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ON THE APPLICATION OF MEAN SQUARE CALCULUS FOR

SOLVING RANDOM DIFFERENTIAL EQUATIONS

MAGDY. A. EL-TAWIL, AHLAM H. TOLBA

Abstract. In this paper, the random Finite Difference Methods are used in

solving random differential initial value problems of first order. The random
Finite Difference method is presented and the conditions for the mean square
convergence are established. Numerical examples show that random Finite
Difference method gives good results. The some statistical properties of the

numerical solutions are computed through numerical case studies.

1. Introduction

Random ordinary differential equations are defined as equations which contain
contain random input variables [3]. Most scientific, engineering, physical, chemical
and biological problems, which are very important for scientific and technological
progress, have been traditionally formulated through mathematical models based
on ordinary or partial differential equations, where the data (initial conditions,
source term and/or coefficients) are expressed by means of numerical values or
deterministic functions [5]. In recent years, the solution of a stochastic differential
equation is gotten when we evaluate the probability density function of this solution.
We can use several methods; see [1], [2], [4], [5], [6], [7], [8], [9], [10]. This paper
deals with random differential initial value problems of the form

Ẋ(t) = F (X(t), t), t0 < t < te,

X(t0) = X0 (1)

where X0 is a second order random variable and, the unknown X (t) as well as the
second member F (X (t) , t) are second order stochastic processes. In this paper
the random Finite Difference methods are used to obtain an approximate solution
for Equation 1. This paper is organized as follows. Section 2 deals with some
preliminary definitions, results, notations and examples. Section 3 is addressed to
the presentation and the proof of the convergence for the random Forward Finite
Difference Scheme in mean square sense. In Section 4, the statistical properties
for the exact and numerical solutions are studied. Last section 5 is devoted to
conclusions.
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2. Preliminaries

2.1. Mean Square Calculus.

Definition 2.1. Consider the properties of a class of real r.v.’s X1, X2, . . . , Xn

whose second moments,E
{
X2

1

}
, E

{
X2

2

}
, . . . E

{
X2

n

}
are finite. In this case, they

are called ”second order random variables”, (2.r.v’s) [4].

Definition 2.2. The linear vector space of second order random variables with
inner product, norm and distance, is called an L2 -space. A s.p.{X (t) , t ∈ T}
is called a ”second order stochastic process” (2.s.p) if for t1, t2, . . . , tn , the r.v’s
{X(t1), X(t2), . . . , X(tn)}, are elements of L2-space. A second order s.p. {X (t) , t ∈
T} [4] is characterized by

∥X (t)∥2 = E
{
X2 (t)

}
< ∞, t ∈ T.

2.1.1. Convergence in Mean square. A sequence of r.v.’s {Xn} converges in m.s. to
a r.v. X as n → ∞ if

lim
n→∞

∥Xn −X∥ = 0

This type of convergence is often expressed by

Xn
m.s.−→X or l.i.mn→∞Xn = X

The symbol l.i.m. denotes the limit in the mean square sense.

2.1.2. Mean Square Continuity. A 2-s.p. {X (t) : t ∈ T} is said to be m.s. contin-
uous at t ∈ T if

l.i.mτ→∞X(t+ τ) = X(t), for t+ τ ∈ T, or

lim
τ→0

∥X(t+ τ)−X(t)∥2 = 0.

2.1.3. Mean Square Differentiation. The concept of m.s. differentiation follows nat-
urally from that of m.s. continuity. A 2-s.p. {X (t) : t ∈ T} has a m.s. derivative

Ẋ(t) at t ∈ T if

lim
τ→0

X (t+ τ)−X (t)

τ
= Ẋ (t) , for t+ τ ∈ T, or

lim
τ→0

∥∥∥∥X (t+ τ)−X (t)

τ
− Ẋ (t)

∥∥∥∥
2

= 0.

2.1.4. Mean Square Analyticity. A 2-s.p. {X (t) : t ∈ T} is said to be m.s. analytic
on T if it can be expanded in the m.s. convergent series

X (t) =
∞∑

n=0

X(n)(t0)

n!
(t− t0)

n
, t, t0 ∈ T.

