ON S-METRIC SPACES WITH SOME TOPOLOGICAL ASPECTS

N. ÖZGÜR AND N. TAŞ

Abstract

The notion of a metric space is an important tool in functional analysis, nonlinear analysis and especially in topology. New generalizations of metric spaces have been introduced in recent years. For instance, S-metric and b-metric spaces are among the recent generalizations of a metric space. Fixed point theory has been intensively studied and generalized using various approaches on these new spaces. In this paper we consider the relationships among a metric, an S-metric and a b-metric. In this context, we define the topological equivalence between a metric and an S-metric. Especially, we focus on the fact that every S-metric does not always generate a metric. This is the main motivation of the recent fixed point studies for self-mappings on an S metric space. Also we revisit the notion of a metric generated by an S-metric. We support our theoretical findings by necessary illustrative examples. As a consequence, existing studies based on the metric generated by an S-metric can be updated using a general S-metric whether generate a metric or not.

1. Introduction and Preliminaries

Let (X, d) be a metric space. Many generalizations of a metric space have been appeared in the literature, for example, a quasi-metric space, a rectangular metric space, a G-metric space, an S-metric space, a b-metric space, and so on. Fixed point theory has been intensively studied and generalized using various approaches on these generalized metric spaces (see [4], 7], [8], 9], 10] and the references therein). In this paper, mainly, we consider the relationships among a metric, an S-metric and a b-metric.

The notion of an S-metric space has been introduced as follows:
Definition 1.1. 19 Let $X \neq \emptyset$. An S-metric on X is a function such that $\mathcal{S}: X \times X \times X \rightarrow[0, \infty)$ satisfying the following conditions for all $x, y, z, a \in X$:
$(S 1) \mathcal{S}(x, y, z)=0$ if and only if $x=y=z$,
$(S 2) \mathcal{S}(x, y, z) \leq \mathcal{S}(x, x, a)+\mathcal{S}(y, y, a)+\mathcal{S}(z, z, a)$.
Then the pair (X, \mathcal{S}) is called an S-metric space.

[^0]Recently, new fixed-point results have been proved using various approaches to find the existence and uniqueness conditions for a fixed point of a self-mapping on an S-metric space (see [4], [5], [6], 13], 14], [15], 19], 20] and 21]). By a geometric viewpoint, some geometric properties of the fixed point set of a selfmapping on an S-metric space have been studied in the non unique fixed point case (see [1], [3], [11, [12, [16], [17], [18], [22] and the references therein).

Some properties and relationships between a metric and an S-metric were studied by several authors (see [5], [6], [14], [19], [20] and [21] for more details). Topological equivalence is an important issue both for studies on fixed point theory and on topology (for example, see 23] and the references therein). Hence, we present the topological equivalence between a metric and an S-metric along with the relationships among a metric, an S-metric and a b-metric.

On the other hand, we focus on the fact that there exist some examples of an S-metric which does not always generate a metric (for example, see 14 for more details). We revisit the notion of a metric generated by an S-metric. Hence, the existing studies based on the metric generated by an S-metric can be updated using a general S-metric whether generate a metric or not.

At first, we recall the following definitions and lemmas which will be needed in the sequel.

Definition 1.2. 2 Let $X \neq \emptyset$. A b-metric on X is a function $d: X \times X \rightarrow[0, \infty)$ if there exists a real number $b \geq 1$ such that the following conditions are satisfied for all $x, y, z \in X$:
$(B 1) d(x, y)=0$ if and only if $x=y$,
$(B 2) d(x, y)=d(y, x)$,
(B3) $d(x, z) \leq b[d(x, y)+d(y, z)]$.
Then the pair (X, d) is called a b-metric space.
For more details on the recent fixed point results on b-metric spaces see the recent survey [9] and the references therein.

Definition 1.3. 19 Let (X, \mathcal{S}) be an S-metric space.
(1) A sequence $\left\{x_{n}\right\}$ in X converges to x if and only if $\mathcal{S}\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow$ ∞. That is, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}, \mathcal{S}\left(x_{n}, x_{n}, x\right)<\varepsilon$ for each $\varepsilon>0$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ or $\lim _{n \rightarrow \infty} \mathcal{S}\left(x_{n}, x_{n}, x\right)=0$.
(2) A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if $\mathcal{S}\left(x_{n}, x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. That is, there exists $n_{0} \in \mathbb{N}$ such that for all $n, m \geq n_{0}$, $\mathcal{S}\left(x_{n}, x_{n}, x_{m}\right)<\varepsilon$ for each $\varepsilon>0$.
(3) The S-metric space (X, \mathcal{S}) is called complete if every Cauchy sequence is convergent.

