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A NEW TECHNIQUE FOR SOLVING A CLASS OF NONLINEAR

BOUNDARY VALUE PROBLEMS

I. L. EL-KALLA

Abstract. In this paper, a new technique for solving a class of nonlinear
Boundary Value Problems (BVPs) is introduced. The series solution obtained
from this technique is satisfied by the given boundary condition at each partial

sum. Based on the previous work of the author, convergence is discussed and
the truncated error is estimated. The proposed technique is implemented
to some problems that frequently appear in physics and engineering. The
effectiveness of the proposed technique is verified through the comparison of

the numerical results with those available in references.

1. Introduction

The BVPs play an important role in many fields especially in physics and engi-
neering. The two-point boundary value problem occurs in a wide variety of prob-
lems, including the modeling of chemical reactions, heat transfer, diffusion, gas
dynamics, and the solution of optimal control problems [1] and [2]. So, an accurate
and fast techniques of solution are of great importance due to its wide applica-
tion in scientific and engineering research [3] and [4]. Among these techniques, the
series solution techniques such as Taylor method [5] and [6], homotopy analysis
method (HAM) [7] and [8], homotopy perturbation method (HPM) [9] and [10]
and Adomian decomposition method (ADM) [11], [12], [13] and [14]. Using these
techniques, the solution is obtained by the analytic summation of the components
of a convergent series. El-Kalla in [15] introduced a new expansion theorem by
which the analytic summation constitutes the exact solution of some ordinary and
partial differential equations. In this paper, this theorem is employed with ADM
to introduce a new technique for solving the nonlinear BVP of the form

d2y(x)

dx2
+ p (x)

dy (x)

dx
+ q (x) f(y) = r (x) , x ∈ (a, b) , (1)

subjected to boundary conditions

y (a) = α, y (b) = β, (2)
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where a, b, α and β are finite constants. ADM has the advantage of dealing directly
with the nonlinear problem avoiding any linearization, discretization or any unre-
alistic assumptions in which the solution is decomposed into a rapidly convergent
series

y (x) =
∞∑
i=0

yi (x) , (3)

and the nonlinear term f(y) is replaced by a series of the Adomian polynomials

f(y) =
∞∑
m=0

Am(y0, y1, ..., ym), (4)

where the traditional formula of Am is

Am = (
1

m!
)(
dm

dλm
)[f(

∞∑
i=0

λiyi)]λ=0. (5)

In [16], the author deduced a new mathematical formula to the Adomian polyno-
mials which can be written in the form

Ãm = f (Sm)−
m−1∑
υ=0

Ãυ, m ≥ 1. (6)

where the partial sum Sm =
∑m
i=0 yi (t) and Ã0 = f (y0). Formula (6) has the

advantage of absence of any derivative terms in the recursion, thereby allowing for
ease of computations. Also, Formula (6) was used successfully in one dimensional
problems [17] and [18] and in two dimensional problems [19] and [20] to study the
convergence of ADM when applied to some classes of nonlinear equations. In this
work, formula (6) is used in the convergence analysis and all the calculations of the
numerical examples.

In direct application of ADM to problem (1), the inverse of the second-order
differential operator is either two-fold definite or indefinite integral. If the inverse
operator is defined by the indefinite integral the standard ADM yields the following
recursive scheme [21]

y0 = c01 + c02x+

∫ ∫
r (x) dxdx,

yi = ci1 + ci2x−
∫ ∫

p (x)
dyi−1

dx
dxdx−

∫ ∫
q (x) Ãi−1dxdx, i ≥ 1, (7)

where ci1and c
i
2 are arbitrary constants that should be obtained using the boundary

conditions for each partial sum Sm. It is difficult to obtain these arbitrary constants
for each partial sum and more computational work is needed. Many authors, for
example [22] and [23], have proposed modifications to ADM by defining the inverse
operator to be a two-fold definite integral