2.1.5. Mean Square Integration. Let {X(t), t ∈ T} be a 2-s.p. defined on[a, b] ⊂ T.
Let f(t, u) be an ordinary function defined on the same interval for t and Riemann
integrable for everyu ∈ U . We form the random variable

Yn(u) =
n∑

k=1

f(t
′

k)X(t
′

k)(tk − tk−1)

Since L2-space is linear, Yn(u) is an element of the L2-space. It is a r.v. defined
for each partition Pn and for u ∈ U .
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Definition 2.3. If, for u ∈ U ,

l.i.mn −→
△n→0

∞Yn (u) = Y (u)

exists for some sequence of subdivisions Pn, the s.p. Y (u) , u ∈ U, is called the
”mean square Riemann integral” or ”m.s. Riemann integral” of f(t, u)X(t) over
the interval [a, b] and is denoted by

Y (u) =

∫ b

a

f(t, u)X(t)dt

it is independent of the sequence of subdivisions as well as the positions of t
′

k ∈
[tk, tk−1).

Theorem 2.4 (Fundamental theorem of the m.s. calculus). Let {X(t), t ∈ T} be a
2-s.p. m.s. differentiable on T = [t0, t], such that X(t) is m.s. Riemann integrable
on T , then one gets ∫ t

t0

Ẋ(u)du = X(t)−X(t0).

Example 2.5. Let Y be a 2-r.v. and let us consider the 2-s.p. Y (t) = Y.t for t lying
in the interval T and applying the formula of integration by parts for h(t, u) ≡ 1
one gets ∫ t

t0

Y du = (t− t0).

Proposition 2.6. If {X(t), t ∈ T} is a 2-s.p. m.s. continuous on T = [t0, t], then∥∥∥∥∫ t

t0

X(u)du

∥∥∥∥ ≤
∫ t

t0

∥X (u)∥ du ≤ MX (t− t0) ,

MX = max
t0≤u≤t

∥X (u)∥ .

3. Random Initial Value Problem (RIVP)

3.1. Existence and Uniqueness.

Theorem 3.1. Consider the random initial value problem (1). If F : S × T → L2

is continuous, satisfies the m.s. Lipschitz condition

∥F (X, t)− F (Y, t)∥2 ≤ k(t) ∥X − Y ∥2 (2)

where

∫ te

t0

k(t)dt < ∞.

Then there exists a unique m.s. solution for any initial condition X0 ∈ L2 [3].

3.2. The Convergence of Finite Difference Methods for Random Differ-
ential Equations in (m.s.) Sense. Where X0 is a second order random
variable and, the unknown X(t) as well as the second member F (X(t), t) are sec-
ond order stochastic processes defined on some probability space are solved using
the random finite difference method.
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Definition 3.2. Let g : T −→ L2 is an m.s.bounded function and let h > 0 then
the ”m.s.modulus of continuity of g” is the function

w(g, h) = sup
|t−t∗|≤h

∥g(t)− g(t∗)∥ , t, t∗ ∈ T.

The function g is said to be m.s uniformly continuous in T if l.i.mh→0w(g, h) = 0
[5].

Lemma 3.3. Let Y (t) be a 2-s.p., m.s.continuous on the interval T = [t0, te].
Then, there exists ξ ∈ [t0, te] such that∫ te

t0

Y (s)ds = Y (ξ)(te − t0), t0 < ξ < t1. (3)

Theorem 3.4. Let X(s) be a m.s.differentiable 2-s.p. in ]t0, t1[ and m.s.continuous
in T = [t0, t1]. Then, there exists ξ ∈ [t0, te] such that

X(t)−X(t0) = Ẋ(ξ)(t− t0)

3.2.1. The Convergence of Random Finite Difference Scheme. Let us consider the
random initial value problem (1) under the following hypotheses on F : S×T → L2

with S ⊆ L2

• C1: F (X, t) is m.s. randomly bounded time uniformly continuous.
• C2: F (X, t) satisfies the m.s. Lipschitz condition (2)

Note that condition C2 guarantees the m.s. continuity of F (X, t) with respect to
the first variable while C1 guarantees the continuity of F (X, t) with respect to the
second variable. Hence and from the inequality∥∥∥F (X, t)− F (Y, t

′
)
∥∥∥ ≤ ∥F (X, t)− F (Y, t)∥+

∥∥∥F (Y, t)− F (Y, t
′
)
∥∥∥ ,

one gets the m.s. continuity of F (X, t) with respect to both variable.
Let us introduce the random Forward Finite Difference Method for problem

(1) defined by

Xn+1 = xn + hF (Xn, tn), n ≥ 0, (4)