Lemma 1.4. [19] Let (X, \mathcal{S}) be an S-metric space. Then we have

$$
\mathcal{S}(x, x, y)=\mathcal{S}(y, y, x)
$$

Lemma 1.5. 19$] \operatorname{Let}(X, \mathcal{S})$ be an S-metric space. If $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$ then $\lim _{n \rightarrow \infty} \mathcal{S}\left(x_{n}, x_{n}, y_{n}\right)=\mathcal{S}(x, x, y)$.

2. Comparisons between metric and some generalized metrics

Let (X, \mathcal{S}) be an S-metric space. In [5], it was shown that every S-metric on X defines a metric d_{S} on X as follows:

$$
\begin{equation*}
d_{S}(x, y)=\mathcal{S}(x, x, y)+\mathcal{S}(y, y, x)=2 \mathcal{S}(x, x, y) \tag{1}
\end{equation*}
$$

for all $x, y \in X$. However, in [14] it was noticed that the function d_{S} defined in (1) does not always define a metric because of the reason that the triangle inequality is not satisfied for all elements of X everywhen. Also, an example of an S-metric which does not generate a metric was given (see 14 for more details). We give another examples.

Example 2.1. Let $X=\{a, b, c\}$ and the function $\mathcal{S}: X \times X \times X \rightarrow[0, \infty)$ be defined as

$$
\begin{aligned}
& \mathcal{S}(a, a, c)=\mathcal{S}(c, c, a)=12 \\
& \mathcal{S}(b, b, c)=\mathcal{S}(c, c, b)=\mathcal{S}(a, a, b)=\mathcal{S}(b, b, a)=5 \\
& \mathcal{S}(x, y, z)=0 \text { if } x=y=z \\
& \mathcal{S}(x, y, z)=1 \text { if otherwise }
\end{aligned}
$$

for all $x, y, z \in X$. Then the function \mathcal{S} is an S-metric and the pair (X, \mathcal{S}) is an S-metric space. However, the function d_{S} defined in (1) is not a metric on X. Indeed, for $x=a, y=c$ and $z=b$, we get

$$
d_{S}(a, c)=24 \not \leq d_{S}(a, b)+d_{S}(b, c)=20 .
$$

We note that the function d_{S} is called the metric generated by the S-metric \mathcal{S} in the case that d_{S} is a metric.

Now, we give the relationship between an S-metric and a b-metric.
Proposition 2.2. Let (X, \mathcal{S}) be an S-metric space and the function $d: X \times X \rightarrow$ $[0, \infty)$ be defined as

$$
d(x, y)=k \mathcal{S}(x, x, y)
$$

for all $x, y \in X$ and some $k>0$. Then the function d is a b-metric on X.
Proof. Using the condition $(S 1)$ and Lemma 1.4 , we can easily seen that the conditions $(B 1)$ and $(B 2)$ are satisfied. Now we show that the condition $(B 3)$ is satisfied. From the condition $(S 2)$ and Lemma 1.4, we get

$$
\begin{align*}
d(x, z) & =k \mathcal{S}(x, x, z) \leq 2 k \mathcal{S}(x, x, y)+k \mathcal{S}(z, z, y) \\
& =2 k \mathcal{S}(x, x, y)+k \mathcal{S}(y, y, z) \tag{2}\\
& =2 d(x, y)+d(y, z)
\end{align*}
$$

and

$$
\begin{align*}
d(x, z) & =k \mathcal{S}(x, x, z)=k \mathcal{S}(z, z, x) \leq 2 k \mathcal{S}(z, z, y)+k \mathcal{S}(x, x, y) \\
& =2 k \mathcal{S}(y, y, z)+k \mathcal{S}(x, x, y) \tag{3}\\
& =2 d(y, z)+d(x, y)
\end{align*}
$$

From the inequalities (2) and (3), we have

$$
d(x, z) \leq \frac{3}{2}[d(x, y)+d(y, z)]
$$

Consequently, the function d is a b-metric with $b=\frac{3}{2}$.