∫ x
a
dx1

∫ x1

a
dx2 as in [22] or

∫ x
a
dx1

∫ x1

b
dx2

as in [23] but we still have difficulties in obtaining dy
dx �x=a in [22] and dy

dx �x=b in
[23]. In the next section, a proposed technique is established to relax these diffi-
culties and consequently to save the execution time on the processor. Each partial
sum of the series solution obtained by this new technique is satisfied by the given
boundary conditions without any additional work. In section three, convergence
of the series solution is proved and the maximum absolute truncated error is esti-
mated. In section four, some numerical examples, that frequently appear in physics
and engineering, are introduced to verify the efficiency of the proposed technique.
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2. The proposed technique

The proposed technique is based on the change of the canonical form (1) by
introducing the differential operator

£ (.) = e−
∫
p(x)dx d

dx
{e

∫
p(x)dx d (.)

dx
}, (8)

then (1) can be rewritten in the form

£y (x) = r (x)− q (x) f(y). (9)

Define the inverse of £ to be

£−1(.) =

∫ x

a

e−
∫
p(ζ)dζ

∫ x

0

e
∫
p(ζ)dζ(.)dζdζ, (10)

and apply £−1 on both sides of (9) yields

y(x)− y (a) = £−1 {r (x)− q (x) f(y)} . (11)

Application of ADM to (11) yields the recursive relation

y0 (x) = α+£−1r (x) ,

yi (x) = −£−1q (x) Ãi−1, i ≥ 1, (12)

and the series solution is denoted by yl (x) =
∑∞
i=0 yi (x) with yl (a) = α. Due to

the nature of the Adomian series solution, yl (x) has a high accuracy near x = a
and some drawback near x = b.

If we define the inverse of the operator (8) to have the form

z−1(.) =

∫ x

b

e−
∫
p(ζ)dζ

∫ x

0

e
∫
p(ζ)dζ(.)dζdζ, (13)

and then apply z−1 to both sides of (9), we get

y(x)− y (b) = z−1 {r (x)− q (x) f(y)} . (14)

Application of ADM to (14) yields the recursive relation

y0 (x) = β +z−1r (x) ,

yi (x) = −z−1q (x) Ãi−1, i ≥ 1, (15)

and in this case the series solution is denoted by yr (x) =
∑∞
i=0 yi (x) with yr (b) =

β. Also, due to the nature of the Adomian series solution, yr (x) has a high accuracy
near x = b and some drawback near x = a.

In order to obtain solution with high accuracy in the whole interval J = [a, b]
and satisfied by both boundary conditions we set the solution in the form

y (x) = w1 (x) yr (x) + w2 (x) yl (x) , a ≤ x ≤ b, (16)

where w1 (x) and w2 (x) are a linear weighted functions satisfy the following:
i) w1 (a) = 0 and linearly increasing to w1 (b) = 1.
ii) w2 (a) = 1 and linearly decreasing to w2 (b) = 0.
This means that w1 (x) =

x−a
b−a and w2 (x) =

x−b
a−b and consequently we have:

i) w1 (x) + w2 (x) = 1 ∀ a ≤ x ≤ b.
ii) From (16) y (a) = yl (a) = α, since all integrals in the left series yl (x) are

from a to x, and y (b) = yr (b) = β, since all integrals in the right series yr (x) are
from b to x. So, y (x) in (16) satisfy both boundary conditions ∀ Sm.
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It is clear that at the mid-point x = (a + b)/2 we have w1 = w2 = 1/2 i.e.
the solution y (x) , in (16), is the average of yr (x) and yl (x) . But, in the interval
a < x < (a + b)/2 we have 0 < w1 (x) < w2 (x) < 1 so; yl (x) contributes the
majority of the solution y (x). Also, in the interval (a + b)/2 < x < b we have
0 < w2 (x) < w1 (x) < 1 so; yr (x) contributes the majority of y (x) . This implies
that formula (16) represents a continuous solution to problem (1)-(2) with high
accuracy in the whole interval J = [a, b] and satisfied by both boundary conditions.

Fortunately, in cases when the integrals through the use of £−1 or z−1 are
difficult, we can simplify the computations by means of El-Kalla theorem [15] in

which the integral operator Î (.) = e−
∫
p(x)dx

{∫ x
0
e
∫
p(x)dx(.)dζ

}
can be expanded

to have the form

Î(.)=
∞∑
k=0

(−1)
k
0
xp (x)...k−fold...

