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COLLOCATION COMPUTATIONAL ALGORITHM FOR

VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL

EQUATIONS

T. OYEDEPO, C.Y. ISHOLA, A.A. AYOADE, G. AJILEYE

Abstract. In this study, we present a collocation computational technique for

solving Volterra-Fredholm Integro-Differential Equations (VFIDEs) via fourth
kind Chebyshev polynomials as basis functions. The method assumed an ap-

proximate solution by means of the fourth kind Chebyshev polynomials, which

were then substituted into the Volterra-Fredholm Integro-Differential Equa-
tions (VFIDEs) under consideration. Thereafter, the resulting equation is

collocated at equally spaced points, which results in a system of linear al-

gebraic equations with the unknown Chebyshev coefficients. The system of
equations is then solved using the matrix inversion approach to obtain the

unknown constants. The unknown constants are then substituted into the

assumed approximate solution to obtain the required approximate solution.
To test for the accuracy and efficiency of the scheme, six numerical examples

were solved, and the results obtained show the method performs excellently

compared to the results in the literature. Also, tables are used to outline the
methods accuracy and efficiency.

1. Introduction

φr(s) +

r−1∑
i=0

µi(s)φ
i(s) = f(s) + λ1

∫ s

a

K1(s, t)φ(t)dt+ λ2

∫ b

a

K2(s, t)φ(t)dt, (1)

with the initial conditions

φi(0) = φi, i = 0, 1, 2, . . . r − 1. (2)

Where K1(s, t) and K2(s, t) and µi(s), i = 0, 1, 2, . . . r are known functions on the
interval a ≤ s ≤ t ≤ b. a, b, λ1 , λ2 are constant values, f(s) is a known function and
φ(s) is the unknown function to be determined. Integro-differential equations are
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extensively used as mathematical models across a range of subjects. The study of
integral and integro-differential equations has its roots in the work of Abel, Lotka,
Fredholm, Malthus, and Verhulst, for more information, see [1] and references cited
therein. Integro-Differential Equations (IDEs) have drawn a great deal of attention
lately. Getting accurate approximations using numerical techniques will be very
helpful because many IDEs cannot be solved analytically. The following are just
a few of the authors who have offered numerical approaches to solve IDEs: Ra-
tionalized Haar function approach is used by [2] to solve a system of linear IDEs,
Adomian decomposition method is implemented in [3] to solve BVPs for fourth-
order IDEs, utilizing a variational iteration approach, [4] presented the solution of
fourth order IDEs, Applying the differential transform method to solve high-order
nonlinear Volterra-Fredholm IDEs is implemented by [5], For the solving linear
FVIDE, [6] applied a fixed-point iterative algorithm, For solving Fredholm-Volterra
Integro-Differential Equations (FVIDEs), [7], [8], and [9] used Chebyshev polyno-
mials as basis functions, while [10] employed the Chebyshev wavelet approximation
analytical solution for high-order IDEs. [11] presented a novel numerical method
using the Chebyshev third-kind polynomials. The numerical solution of a system
of linear fractional IDEs using the least-squares collocation Chebyshev technique is
investigated by [12], In [13] work, two proposed approaches for rational Chebyshev
functions are used to study the numerical solution of high-order linear IDEs with
variable coefficients, A class of linear IDEs with weakly singular kernels were solved
using the Bernstein series by [14], and For the VFIDEs, the collocation approach
is used by [15], [16], [17], [18], [19], and [20]. Also, [21], [22], [23] and [24] contain
a number of numerical techniques for solving the FIDEs. In this study, we pro-
vide a fourth kind of Chebyshev collocation technique for the class of problems in
the earlier work that is motivated and inspired by the earlier work, with improved
accuracy and requires less work.