Remark 2.3. 1) If we take $k=1$ in Proposition 2.2 then we get Proposition 2.1 on page 116 in 20.
2) If we take $k=2$ in Proposition 2.2 then we get the equality (1).
3) From Proposition 2.2, we deduce that the function d_{S} defined in (1) is a b metric on X, but it is not always a metric since every b-metric need not to be a metric.

The relation between a metric and an S-metric is given in 6 as follows:
Lemma 2.4. [6] Let (X, d) be a metric space. Then the following properties are satisfied:
(1) $\mathcal{S}_{d}(x, y, z)=d(x, z)+d(y, z)$ for all $x, y, z \in X$ is an S-metric on X.
(2) $x_{n} \rightarrow x$ in (X, d) if and only if $x_{n} \rightarrow x$ in $\left(X, \mathcal{S}_{d}\right)$.
(3) $\left\{x_{n}\right\}$ is Cauchy in (X, d) if and only if $\left\{x_{n}\right\}$ is Cauchy in $\left(X, \mathcal{S}_{d}\right)$.
(4) (X, d) is complete if and only if $\left(X, \mathcal{S}_{d}\right)$ is complete.

The metric \mathcal{S}_{d} is called the S-metric generated by d.
Now we present the following properties with some illustrative examples.
Proposition 2.5. Let X be a nonempty set. If an S-metric is generated by any metric then this S-metric generates a metric d_{S}.
Proof. Let \mathcal{S}_{d} be an S-metric on X generated by a metric d. Then by Lemma 2.4 we have

$$
\mathcal{S}_{d}(x, y, z)=d(x, z)+d(y, z)
$$

for all $x, y, z \in X$. Then we obtain

$$
\begin{aligned}
d_{\mathcal{S}_{d}}(x, y) & =\mathcal{S}_{d}(x, x, y)+\mathcal{S}_{d}(y, y, x)=2 \mathcal{S}_{d}(x, x, y) \\
& =2[d(x, y)+d(x, y)]=4 d(x, y)
\end{aligned}
$$

for all $x, y \in X$. Since d is a metric on X, then the function $d_{\mathcal{S}_{d}}$ defines a metric on X.

We give the following corollary as a result of Proposition 2.5 .
Corollary 2.6. Let X be a nonempty set. If an S-metric is generated by any metric d then we have

$$
d_{S}(x, y)=4 d(x, y)
$$

The converse of Proposition 2.5 is not always true as seen in the following example.

Example 2.7. Let $X=\mathbb{R}^{2}$ and define the function

$$
\mathcal{S}(x, y, z)=\sum_{i=1}^{2}\left(\left|x^{13}-z^{13}\right|+\left|x^{13}+z^{13}-2 y^{13}\right|\right)
$$

for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$. Then the pair $\left(\mathbb{R}^{2}, \mathcal{S}\right)$ is an S-metric space with the S-metric which is not generated by any metric d, that is, $\mathcal{S} \neq \mathcal{S}_{d}$. On the contrary, we assume that there exists a metric d such that

$$
\mathcal{S}(x, y, z)=\mathcal{S}_{d}(x, y, z)=d(x, z)+d(y, z)
$$

for all $x, y, z \in \mathbb{R}^{2}$. Therefore we have

$$
\mathcal{S}(x, x, z)=2 d(x, z) \text { and } d(x, z)=\sum_{i=1}^{2}\left|x^{13}-z^{13}\right|
$$

and

$$
\mathcal{S}(y, y, z)=2 d(y, z) \text { and } d(y, z)=\sum_{i=1}^{2}\left|y^{13}-z^{13}\right|
$$

for all $x, y, z \in \mathbb{R}^{2}$. So we get

$$
\sum_{i=1}^{2}\left(\left|x^{13}-z^{13}\right|+\left|x^{13}+z^{13}-2 y^{13}\right|\right)=\sum_{i=1}^{2}\left(\left|x^{13}-z^{13}\right|+\left|y^{13}-z^{13}\right|\right)
$$