∫ x

0

p (x)

∫ x

0

(.)dζ ...k−fold...dζdζ, (17)

for example, the second order approximation of (17) is Î2(r(x)) =
∫ x
0
r(ζ)dζ −

∫ x
0
p (x)

∫ x
0
r(ζ)

dζdζ. In practice we use (17) in its truncated form

ÎN (.)=

N∑
k=0

(−1)
k
0
xp (x)...k−fold...

∫ x

0

p (x)

∫ x

0

(.)dζ ...k−fold...dζdζ. (18)

Using (18), recursive relations (12) and (15) take the new forms

y0 (x) = α+

∫ x

a

ÎN (r (ζ)) dζ,

yi (x) = −
∫ x

a

ÎN

(
q(ζ)Ãi−1

)
dζ, i ≥ 1, (19)

and

y0 (x) = β +

∫ x

b

ÎN (r (ζ)) dζ,

yi (x) = −
∫ x

b

ÎN

(
q(ζ)Ãi−1

)
dζ, i ≥ 1, (20)

respectively.

3. Convergence analysis

Convergence of the Adomian series solution was studied for different problems
and by many authors. In [24, 25], convergence was investigated when the method
applied to a general functional equations and to specific type of equations in [26, 27].
In convergence analysis, Adomian’s polynomials play a very important role which
could affect directly on the accuracy as well as the convergence rate. In our anal-
ysis we suggest an alternative approach for proving the convergence. This ap-
proach mainly depends on the accelerated formula (6). As a direct result from
this approach, the maximum absolute truncated error of the series solution is es-
timated. In our analysis we assume that the nonlinear term f (y) is Lipschitzian
with |f (y)− f (z)| ≤ L |y − z| and |q (x)| ≤M whereM and L are finite constants.
Define a mapping F : E → E where, E = (C[J ], ∥.∥) is the Banach space of all
continuous functions on J with the norm ∥y(x)∥ = max

∀x∈J
|y(x)| .
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3.1. Existence and Uniqueness Theorem. Problem (1) has a unique solution

whenever 0 < ϕ < 1, where ϕ = 1
2LM (b− a)

2
.

Proof. Define the mapping F : E → E as, Fy = y (a) + £−1 {r (x)− q (x) f(y)}
and let y and z ∈ E we have

∥Fy − Fz∥ = max
∀x∈J

∣∣£−1q (x) [f(y)− f(z)]
∣∣

≤ max
∀x∈J

∫ x

a

∫ x

0

|q(ζ)|L |f(y)− f(z)| dζdζ

≤ LMmax
∀x∈J

|f(y)− f(z)|
∫ x

a

∫ x

0

dζdζ

≤ 1

2
LM (b− a)

2 ∥y − z∥

≤ ϕ ∥y − z∥

Under the condition 0 < ϕ < 1 the mapping F is contraction therefore, by the
Banach fixed-point theorem for contraction, there exist a unique solution to problem
(1) and this completes the proof. �

3.2. Convergence Theorem. The Adomian series (3) of problem (1) converges
whenever 0 < ϕ < 1 and r (x) bounded.

Proof. Let, Sn and Sm be arbitrary partial sums with n > m. We are going to
prove that {Sn} is a Cauchy sequence in Banach space E

∥Sn − Sm∥ = max
∀x∈J

|Sn − Sm| = max
∀x∈J

∣∣∣∣∣
n∑

i=m+1

yi(x)

∣∣∣∣∣
= max

∀x∈J

∣∣∣∣∣
n∑

i=m+1

£−1q (x) Ãi−1

∣∣∣∣∣ = max
∀x∈J

∣∣∣∣∣£−1q (x)

n−1∑
i=m

Ãi

∣∣∣∣∣ .
From (6) we have

∑n−1
i=m Ãi = f(Sn−1)− f(Sm−1) so

∥Sn − Sm∥ = max
∀x∈J

∣∣£−1q (x) [f(Sn−1)− f(Sm−1)]
∣∣

≤ LMmax
∀x∈J

|Sn−1 − Sm−1|
∫ x

a

∫ x

0

dζdζ

≤ ϕ ∥Sn−1 − Sm−1∥ .