2. Material and Method

Definition 1
Chebyshev Polynomials of the Fourth Kind (CPFK): The CPFK are orthogonal

polynomials with respect to the weight function w(s) =
√

1−s
1+s∀ ∈ [−1, 1], is defined

by ψr(s) =
sin(r+ 1

2 )θ

sin θ
2

, where s = cos θ and the recurrence relation is given as:

ψ(r+1)(s) = 2sψr(s)− ψr−1(s), r ≥ 1,

starting with ψ(0)(s) = 1 and ψ(1)(s) = 2s+ 1.
Hence, the first few CPFK are given below:
ψ(0)(s) = 1, ψ(1)(s) = 2s+ 1, ψ(2)(s) = 4s2 + 2s− 1, ψ(3)(s) = 8s3 + 4s2 − 3s− 1,

ψ(4)(s) = 16s4 + 8s3 − 12s2 − 2s+ 1, ψ(5)(s) = 32s5 + 16s4 − 32s3 − 12s2 + 6s+ 1

Definition 2
Shifted Chebyshev Polynomials of the Fourth Kind (SCPFK): The SCPFK is or-

thogonal polynomials with respect to the weight function w∗(s) =
√

1−s
s ∀ ∈ [0, 1],

is defined by ψ∗
r (s) = ψ(r)(2s+ 1) where ψ(r)(s) is CPFK.The recurrence relation

is given by

ψ∗
(r+1)(s) = 2(2s+ 1)ψ∗

r (s)− ψ∗
r−1(s), r ≥ 1,
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starting with ψ∗
(0)(s) = 1 and ψ∗

(1)(s) = 4s− 1.

Hence, the first few SCPFK are given below:

ψ∗
(0)(s) = 1, ψ∗

(1)(s) = 4s− 1, ψ
[
(2)∗(s) = 16s2 − 12s+ 1, ψ∗

(3)(s) = 64s3 − 80s2 +

24s− 1,
ψ∗
(4)(s) = 256s4 − 448s3 + 240s2 − 40s + 1, ψ∗

(5)(s) = 1024s5 − 2304s4 + 1792s3 −
560s2 + 60s− 1

Definition 3
Collocation method: A method of evaluating an approximate solution in a suitable
collection of functions, sometimes referred to as a trial solution or basis function.

Definition 4
Approximate solution:An approximate solution is an inexact representation of the
exact solution that is still close enough to be useful.

Definition 5
Exact solution: The solution of an equation is called an exact solution if it can be
expressed in a closed form, such as a polynomial, exponential function, trigonomet-
ric function or the combination of two or more of these elementary functions.

Definition 6
We defined absolute error as follows in this study: Absolute Error = |φ(s)− φ(s)|;
−1 ≤ s ≤ 1, where φ(s)is the exact solution and φ(s) is the approximate solution.

3. Demonstration of the method

Proposed method
The work assumed an approximate solution by means of the fourth kind Chebyshev
polynomial in the form:

φi(s) =

r∑
i=0

ψi(s)ci (3)

The unknowable constants to be determined are ci, i = 0(1)r. Differentiating Eq.
(3) with respect to rth-times as functions of s, to obtain the following equations
Thus, substituting Eq. (3) into Eq. (1) gives:

r∑
i=0

µi(s)ψ
i
i(s)ci = f(ω) + λ1

∫ b

a

K1(s, t)ψi(t)cidt+ λ2

∫ s

a

K2(s, t)ψi(t)cidt, (4)

Let ζ(s) =
∑n

i=0 µi(s)ψ
i
i(s)ci, η(s) = λ1

∫ b

a
K1(s, t)ψ

i
i(t)cidt and τ(s) = λ2

∫ s

a
K2(s, t)ψ

i
i(t)cidt

where ζ(s) is the differential part, η(s) is the Fredholm integral part and τ(s) is
the Volterra integral part. Thus, equation (4) becomes

ζ(s)− η(s)− τ(s) = f(s) (5)

The linear algebraic system of equations in (n+1) unknown constants c′is is obtained

by collocating Eq. (5) at the equally spaced point si = a + (b−a)i
n , (i = 0(1)(n)).
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Additional equations are obtained from Eq. (2), which are represented in matrix
form:



A11 A12 A13 · · · · · · · · · A1r

A21 A22 A23 · · · · · · · · · A2r

...
...

...
...

...
...

...
...

Am1 Am2 Am3 · · · · · · · · · Amr

A0
11 A0

12 A0
13 · · · · · · · · · A0

1r

A1
21 A1

22 A1
23 · · · · · · · · · A1

2r
...

...
...

...
...

...
...