which is a contradiction for $x=(1,1), y=(2,2), z=(0,0) \in \mathbb{R}^{2}$. Consequently, $\mathcal{S} \neq \mathcal{S}_{d}$, that is, the S-metric is not generated by any metric d. However, this S-metric generates a metric d_{S} such that

$$
d_{S}(x, y)=\mathcal{S}(x, x, y)+\mathcal{S}(y, y, x)=2 \mathcal{S}(x, x, y)=2 \sum_{i=1}^{2}\left|x^{13}-y^{13}\right|
$$

for all $x, y \in \mathbb{R}^{2}$.
Remark 2.8. Let X be a nonempty set, \mathcal{S}_{1} be an S-metric on X which is not generated by any metric d and \mathcal{S}_{2} be an S-metric on X which is generated by some metric d. Then $d_{\mathcal{S}_{1}}$ and $d_{\mathcal{S}_{2}}$ may be the same. For example, let $X=\mathbb{R}$ and the functions $\mathcal{S}_{1}, \mathcal{S}_{2}: X \times X \times X \rightarrow[0, \infty)$ be defined as

$$
\mathcal{S}_{1}(x, y, z)=|x-z|+|x+z-2 y|
$$

and

$$
\mathcal{S}_{2}(x, y, z)=|x-z|+|y-z|
$$

for all $x, y, z \in \mathbb{R}$. Then \mathcal{S}_{1} is an S-metric on \mathbb{R} which is not generated by any metric d and \mathcal{S}_{2} be an S-metric which is called usual S-metric on \mathbb{R} generated by usual metric d (see [14] and 20] for more details, respectively). By Lemma 2.4 we get

$$
d_{S_{1}}(x, y)=d_{S_{2}}(x, y)=4|x-y|,
$$

for all $x, y \in \mathbb{R}$. Consequently, \mathcal{S}_{1} and \mathcal{S}_{2} generate the same metric $d_{S}=d_{S_{1}}=d_{S_{2}}$.
Now we investigate another relationships between a metric and an S-metric with topological aspects. At first, we recall the following definitions and lemma on an S-metric space.
Definition 2.9. 19 Let (X, \mathcal{S}) be an S-metric space. For $r>0$ and $x \in X$, the open ball $B_{S}(x, r)$ with a center x and radius r is defined as follows:

$$
B_{S}(x, r)=\{y \in X: \mathcal{S}(x, x, y)<r\}
$$

Definition 2.10. 19 Let (X, \mathcal{S}) be an S-metric space and $A \subseteq X$. For every $x \in A$, if there exists a $r>0$ such that

$$
B_{S}(x, r) \subseteq A
$$

then the subset A is called an open subset of X.
Lemma 2.11. 19] Let (X, \mathcal{S}) be an S-metric space. If $r>0$ and $x \in X$, the open ball $B_{S}(x, r)$ is an open subset of X.

In the following definition, we give the notion of topological equivalence of a metric and an S-metric.

Definition 2.12. Let (X, d) be a metric space and (X, \mathcal{S}) be an S-metric space. The metric d and the S-metric \mathcal{S} are said to be topological equivalent (briefly, equivalent) if they generate the same topology on X, that is, A is an open subset on (X, d) if and only if it is an open subset on (X, \mathcal{S}).

Using this definition, we obtain the following proposition.
Proposition 2.13. Let (X, d) be a metric space and (X, \mathcal{S}) be an S-metric space. Then the metric d and the S-metric \mathcal{S} are equivalent if and only if there exist radii $r_{1}, r_{2}, \rho_{1}, \rho_{2}>0$ such that

$$
B\left(x, r_{1}\right) \subset B_{S}\left(x, r_{2}\right)
$$

and

$$
B_{S}\left(x, \rho_{1}\right) \subset B\left(x, \rho_{2}\right),
$$

for each $x \in X$.
Proof. Assume that the metric d and the S-metric \mathcal{S} are equivalent. Let us consider an open ball $B_{S}\left(x, r_{2}\right)$ for each $x \in X$. Since the metric d and the S-metric S are equivalent then $B_{S}\left(x, r_{2}\right)$ is also open on (X, d). Therefore there exists an open ball such that