Let, n = m+ 1 we have

∥Sm+1 − Sm∥ ≤ ϕ ∥Sm − Sm−1∥ ≤ ϕ2 ∥Sm−1 − Sm−2∥ ≤ · · · ≤ ϕm ∥S1 − S0∥ .

Using the triangle inequality we have

∥Sn − Sm∥ ≤ ∥Sm+1 − Sm∥+ ∥Sm+2 − Sm+1∥+ · · ·+ ∥Sn − Sn−1∥
≤

[
ϕm + ϕm+1 + · · ·+ ϕn−1

]
∥S1 − S0∥

≤ ϕm
[
1 + ϕ+ · · ·+ ϕn−m−1

]
∥S1 − S0∥

≤ ϕm
[
1− ϕn−m

1− ϕ

]
∥y1(x)∥ .
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Since 0 < ϕ < 1 so, (1− ϕn−m) < 1 and then we have

∥Sn − Sm∥ ≤ ϕm

1− ϕ
max
∀x∈J

|y1 (x)| (21)

but max
∀x∈J

|y1 (x)| < ∞ (since r (x) is bounded and α, β finite) and as m → ∞
then ∥Sn − Sm∥ → 0, from which we conclude that {Sn} is a Cauchy sequence
in E. The same result will be obtained if we use the mapping Fy = y (b) +
z−1 {r (x)− q (x) f(y)} . Since max

∀x∈J
|w1 (x)| = max

∀x∈J
|w2 (x)| = 1 and y (x) is a lin-

ear combination of two convergent series then, y (x) is a convergent series and this
completes the proof. �

3.3. Error Estimate. The maximum absolute truncation error of series (3) to

problem (1) is estimated to be:max
∀x∈J

|y(x)−
∑m
i=0 yi(x)| ≤ ψϕm+1

2L(1−ϕ) where, ψ =

max
∀x∈J

|f (y0)| .

Proof. From (21) in Theorem 2 we have ∥Sn − Sm∥ ≤ ϕm

1−ϕmax
∀x∈J

|y1 (x)| . As n→ ∞

then Sn → y(x) so, ∥y (x)− Sm∥ ≤ ϕm

1−ϕmax
∀x∈J

|y1 (x)| i.e.

max
∀x∈J

∣∣∣∣∣y(x)−
m∑
i=0

yi(x)

∣∣∣∣∣ ≤ ϕm

1− ϕ
max
∀x∈J

|y1 (x)| . (22)

But, y1 = −£−1q (x) Ã0, Ã0 = f (y0) , then, max
∀x∈J

|y1 (x)| ≤ max
∀x∈J

|f (y0)| 1
2M (b− a)

2 ≤
ϕ
Lψ so, (22) will be

max
∀x∈J

∣∣∣∣∣y(x)−
m∑
i=0

yi(x)

∣∣∣∣∣ ≤ ψϕm+1

L (1− ϕ)
. (23)

which is the maximum absolute truncation error of the Adomian series solution of
(1) and this completes the proof. �

4. Applications and numerical results

In this section, we implemented the proposed technique to some singular linear
and nonlinear problems that frequently appear in physics and engineering. The
effectiveness of the proposed technique is verified through the comparison of the
numerical results with those available in references.

Example 1 Consider the Bessel equation of order zero [28]:

y′′ +
1

x
y′ + y = 0, 0 < x < 1, y (0) =

1

J0 (1)
, y (1) = 1,

with exact solution y (x) = J0(x)
J0(1)

. In this example, p (x) = 1
x , q (x) = 1, r (x) = 0,

α = 1
J0(1)

, β = 1 and since f (y) = y then Ãi = yi. In this case yl (x) =
∑∞
i=0 yi

such that:
y0 (x)=

1
J0(1)

+£
−1

(0)= 1
J0(1)

,

yi (x) = −£−1 (yi−1) , i ≥ 1, where £−1 (.) =
∫ x
0

1
x

∫ x
0
x (.) dxdx,

and yr (x) =
∑∞
i=0 yi such that:

y0 (x)= 1 +z−1 (0)= 1,
yi (x) = −z−1 (yi−1) i ≥ 1, where z−1 (.) =

∫ x
1

1
x

∫ x
0
x (.) dxdx.
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This problem was solved in [28] by an improved Adomian method (IADM).
Using the MATHEMATICA package we compare the absolute errors |y(x)−S5(x)|
using the new technique with |y(x) − S12(x)| using IADM in [28]. Table 1 shows
that, 6-term approximation using the new technique is more accurate than 13- term
approximation using IADM.