...
Ar−1

m1 Ar−1
m2 Ar−1

m3 · · · · · · · · · Ar−1
mr





c0
c1
...
...
...
...
...
...
cr



=



B11

B22

...

...
Bmr
R0

11

B1
22

...
...

Br−1
mr



(6)

where A′
is and A0′s

i are the coefficients of c′is and B′
is are values of f(si). The

matrix inversion approach is then used to solve the system of equations in order to
obtain the unknown constants.



c0
c1
...
...
...
...
...
...
cr



=



A11 A12 A13 · · · · · · · · · A1r

A21 A22 A23 · · · · · · · · · A2r

...
...

...
...

...
...

...
...

Am1 Am2 Am3 · · · · · · · · · Amr

A0
11 A0

12 A0
13 · · · · · · · · · A0

1r

A1
21 A1

22 A1
23 · · · · · · · · · A1

2n
...

...
...

...
...

...
...

...
Ar−1

m1 An−1
m2 An−1

m3 · · · · · · · · · Ar−1
mr



−1 

B11

B22

...

...
Bmr
B0

11

B1
22

...
...

Br−1
mr



(7)

The required approximate solution is obtained by solving Eq. (7) and then substi-
tuting the unknown constant values into the assumed approximate solution.

4. Numerical Applications

Example 1 [7], [9]: Consider the following fifth-order Fredholm integro- differ-
ential equation

φv(s)− s2φ
′′′
(s)− φ

′
(s)− ωφ(s) = ω2 cos s− s sin s+

∫ 1

−1

φ(t)dt

Subject to the conditions φ(0) = 0, φ
′
(0) = 1, φ

′′
(0) = 0, φ

′′′
(0) = −1,φiv(0) =

−1. The exact solution is φ(ω) = sinω.
Using the method outlined above, we obtained the following unknown constants:
c0 = −0.440064481396165, c1 = 0.440064505468773, c2 = 0.0195564449518142,

c3 = −0.0195564016204016, c4 = −0.0002511296319910, c5 = 0.000251137036237896
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c6 = 0.00000151176309613037, c7 = −0.00000150694848807835,
c8 = −5.13558381953082× 10−9,
c9 = 5.13558387195263× 10−9

Consequently, the approximate solution is given as:
φ(s) = s+0.000002629418942s9+2.8392052×10−11+1.3×10−14s8−0.0001981893290s7−
1.43× 10−13s6 + 0.008333170309s5 − 6.88× 10−13s4 − 0.16666666667s3 − 5.4121×
10−12s2

Example 2 [9] Consider the Volterra integro-differential equation of second
order

φ
′
(s) + sφ

′
(s)− sφ(s) = es − (s+ 1) sin s+

∫ s

−1

sin se−tφ(t)dt

Subject to the conditions φ(0) = 1, φ
′
(0) = 1. The exact solution is φ(s) = es

Using the method outlined above, we obtained the following unknown constants:
c0 = 0.700918984547003, c1 = 0.429398759584840, c2 = 0.113584921573100,
c3 = 0.0194247870239250, c4 = 0.00246650242558680, c5 = 0.000247661871666485,
c6 = 0.0000207850298229589, c7 = 0.00000151091646799495, c8 = 9.9906758324608×
10−8

Thus, the approximate solution is given as:
φ(s) = 0.9999999997s+0.0002061853730s7 +1.000000003+ 0.00002557613013s8 +
0.001388176740s6+0.008326350282s5+0.04166693068s4+0.1666688805s3+0.4999999693s2

Example 3 [9],[24] Consider the FVIDE of first order

φ
′
(s)−

∫ 1

−1

sin (s− t)φ(t)dt−
∫ s

−1

stφ(t)dt =
27

5
+

41s

20
+3s2− 1

2
s3−s4− 3s5

4
− 1s6

5

φ(0) = 1, −1 ≤ s ≤ 1.

φ(s) = (s+ 1)
3

c0 = 0.375, c1 = 1.125, c2 = 0.624999999981010, c3 = 0.125
As a result, the approximate solution was found to be φ(s) = 1 + 3s + 3s2 + s3 ,
which agrees perfectly with the exact solution.