$$
B\left(y, r_{1}\right) \subset B_{S}\left(x, r_{2}\right)
$$

for each $y \in B_{S}\left(x, r_{2}\right)$. If we take $x=y$ then we get

$$
B\left(x, r_{1}\right) \subset B_{S}\left(x, r_{2}\right)
$$

Similarly we obtain

$$
B_{S}\left(x, \rho_{1}\right) \subset B\left(x, \rho_{2}\right)
$$

Conversely, let A be an open set on (X, d) and $x \in A$. Then there exists an open ball $B\left(x, \rho_{2}\right)$ such that

$$
B\left(x, \rho_{2}\right) \subset A
$$

for each $x \in A$. By the hypothesis, there exists an open ball $B_{S}\left(x, \rho_{1}\right)$ on (X, S) such that

$$
B_{S}\left(x, \rho_{1}\right) \subset B\left(x, \rho_{2}\right) \subset A
$$

Then A is an open set on (X, \mathcal{S}). Similarly, if A is an open set on (X, \mathcal{S}) then A is an open set on (X, d).

Using the idea of projection to reduce three dimensions to two dimensions, we give the following definition.

Definition 2.14. Let (X, d) be a metric space and (X, \mathcal{S}) be an S-metric space. If there exist numbers $k_{1}, k_{2}>0$ such that

$$
k_{1} \mathcal{S}(x, x, y) \leq d(x, y) \leq k_{2} \mathcal{S}(x, x, y)
$$

then the metric d and the S-metric \mathcal{S} are said to (\mathcal{S}, d)-Lipschitz equivalent.
In the following proposition we see the relationships between topological equivalence and (\mathcal{S}, d)-Lipschitz equivalence.

Proposition 2.15. Let (X, d) be a metric space and (X, \mathcal{S}) be an S-metric space. If the metric d and the S-metric \mathcal{S} are (\mathcal{S}, d)-Lipschitz equivalent then they are equivalent.

Proof. We prove that the metric d and the S-metric \mathcal{S} are equivalent. To do this, we show that $B\left(x, k_{1} r\right) \subset B_{S}(x, r)$ and $B_{S}\left(x, \frac{r}{k_{2}}\right) \subset B(x, r)$. Assume that $y \in B\left(x, k_{1} r\right)$. Then we get

$$
d(x, y) \leq k_{1} r \text { and } \frac{d(x, y)}{k_{1}} \leq r
$$

Hence we obtain

$$
S(x, x, y) \leq \frac{d(x, y)}{k_{1}} \leq r
$$

that is, $y \in B_{S}(x, r)$. Therefore we have

$$
B\left(x, k_{1} r\right) \subset B_{S}(x, r)
$$

Using the above arguments, we see that

$$
B_{S}\left(x, \frac{r}{k_{2}}\right) \subset B(x, r)
$$

Consequently, the metric d and the S-metric \mathcal{S} are equivalent.
Proposition 2.16. Let (X, d) be a metric space and $\left(X, \mathcal{S}_{d}\right)$ be an S-metric space with the S-metric \mathcal{S}_{d} generated by d. Then the metric d and the S-metric \mathcal{S}_{d} are equivalent.

Proof. Since \mathcal{S}_{d} is an S-metric generated by d, then from Lemma 2.4 we get

$$
\mathcal{S}_{d}(x, y, z)=d(x, z)+d(y, z)
$$

and so

$$
\mathcal{S}_{d}(x, x, y)=2 d(x, y)
$$

Therefore we have

$$
\frac{1}{2} \mathcal{S}_{d}(x, x, y) \leq d(x, y) \leq \mathcal{S}_{d}(x, x, y)
$$

for $k_{1}=\frac{1}{2}, k_{2}=1$. Consequently, from Proposition 2.15 the metric d and the S-metric \mathcal{S}_{d} are equivalent.

Remark 2.17. Notice that a metric and an S-metric which is not generated by any metric can be equivalent. For example, let us consider the S-metric \mathcal{S}_{1} defined in Remark 2.8 and the usual metric on \mathbb{R}. Therefore the usual metric and the S-metric \mathcal{S}_{1} are equivalent.

Finally, even if an S-metric space is topologically equivalent to a metric space, but they are isometrically distinct.