X0 = X(t0)

where Xn, F (Xn, tn) are 2-r.v.’s, h = tn−tn−1, with tn = t0+nh,for n = 0, 1, 2, . . .
we wish to prove that under hypotheses C1 and C2, the Forward Finite Difference
method (4) is m.s. convergent in the station sense, i.e., fixed t ∈ [t0, te] and taking
n so that tn = t0 + nh, the m.s. error

en = Xn −X(t) = Xn −X(tn), (5)

tends to zero in L2, ash → 0, n → ∞ with t− t0 = nh.
Note that under hypotheses C1 and C2, Theorem 5.1.2 of [3] guarantees the

existence and uniqueness of a m.s. solution X(t) ∈ [tn, tn+1] ⊂ [t0, te], and by using
the m.s. fundamental theorem of calculus, i.e., Theorem 2.4 it follows that

X(tn+1) = X(tn) +

∫ tn+1

tn

Ẋ(u)du, n ≥ 0. (6)

From (4)-(6) it follows that

en+1 − en = (Xn+1 −Xn)− (X(tn+1)−X(tn))

= hF (Xn, tn)−
∫ tn+1

tn

Ẋ(u)du. (7)
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Note also that F (Xn, tn) ∈ L2, the first term appearing in the right-hand side of
(7) can be written as follows, see example 2.5,

hF (Xn, tn) = F (Xn, tn)(tn+1 − tn) =

∫ tn+1

tn

F (Xn, tn)du. (8)

by (7), (8) and using that Ẋ(u) = F (X(u), u), one gets

en+1 = en +

∫ tn+1

tn

[F (Xn, tn)− Ẋ(u)]du

= en +

∫ tn+1

tn

[F (Xn, tn)− F (X(u), u)]du. (9)

Under hypothesis C1 and C2, F (X, t) is a m.s. continuous with respect to both
variables, the 2-s.p. defined by

G(u) = F (Xn, tn)− F (X(u), u), (10)

is m.s. continuous for u ∈ [tn, tn+1] . Taking norms in 9 and using proposition 2.6
it follows that

∥en+1∥ ≤ ∥en∥+
∫ tn+1

tn

∥F (Xn, tn)− F (X(u), u)∥ du. (11)

∥F (Xn, tn)− F (X(u), u)∥ ≤ ∥F (Xn, tn)− F (X(tn), tn)∥
+ ∥F (X(tn), tn)− F (X(u), tn)∥
+ ∥F (X(u), tn)− F (X(u), u)∥ . (12)

For the two first terms, using hypothesis C2, one gets the following bounds

∥F (Xn, tn)− F (X(tn), tn)∥ ≤ k(tn) ∥Xn −X(tn)∥
= k (tn) ∥en∥ , (13)

∥F (X(tn), tn)− F (X(u), tn)∥ ≤ k(tnt) ∥X(tn)−X(u)∥ , u ∈ [tn, tn+1]. (14)

Note that applying 6 in [tn, u] ⊂ [tn, tn+1] and using again proposition 2.6, it follows
that

∥X(u)−X(tn)∥ =

∥∥∥∥∫ u

tn

Ẋ(v)dv

∥∥∥∥ ≤
∫ u

tn

∥∥∥Ẋ(v)
∥∥∥ dv

≤ MẊ(u− tn) (15)

where MẊ = sup
{∥∥∥Ẋ(v)

∥∥∥ ; t0 ≤ v ≤ te

}
.

From 14 and 15 one gets

∥F (X(tn), tn)− F (X(u), tn)∥ ≤ k(tn)hMẊ . (16)

Let SX be the bounded set in L2 defined by the exact theoretical solution of problem
(1),

SX = {X(t), t0 ≤ t ≤ te} . (17)

Then by hypothesis C1 and definition 3.2, we have

∥F (X(ut), tn)− F (X(u), u)∥ ≤ ω(SX , h), (18)

and by 13, 16 and 18, it follows that 12 can be written in the form

∥F (Xn, tn)− F (X(u), u)∥ ≤ k(tn) ∥en∥+ k(tn)hMẊ + ω(SX , h).
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Then∫ tn+1

tn

∥F (Xn, tn)− F (X(u), u)∥ du ≤ h{k(tn) ∥en∥+ k(tn)hMẊ + ω(SX , h)}

and hence, 11 takes the form

∥en+1∥ ≤ ∥en∥ [1 + hk(tn)] + h[ω(SX , h) + k(tn)hMẊ ]. (19)

Then by substituting in 12 as shown in [4, 5] we have

∥en+1∥ ≤ (1 + k(tn)h)
n+1 ∥e0∥+ h[ω(SX , h)

+k(tn)hMẊ ][1 + (1 + k(tn)h) + (1 + k(tn)h)
2 + · · ·+ (1 + k(tn)h)

n].