Table 1 Numerical results for Example 1

x |y(x)− S12(x)| using IADM in [28] |y(x)− S5(x)| using new technique

0.0 0.0 0.0
0.1 1.6729E − 06 8.89010E − 10
0.2 1.8402E − 06 1.0011E − 09
0.3 2.2581E − 06 5.6011E − 09
0.4 1.7706E − 06 8.2106E − 09
0.5 1.2296E − 06 6.2034E − 08
0.6 8.1541E − 07 8.3121E − 08
0.7 5.1621E − 07 6.8087E − 08
0.8 2.9587E − 07 3.1115E − 09
0.9 1.2888E − 07 1.0120E − 09
1.0 0.0 0.0

Example 2 Consider the inhomogeneous Bessel equation [28]

y′′ +
1

x
y′ + y = 4− 9x+ x2 − x3, 0 < x < 1, y (0) = y (1) = 0,

with exact solution y (x) = x2 − x3. In this example, p (x) = 1
x , q (x) = 1, r (x) =

4 − 9x + x2 − x3, α = β = 0 and since f (y) = y then Ãi = yi. In this case
yl (x) =

∑∞
i=0 yi such that:

y0 (x)= 0 +£−1
(
4− 9x+ x2−x3

)
= x2−x3+x4

16−
x5

25 ,

yi (x) = −£−1 (yi−1) , i ≥ 1, where £−1 (.) =
∫ x
0

1
x

∫ x
0
x (.) dxdx,

and yr (x) =
∑∞
i=0 yi such that:

y0 (x)= 0 +z−1
(
4− 9x+ x2−x3

)
= x2−x3+x4

16−
x5

25−
9

400 ,

yi (x) = −z−1 (yi−1) i ≥ 1, where z−1 (.) =
∫ x
1

1
x

∫ x
0
x (.) dxdx.

This problem was solved in [28] by IADM. Also, we verify the high accuracy of
the new technique by comparing the absolute errors |y(x) − S3(x)| using the new
technique with |y(x)− S9(x)| using IADM in [28]. Table 2 shows that, 4-term ap-
proximation using the new technique is more accurate than 10- term approximation
using IADM.
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Table 2 Numerical results for Example 2

x |y(x)− S9(x)| using IADM in [28] |y(x)− S3(x)| using new technique

0.0 0.0 0.0
0.1 2.2418E − 05 1.0110E − 08
0.2 2.5259E − 05 3.3010E − 08
0.3 3.0855E − 05 7.4051E − 08
0.4 2.4171E − 05 1.0019E − 07
0.5 1.6781E − 05 2.2001E − 07
0.6 1.1127E − 05 5.0110E − 07
0.7 7.0442E − 06 6.1097E − 07
0.8 4.0377E − 06 3.0912E − 08
0.9 1.7590E − 06 1.0120E − 08
1.0 0.0 0.0

Example 3 Consider the non-linear BVP [28]

y′′ +
0.5

x
y′ = ey (0.5− ey) , 0 < x < 1, y (0) = ln (2) , y (1) = 0,

with exact solution y (x) = ln
(

2
1+x2

)
. In this example, p (x) = 0.5

x , q (x) = 1,

r (x) = 0, α = ln (2) , β = 0 and f (y) = ey (0.5− ey). In this case yl (x) =
∑∞
i=0 yi

such that:
y0 (x)= ln (2) +£

−1
(0)= ln (2) ,

yi (x) = £−1
(
Ãi−1

)
, i ≥ 1, where £−1 (.) =

∫ x
0

1√
x

∫ x
0

√
x (.) dxdx,

and yr (x) =
∑∞
i=0 yi such that:

y0 (x)= 0 +z−1 (0)= 0,

yi (x) = z−1
(
Ãi−1

)
i ≥ 1, where z−1 (.) =

∫ x
1

1√
x

∫ x
0

√
x (.) dxdx.

In table 3, MATHEMATICA is used to compare the absolute errors |y(x)−S5(x)|
with those of Ref. [28].

