Consequently,
S ̸= Sd, that is, the S-metric is not generated by any metric d. However, this
S-metric generates a metric dS such that

dS(x, y) = S(x, x, y) + S(y, y, x) = 2S(x, x, y) = 2

2∑
i=1

∣∣x13 − y13
∣∣ ,

for all x, y ∈ R2.

Remark 2.8. Let X be a nonempty set, S1 be an S-metric on X which is not
generated by any metric d and S2 be an S-metric on X which is generated by some
metric d. Then dS1

and dS2
may be the same. For example, let X = R and the

functions S1,S2 : X ×X ×X → [0,∞) be defined as

S1(x, y, z) = |x− z|+ |x+ z − 2y|

and

S2(x, y, z) = |x− z|+ |y − z| ,
for all x, y, z ∈ R. Then S1 is an S-metric on R which is not generated by any
metric d and S2 be an S-metric which is called usual S-metric on R generated by
usual metric d (see [14] and [20] for more details, respectively). By Lemma 2.4 we
get

dS1
(x, y) = dS2

(x, y) = 4 |x− y| ,
for all x, y ∈ R. Consequently, S1 and S2 generate the same metric dS = dS1

= dS2
.

Now we investigate another relationships between a metric and an S-metric with
topological aspects. At first, we recall the following definitions and lemma on an
S-metric space.

Definition 2.9. [19] Let (X,S) be an S-metric space. For r > 0 and x ∈ X, the
open ball BS(x, r) with a center x and radius r is defined as follows:

BS(x, r) = {y ∈ X : S(x, x, y) < r} .

Definition 2.10. [19] Let (X,S) be an S-metric space and A ⊆ X. For every
x ∈ A, if there exists a r > 0 such that

BS(x, r) ⊆ A,

then the subset A is called an open subset of X.

Lemma 2.11. [19] Let (X,S) be an S-metric space. If r > 0 and x ∈ X, the open
ball BS(x, r) is an open subset of X.

In the following definition, we give the notion of topological equivalence of a
metric and an S-metric.
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Definition 2.12. Let (X, d) be a metric space and (X,S) be an S-metric space.
The metric d and the S-metric S are said to be topological equivalent (briefly,
equivalent) if they generate the same topology on X, that is, A is an open subset
on (X, d) if and only if it is an open subset on (X,S).

Using this definition, we obtain the following proposition.

Proposition 2.13. Let (X, d) be a metric space and (X,S) be an S-metric space.
Then the metric d and the S-metric S are equivalent if and only if there exist radii
r1, r2, ρ1, ρ2 > 0 such that

B(x, r1) ⊂ BS(x, r2)

and

BS(x, ρ1) ⊂ B(x, ρ2),

for each x ∈ X.

Proof. Assume that the metric d and the S-metric S are equivalent. Let us consider
an open ball BS(x, r2) for each x ∈ X. Since the metric d and the S-metric S are
equivalent then BS(x, r2) is also open on (X, d). Therefore there exists an open
ball such that

B(y, r1) ⊂ BS(x, r2),

for each y ∈ BS(x, r2). If we take x = y then we get

B(x, r1) ⊂ BS(x, r2).

Similarly we obtain

BS(x, ρ1) ⊂ B(x, ρ2).

Conversely, let A be an open set on (X, d) and x ∈ A. Then there exists an open
ball B(x, ρ2) such that

B(x, ρ2) ⊂ A,

for each x ∈ A. By the hypothesis, there exists an open ball BS(x, ρ1) on (X,S)
such that

BS(x, ρ1) ⊂ B(x, ρ2) ⊂ A.

Then A is an open set on (X,S). Similarly, if A is an open set on (X,S) then A is
an open set on (X, d). □

Using the idea of projection to reduce three dimensions to two dimensions, we
give the following definition.

Definition 2.14. Let (X, d) be a metric space and (X,S) be an S-metric space.
If there exist numbers k1, k2 > 0 such that

k1S(x, x, y) ≤ d(x, y) ≤ k2S(x, x, y),

then the metric d and the S-metric S are said to (S, d)-Lipschitz equivalent.

In the following proposition we see the relationships between topological equiv-
alence and (S, d)-Lipschitz equivalence.

Proposition 2.15. Let (X, d) be a metric space and (X,S) be an S-metric space.
If the metric d and the S-metric S are (S, d)-Lipschitz equivalent then they are
equivalent.
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Proof. We prove that the metric d and the S-metric S are equivalent. To do

this, we show that B(x, k1r) ⊂ BS(x, r) and BS

(
x, r

k2

)
⊂ B(x, r). Assume that

y ∈ B(x, k1r). Then we get

d(x, y) ≤ k1r and
d(x, y)

k1
≤ r.

Hence we obtain

S(x, x, y) ≤ d(x, y)

k1
≤ r,

that is, y ∈ BS(x, r). Therefore we have

B(x, k1r) ⊂ BS(x, r).

Using the above arguments, we see that

BS

(
x,

r

k2

)
⊂ B(x, r).

Consequently, the metric d and the S-metric S are equivalent. □

Proposition 2.16. Let (X, d) be a metric space and (X,Sd) be an S-metric space
with the S-metric Sd generated by d. Then the metric d and the S-metric Sd are
equivalent.

Proof. Since Sd is an S-metric generated by d, then from Lemma 2.4 we get

Sd(x, y, z) = d(x, z) + d(y, z)

and so
Sd(x, x, y) = 2d(x, y).

Therefore we have
1

2
Sd(x, x, y) ≤ d(x, y) ≤ Sd(x, x, y),

for k1 = 1
2 , k2 = 1. Consequently, from Proposition 2.15 the metric d and the

S-metric Sd are equivalent. □

Remark 2.17. Notice that a metric and an S-metric which is not generated by any
metric can be equivalent. For example, let us consider the S-metric S1 defined in
Remark 2.8 and the usual metric on R. Therefore the usual metric and the S-metric
S1 are equivalent.

Finally, even if an S-metric space is topologically equivalent to a metric space,
but they are isometrically distinct.
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[16] N. Y. Özgür, N. Taş and U. Çelik, New fixed-circle results on S-metric spaces, Bull. Math.

Anal. Appl. 9 (2), 10-23, 2017.
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