Since [1 + (1 + k(tn)h) + (1 + k(tn)h)
2 + · · ·+ (1 + k(tn)h)

n] is geometrical series,
then

[1 + (1 + k(tn)h) + (1 + k(tn)h)
2 + · · ·+ (1 + k(tn)h)

n] =
(1 + k(tn)h)

n − 1

k(tn)h

Then

∥en+1∥ ≤ (1 + k(tn)h)
n+1 ∥e0∥

+[ω(SX , h) + k(tnt)hMẊ ]
[(1 + k(tn)h)

n − 1]

k(tn)

we have

∥en∥ ≤ enhk(t) ∥e0∥+
enhk(tn) − 1

k(tn)
[k(tn)hMẊ + ω(SX , h)].

At h −→ 0, ∥e0∥ = 0 where e0 = X0−X(t0) = 0, the last inequality can be written
in the form

∥en∥ ≤ enhk(t) − 1

k(t)
[k(t)hMẊ + ω(SX , h)]. (20)

From 20, it follows that {en} is m.s. convergent to zero and summarizing the
following results has been established:

Theorem 3.5. With the previous notation, under the hypothesis C1 and C2, the
random Forward Finite Difference method (4) is m.s. convergent and discretization
error en defined by (5) satisfies the inequality (20) for t = t0 + nh, h > 0, t0 ≤
t ≤ te.

4. Numerical examples

In this section, some illustrative examples are presented.

4.1. Case study: linear random initial value problem. In this subsection,
some linear initial value problems are considered

Example 4.1. Consider the linear random differential equation

Ẋ(t) = Kt2, X(t0) = D, K ∼ N(4, 2), t ∈ [t0, tf ]

where {X(t), t ∈ T} is 2-order stochastic process, D is arbitrary constant, and K
is a random variable has the Normal distribution
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Solution The exact solution

X(t) =
Kt3

3
+ c

At t = t0 =⇒ X = D +
K(t3−t30)

3 The numerical solution
Using the Random Finite Difference Method:

Xn = Xn−1 + hf(Xn−1, tn−1), X(t0) = D

At n = 1
X1 = X0 + hf(X0, t0) = D + hKt20
At n = 2
X2 = X1 + hf(X1, t1) = D + hKt20 + hKt21 = D + hKt20 + hK(t0 + h)

2

where ti+1 = t0 + ih
At n = 3
X3 = X2 + hf(X2, t2) = D + hKt20 + hK(t0 + h)

2
+ hK(t0 + 2h)

2

At n = 4
X4 = X3 + hf(X3, t3) = D + hKt20 + hK(t0 + h)

2
+ hK(t0 + 2h)

2
+ hK(t0 + 3h)

2

and so on . . . .
Then the general numerical solution is

Xn = Xn−1 + hf(Xn−1, tn−1)

= D + hKt20 + hK(t0 + h)
2
+ hK(t0 + 2h)

2
+ hK(t0 + 3h)

2

+ · · ·+ hK(t0 + (n− 1)h)
2

Xn = D + hK
n−1∑
i=0

(t0 + ih)
2

Also we can prove that

(1) l.i.mn→∞Xn = X.

Proof. Since

l.i.mn→∞Xn = X ⇐⇒ lim
n→∞

E|Xn −X|2 = 0

Xn −X = nhKt20 + n(n− 1)Kh2t0 +
n(n+1)(2n+1)

6 Kh3 − K
( t

3 − t0
3)3

where
h = tn−t0

n

Xn−X = Kt20(tn−t0)+
n−1
n K(tn−t0)

2t0+
(n+1)(2n+1)

6n2 K(tn−t0)
3−K(t3−t30)

3

|Xn −X|2 =
{
Kt20(tn − t0) +

n−1
n K(tn − t0)

2t0
}2

+2
{[

Kt20(tn − t0) +
n−1
n K(tn − t0)

2t0
]
·
[
(n+1)(2n+1)

6n

2
K(tn − t0)

3 − K(t3−t30)
3

]}
+[

(n+1)(2n+1)
6n2 K(tn − t0)

3 − K(t3−t30)
3

]2
E |Xn −X|2 = t40(tn−t0)

2E{K2}+ 2(n−1)
n t30(tn−t0)

3E{K2}+
(

(n−1)
n

)2

t20(tn−

t0)
4E{K2}+ (n+1)(2n+1)

3n2 t20(tn− t0)
4E{K2}− 2

3 t
2
0(t

3− t30)(tn− t0)E{K2}+
(n−1)(n+1)(2n+1)

3n3 E{K2}t0(tn − t0)
5 + 2(n−1)

3n t0(t
3 − t30)(tn − t0)