References

[1] H. Aydi, N. Taş, N., N. Y. Özgür and N. Mlaiki, Fixed-discs in rectangular metric spaces, Symmetry, 11 (2), 294, 2019.
[2] I. A. Bakhtin, The contraction principle in quasimetric spaces, Func. An. Ulianowsk Gos. Ped. Ins. 30, 26-37, 1989.
[3] U. Çelik and N. Özgür, On the fixed-circle problem, Facta Univ. Ser. Math. Inform. 35 (2), 1273-1290, 2020.
[4] T. Došenović, S. Radenović and S. Sedghi, Generalized metric spaces: survey, TWMS J. Pure Appl. Math. 9 (1), 3-17, 2018.
[5] A. Gupta, Cyclic contraction on S-metric space, Int. J. Anal. Appl. 3 (2), 119-130, 2013.
[6] N. T. Hieu, N. T. Ly and N. V. Dung, A generalization of Ciric quasi-contractions for maps on S-metric spaces, Thai J. Math. 13 (2), 369-380, 2015.
[7] S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: a survey. Nonlinear Anal. 74 (7), 2591-2601, 2011.
[8] Z. Kadelburg and S. Radenović, On generalized metric spaces: a survey, TWMS J. Pure Appl. Math. 5 (1), 3-13, 2014.
[9] E. Karapinar, A short survey on the recent fixed point results on b-metric spaces, Constr. Math. Anal. 1 (1), 15-44, 2018.
[10] M. A. Khamsi, Generalized metric spaces: a survey, J. Fixed Point Theory Appl. 17 (3), 455-475, 2015.
[11] N. Mlaiki, U. Çelik, N. Taş, N. Y. Özgür and A. Mukheimer, Wardowski type contractions and the fixed-circle problem on S-metric spaces, J. Math. 2018, Art. ID 9127486, 9 pp, 2018.
[12] N. Mlaiki, N. Y. Özgür and N. Taş, New fixed-point theorems on an S-metric space via simulation functions, Mathematics, 7 (7), 583, 2019.
[13] N. Y. Özgür and N. Taş, Some generalizations of fixed point theorems on S-metric spaces, Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
[14] N. Y. Özgür and N. Taş, Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci. (Springer) 11 (1), 7-16, 2017.
[15] N. Y. Özgür and N. Taş, Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1), 39-52, 2017.
[16] N. Y. Özgür, N. Taş and U. Çelik, New fixed-circle results on S-metric spaces, Bull. Math. Anal. Appl. 9 (2), 10-23, 2017.
[17] N. Y. Özgür and N. Taş, Fixed-circle problem on S-metric spaces with a geometric viewpoint, Facta Univ. Ser. Math. Inform. 34 (3), 459-472, 2019.
[18] N. Özgür and N. Taş, On the geometry of fixed points of self-mappings on S-metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 (2), 190-198, 2020.
[19] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (3), 258-266, 2012.
[20] S. Sedghi and N. V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (1), 113-124, 2014.
[21] S. Sedghi, I. Altun, N. Shobe and M. Salahshour, Some properties of S-metric space and fixed point results, Kyungpook Math. J. 54 (1), 113-122, 2014.
[22] N. Taş, Suzuki-Berinde type fixed-point and fixed-circle results on S-metric spaces, J. Linear Topol. Algebra 7 (3), 233-244, 2018.
[23] N. Taş, On the topological equivalence of some generalized metric spaces, J. Linear Topol. Algebra 9 (1), 67-74, 2020.
[24] Sh. A. Abd El-Salam and A. M. A. El-Sayed, On the stability of some fractional-order nonautonomous systems, Electron. J. Qual. Theory Differ. Equ. 2007 (6), 1-14, 2007.
[25] R. P. Agarwal, B. de Andrade and C. Cuevas, On type of periodicity and ergodicity to a class of fractional order differential equations, Adv. Difference Equ. 2010, Article ID 179750, 1-25, 2010.
N. ÖZGÜR

Department of Mathematics, Izmir Democracy University, 35140 Karabağlar, Izmir, TÜRKİYE

Email address: nihal.ozgur@idu.edu.tr
N. TAŞ

Department of Mathematics, Balikesir University, 10145 Balikesir, TÜrkíye
Email address: nihaltas@balikesir.edu.tr

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.
 Key words and phrases. S-metric, b-metric, topological equivalence, Lipschitz equivalence. Submitted April. 16, 2023. Revised May. 12, 2023.

