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CUBIC B-SPLINE COLLOCATION ALGORITHM FOR THE

NUMERICAL SOLUTION OF NEWELL WHITEHEAD SEGEL

TYPE EQUATIONS

W. K. ZAHRA , W. A. OUF , M. S. EL-AZAB

Abstract. In this paper, numerical solutions of the Newell Whitehead Segel

Type equations (NWS) are obtained using different cubic B-spline basis. A

linear Von-Neumann stability analysis shows that the numerical scheme is
unconditionally stable. Accuracy of the method is discussed by computing the

max numerical error. The numerical result shows that the presented method

is a successful numerical technique for solving NWS equation.

1. Introduction

The general nonlinear parabolic partial differential equation is of the form

ut = kuxx + au+ buq + ψ(x, t, u, ux) (1)

where k, a, b and q are real constants, then (1) gives rise to well-known models
in fluid dynamics. For a = −4, b = 4, k = 1 and q = 3, (1) becomes the Allen-Cahn
equation [1]. For b = −a = 1, k = 1 and q = 2, (1) reduces to the well-known
Fisher’s equation [2]. By setting the values as b = −1, a = 1, k = 1, q = 2 and the
source term ψ(x, t, u, ux) = uux gives Burgers-fisher equation. Changing the values
to k = 1, a = −β,b = 1 + β, q = 2 and ψ(x, t, u, ux) = −u3 (1) becomes Huxley
equation. However, by letting the values to k = 1, a = −β, b = 1 + β, q = 2 and
ψ(x, t, u, ux) = uux−u3 leads to Burgers-Huxley equation. Another form by letting
k = 1, a = α, b = −1, q = 2 and ψ(x, t, u, ux) = u3 − u2 gives Nagumo reaction
diffusion equation. Last, by replacing the coefficient b with −b and letting q = 2
(1) becomes the famous Newell Whitehead Segel Equation. The Newell Whitehead
Segel type Equations describes the dynamical behavior near the bifurcation point
of the Rayleigh-Benard convection of binary fluid mixtures [3].

The Rayleigh -Benard convection is a type of natural convection, occurring in
a plane horizontal layer of fluid heated from below, in which the fluid develops
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a regular pattern of convection cells known as Bernard cells. When the heating
is sufficiently intensive, convective motion of the fluid is developed spontaneously
then the hot fluid moves upward, and the cold fluid moves downward. Rayleigh
Bernard convection is one of the most commonly studied convection phenomena
because of its analytical and experimental accessibility. The convection patterns
are the most carefully examined example of self-organizing nonlinear systems [4].
Buoyancy and gravity are responsible for the appearance of convection cells. The
initial movement is the upwelling of warmer liquid from the heated bottom layer
[5]. Fig. (1) and Fig. (2) Shows the Rayleigh -Benard convection phenomenon and
the convection cells in a gravity field.

Fig. (1) Fig. (2)

There are two kinds of patterns that are observed especially often. The first one
is the roll pattern (or stripe pattern) in which the fluid streamlines form cylinders.
These cylinders may be bent and they may form spirals or target-like patterns.
Another typical pattern is the hexagonal one in which the liquid flow is divided
into honeycomb cells. For some fluids, the motion is downward in the center of
each cell and upward on the border between the cells; for other fluids, the motion
is in the opposite direction. The same patterns, stripes and hexagons, appear in
completely different physical systems and on different spatial scales. For instance,
stripe patterns are observed in human fingerprints, on Zebra’s skin and in the visual
cortex. Hexagonal patterns result from the propagation of laser beams through a
nonlinear medium and in systems with chemically reacting and diffusing species [6].

Recently a lot of research work has been presented for solving NWS type equa-
tions. Ezzati and Shakibi [7] applied the Adomian’s Decomposition and multi-
quadric quasi-interpolation methods for solving Newell-whitehead equation. Kheiri
et. al., [8] Adapted the Homotopy analysis and Homotopy Pade methods to find
the numerical solution of NWS equation. Aasaraai [9] considered the differential
transformation method for solving this equation with both constant and variable co-
efficients finding the analytical solution of equation. Macias-Diaz and Ruiz-Ramirez
[10], proposed a finite-difference scheme to approximate the solutions of a gener-
alization of the classical NWS equation. Lastly, Nourazar et. al., applied the
Homotopy perturbation method for five different cases of the equation [11].

In this paper, we adapt a collocation method based on cubic B-spline functions
with different type basis functions to solve (1) such as the trigonometric B-spline
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that has been presented by I. G. Burova in [13], [14] and [15] that has the same
form as in [17] that we will use as our basis functions in the later section. We solve
(1) according to the following classes of initial and boundary conditions as follows
Class No (1)
initial condition u(x, 0) = g(x)
Dirichlet boundary conditions u(a, t) = g1(t), u(b, t) = g2(t)
Class No (2)
initial condition u(x, 0) = g(x)
Neumann boundary conditions ux(a, t) = g3(t), ux(b, t) = g4(t)

The method is tested for six different test problems with different boundary con-
ditions. The most important feature of this method is that it is easy to implement
to both linear and nonlinear problems with no computational or time effort.