Example 4 Consider the VFIDE of the first order

φ
′
(s) = 9− 5s− s2 − s3 +

∫ 1

0

(s− t)φ(t)dt−
∫ 1

0

(s− t)φ(t)dt

φ(0) = 2
The analytic solution is given as φ(s) = 2 + 6s

c0 = 3.49999999998781, c1 = 1.49999999999793, c2 = 2.04753436428007× 10−11,
c3 = 1.03527741934784× 10−11

φ(s) = 2 + 6s− 5.006164370× 10−10s2 + 6.625775482× 10−10s3

Example 5 Consider the FVIDE of second order

φ
′′
(s) = −8 + 6s− 3s2 + s3 +

∫ 1

−1

(1− 2st)φ(t)dt−
∫ 1

0

φ(t)dt
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φ
′
(0) = 6 , φ(0) = 2

The analytic solution is given as φ(s) = 2 + 6s− 3s2

c0 = 3.12499999999702, c1 = 0.937499999994634, c2 = −0.187500000002982,
c3 = −5.96371910188687× 10−11

φ(s) = 2 + 6s− 3s2 − 3.816780225× 10−11

5. Numerical Results

Table 1. Shows comparison of the Absolute Error (AE) for ex-
ample 1

si [7] r=9 [9] r=9 Our Method r=9
−1.0 1.359E − 5 9.0E − 8 4.150E − 08
−0.8 3.194E − 6 3.9E − 8 2.143E − 08
−0.6 5.345E − 7 1.4E − 8 7.648E − 09
−0.4 4.896E − 8 4.0E − 9 1.359E − 09
−0.2 1.056E − 9 1.0E − 9 8.378E − 11
0.0 0.00000 0.0000 0.000E + 00
0.2 5.123E − 10 1.0E − 9 2.822E − 11
0.4 1.1835E − 8 1.6E − 8 1.301E − 09
0.6 6.7471E − 8 1.79E − 7 7.592E − 09
0.8 2.2275E − 7 1.15E − 6 2.137E − 08
1.0 5.5371E − 7 5.29E − 6 4.111E − 08

Table 2. Shows comparison of the AE for example 2

si [9]n=9 Our Method n=8
−1.0 2.0697374E − 2 2.011E − 7
−0.8 1.1470384E − 2 9.790E − 8
−0.6 4.420981E − 3 1.207E − 7
−0.4 9.73181E − 4 7.994E − 8
−0.2 5.9298E − 5 1.370E − 8
0.0 1.0E − 8 3.000E − 9
0.2 8.849E − 5 1.824E − 8
0.4 1.21776E − 3 8.442E − 8
0.6 5.26806E − 3 1.297E − 7
0.8 1.334832E − 2 1.087E − 07
1.0 2.336246E − 2 2.436E − 07
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Table 3. Shows comparison of the Exact Solution and the Aprrox-
imate Solution for example 4

si Exact Aprroximate AE
0.0 2.00000 0.0000 0.00000
0.2 3.20000 3.20000 0.00000
0.4 4.40000 4.40000 0.00000
0.6 5.60000 5.60000 0.00000
0.8 6.80000 6.80000 0.00000
1.0 8.00000 8.00000 0.00000

Table 4. Shows comparison of the Exact Solution and the Aprrox-
imate Solution for example 5

si Exact Aprroximate AE
0.0 2.00000 0.0000 0.00000
0.2 3.08000 3.08000 0.00000
0.4 3.92000 3.92000 0.00000
0.6 4.52000 4.52000 0.00000
0.8 4.88000 4.88000 0.00000
1.0 4.97000 4.97000 0.00000

6. Discussion of results

Using Maple 18, all examples in this study have been solved. Table 1 and Table 2
show that the suggested method outperforms [7] and [9]. According to Table 3 and
Table 4, the difference between the exact solution and the approximation solution
tends to be zero when the suggested method is used.

7. Conclusion

The proposed scheme has been effectively used in this research to arrive at nu-
merical solutions to VFIDEs via fourth-kind Chebyshev polynomials utilizing. ,
With the help of tables and figures, six numerical examples are used to outline
the technique’s accuracy and efficiency. Tables 1–4 demonstrate that the approach
utilized was more accurate since the error table discovered is smaller than those
found in [7] and [9].To this end, researchers can apply this technique to various
other VFIDEs on the basis of this work.
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