2E{K2} +
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(n+1)(2n+1)

6n

)2

· (tn − t0)
6E{K2} − (n+1)(2n+1)

n2 E{K2}(t3 − t30)(tn − t0)
3 +

1
9 (t

3 − t30)
2E{K2}

since K ∼ N(4, 2) then E{K2} = 20

E |Xn −X|2 = 20t40(tn−t0)
2+ 40(n−1)

n t30(tn−t0)
3+20

(
(n−1)

n

)2

t20(tn−t0)
4+

20(n+1)(2n+1)
3n2 t20(tn− t0)

4− 40
3 t20(t

3− t30)(tn− t0)+
20(n−1)(n+1)(2n+1)

3n3 t0(tn−

t0)
5+ 40(n−1)

3n t0(t
3−t30)(tn−t0)

2+20
(

(n+1)(2n+1)
6n

)2

(tn−t0)
6− 20(n+1t)(2n+1t)

9n2 (t3−
t30)(tn − t0)

3 + 20
9 (t3 − t30)

2

limn→∞ E |Xn −X|2 = 20t40(tn − t0)
2 +40t30(tn − t0)

3 +20t20(tn − t0)
4 +

40
3 t20(tn − t0)

4 − 40
3 t20(t

3 − t30)(tn − t0) +
40
3 t0(tn − t0)

5 − 40
3 t0(t

3 − t30)(tn −
t0)

2 + 20
9 (tn − t0)

6 − 40
9 (t3 − t30)(tn − t0)

3 + 20
9 (t3 − t30)

2.

After simplify this equation we obtain limn→∞ E |Xn −X|2 = 0 i.e,

l.i.mn→∞Xn = X.

�

Example 4.2. Consider the linear random differential equation

Ẋ(t) = At+B, X(t0) = D, t ∈ [t0, tf ]

where {X(t), t ∈ T} is 2-order stochastic process, B is arbitrary constant, A and
D are independent random variables with joint PDF

fA,D(a, d) =
e−42(A+D)

A! D!
, A,D = 0, 1, 2, . . . .

The exact solution
since Ẋ(t) = At+B, X(t0) = D, then the exact solution is X(t) = D+B(t−
t0) +

A
2 (t

2 − t20).
The numerical solution
by using the forward finite difference method
Xn = Xn−1 + hf(Xn−1, tn−1) where X(t0) = D, f(X, t) = At+B.
at n = 1
X1 = X0 + hf(X0, t0) = D + h(At0 +B) = D + hB +Aht0
at n = 2
X2 = X1 + hf(X1, t1) = D + 2hB +Aht0 +Aht1
Since tn = t0 + (n− 1)h =⇒ t1 = t0 + h, then
X2 = D + 2hB +Aht0 +Ah(t0 + h)
at n = 3
X3 = X2 + hf(X2, t2) = D+2hB +Aht0 +Ah(t0 + h) + h(At2 +B) = D+3hB +
3Aht0 + 3Ah2

at n = 4
X4 = X3 + hf(X3, t3) = D + 3hB + 3Aht0 + 3Ah2 + h(At3 + B) = D + 4hB +
4Aht0 + 6Ah2

and so on. . . . Then the general numerical solution is:

Xn = D + nhB +Ah

n−1∑
i=0

(t0 + ih)
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4.2. Case study: nonlinear random differential equations.

Example 4.3. Consider the nonlinear random differential equation

Ẋ(t) = X2 −A2X, X(0) = A2, t ∈ [t0, tf ]

where {X(t), t ∈ T} is 2-order stochastic process, and A is a random variable
has the exponential distribution (A ∼ exp(2)).

The exact solution
We can write the equation in the form Bernoulli equation:

Ẋ(t) +A2X = X2, X(0) = A2 (21)

Then the exact solution of the equation 21 is X(t) = A2.
The numerical solution

Xn = Xn−1 + hf(Xn−1, tn−1), X(0) = A2

at n = 1
X1 = X0 + hf(X0, t0) = A2 + h(A4 −A2 ·A2) = A2

at n = 2
X2 = X1 + hf(X1, t1) = A2 + h(X2

1 −A2X1) = A2

at n = 3
X3 = X2 + hf(X2, t2) = A2 + h(X2

2 −A2X2) = A2

And so on . . . . Then the general numerical solution is:

Xn = A2.

5. Conclusions

In this paper, we have presented the proof of the mean square convergence of the
random Finite Difference scheme. Moreover we take advantage of the random Finite
Difference scheme for computing directly the main statistical properties like mean,
variance and probability density function of the mean square approximations.
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