Table 3 Numerical results for Example 3

x |y(x)− S5(x)| using IADM in [28] |y(x)− S5(x)| using new technique

0.0 0.0 0.0
0.1 1.8523E − 07 1.9010E − 13
0.2 3.0918E − 07 4.2110E − 13
0.3 5.0820E − 07 7.9959E − 13
0.4 7.5002E − 07 9.8919E − 13
0.5 3.6001E − 06 5.6103E − 12
0.6 3.1127E − 06 7.9121E − 12
0.7 7.0412E − 07 7.5040E − 12
0.8 4.0349E − 07 6.9840E − 13
0.9 1.7097E − 07 1.7121E − 13
1.0 0.0 0.0

Example 4 Consider the problem arising in astronomy [29]

y′′ +
2

x
y′ + y5 = 0, 0 < x < 1, y (0) = 1, y (1) =

√
3

2
,
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with exact solution y (x) = 1√
1+ x2

3

. In this example, p (x) = 2
x , q (x) = 1, r (x) = 0,

α = 1, β =
√
3
2 and f (y) = y5. In this case yl (x) =

∑∞
i=0 yi such that:

y0 (x)= 1 +£−1 (0)= 1,

yi (x) = £−1
(
Ãi−1

)
, i ≥ 1, where £−1 (.) =

∫ x
0

1
x2

∫ x
0
x2 (.) dxdx,

and yr (x) =
∑∞
i=0 yi such that:

y0 (x)=
√
3
2 +z

−1
(0)=

√
3
2 ,

yi (x) = z−1
(
Ãi−1

)
i ≥ 1, where z−1 (.) =

∫ x
1

1
x2

∫ x
0
x2 (.) dxdx.

This problem was solved in [29] using a combination of the ADM and the repro-
ducing kernel method (RKM). In table 4, MATHEMATICA is used to compare the
absolute errors |y(x)− S5(x)| with those of Ref. [29].

Table 4 Numerical results for Example 4

x |y(x)− S5(x)| in [29] |y(x)− S5(x)| using new technique

0.0 0.0 0.0
0.1 1.5560E − 09 7.7206E − 11
0.2 1.1101E − 09 9.9033E − 11
0.3 4.2003E − 08 4.1303E − 10
0.4 6.5002E − 08 7.0511E − 10
0.5 8.3011E − 08 9.7490E − 10
0.6 7.0120E − 08 8.9181E − 10
0.7 3.9492E − 08 3.8900E − 10
0.8 1.0301E − 09 9.3010E − 11
0.9 1.7123E − 09 6.6908E − 11
1.0 0.0 0.0

Also, example 4 is used to verify the validity of the convergence analysis by com-
paring the exact absolute error (EAE) ∆ = |y (x)−

∑m
i=0 yi (x)| and the maximum

absolute error (MAE) ∆∗ = ψϕm+1

L(1−ϕ) , using formula (23), for different values of m in

table 5.

Table 5: EAE and MAE for Example 4

m EAE (∆) MAE( ∆∗)
5 9.7490E − 10 3.9042E − 8
10 2.0032E − 14 1.5002E − 12
15 7.2090E − 18 8.0160E − 16
20 3.2030E − 21 3.6609E − 19

The proposed technique is not only more accurate but also faster than the tradi-
tional techniques and consequently save the execution time on the processor. Table
6 shows the comparison between the execution time, on the same processor, of the
proposed technique and those in references.

Table 6: Comparison between the execution time on the same processor

Execution time using: Example 1 Example 2 Example 3 Example 4

The proposed technique 34.9 sec 26.3 sec 44.7 sec 38.4 sec

Techniques in references 78.8 sec 65.8 sec 72.5 sec 66.2 sec
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5. Conclusion

ADM has difficulties when applied to nonlinear BVPs and many approaches
have been presented to overcome these difficulties. The proposed technique gives
an accurate and faster solution when applied to singular linear and nonlinear prob-
lems without additional computational work and this solution is satisfied by the
given boundary conditions. Convergence of the series solution obtained from this
technique is proved. Convergence analysis is reliable enough to obtain an explicit
formula (23) to the maximum absolute truncated error of the Adomian series solu-
tion.
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