In section 2, we apply the cubic B-spline collocation method to solve the NWS
equation where we use uniform, trigonometric and extended cubic B-spline as basis
functions. In section 3 we propose a stability analysis using Von-Neumann method
showing to be unconditionally stable. Finally, section 4 is the closing stage where
we present the numerical results of our method for six test problems.

2. Application of the collocation method

2.1. Uniform Cubic B-spline (UCBS). We introduce the cubic spline space
and basis functions to construct an interpolant S(x) satisfying certain end condi-
tions and then derive several asymptotic expansions to be used in the formulation
of the cubic spline collocation method.

Let ∆ ≡ {a = x0 < x1 < ..... < xN−1 < xN = b} be a uniform partition of the
interval [a, b] with 6 additional knots outside the region, positioned at:

x−3 < x−2 < x−1 < x0,
xN < xN+1 < xN+2 < xN+3,

and h = xi − xi−1 = (b− a)/N as a step size. Consider a smooth quartic spline
S(x) that is an element of S3(∆) ≡ {q(x)/q(x) ∈ C2[a, b], q(x) is a polynomial of
degree at most 3 on the partition ∆} . Consider the B-splines basis in S3(∆) is
defined as follows in different ways.

The B-spline basis can be defined as

Bi(x) =
1

6h3


x3 0 ≤ x < h
−3x3 + 12hx2 − 12h2 x+ 4h3, h ≤ x < 2h
3x3 − 24hx2 + 60h2 x− 44h3, 2h ≤ x < 3h
−x3 + 12hx2 − 48h2 x+ 64h3 3h ≤ x < 4h

(2)

where

Bi−1(x) = Bi(x− (i− 1)h), i = 2, 3, ..... (3)

The Bi(x) and their first two derivatives, evaluated at the nodal points are
needed. Their coefficients are given in Table 1.
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Table 1: coefficients of Bi and its derivatives
x xi−1 xi xi+1

Bi
1
6

4
6

1
6

hB′i
−3
6 0 3

6

h2B′′i 1 −2 1

2.2. Extended cubic uniform B-spline (ECBS). We introduce the blending
function of the extended cubic uniform B-spline with degree 4, EBi(x) is given by
[16] as

EBi(x) =
1

24h4


4h(1− λ)z3i + 3λz3i ,
(4− λ)h4 + 12h3zi+1 + 6h2(2 + λ)z2i+1 − 12hz3i+1 − 3λz4i+1,
(4− λ)h4 − 12h3zi+1 + 6h2(2 + λ)z2i+1 + 12hz3i+1 − 3λz4i+1,
4h(1− λ)z3i + 3λz3i ,

x ∈ Ii
x ∈ Ii+1

x ∈ Ii+2

x ∈ Ii+3

(4)

Where zi = x− xi, Ii ≡ [xi, xi+1], and the parameter λ satisfies −8 ≤ λ ≤ 1 .
The EBi(x) and their first two derivatives, evaluated at the nodal points are

needed. Their coefficients are given in Table2.

Table 2: coefficients of EBi and its derivatives
x xi−2 xi−1 xi xi+1 xi+2

EBi 0 4−λ
24

8+λ
12

4+λ
24 0

EB′i 0 1
2h 0 −1

2h 0

EB′′i 0 2+λ
2h2 − 2+λ

h2
2+λ
2h2 0

2.3. Trigonometric cubic B-spline (TCBS). Let TS3(∆) be the space of cu-
bic trigonometric spline functions over the partition ∆. We can define the cubic
trigonometric B-spline functions TBi(x), for i = −1, 0, 1, ....., n + 1 for TS3(∆)
after including two more points on each side of the partition ∆. Thus the cubic
trigonometric B-spline functions is defined as in [17] as

TBi(x) =
1

µ(h)



sin3(x−xi−2

2 ), x ∈ [xi−2, xi−1]

sin(x−xi−2

2 )
[
sin(x−xi−2

2 ) sin(xi−x
2 ) + sin(xi+1−x

2 ) sin(x−xi+1

2 )
]

+

sin(x−xi−1

2 ) sin2(xi+1−x
2 ), x ∈ [xi−1, xi]

sin(xi+2−x
2 )

[
sin(x−xi−1

2 ) sin(xi+1−x
2 ) + sin(xi+2−x

2 ) sin(x−xi

2 )
]

+

sin(x−xi+2

2 ) sin2(xi+1−x
2 ), x ∈ [xi, xi+1]

sin3(xi+2−x
2 ), x ∈ [xi+1, xi+2]

(5)
Where

µ(h) = sin(h2 )sin(h)sin( 3h
2 )

The TBi(x) and their first two derivatives, shown at the nodal points are needed.
Their coefficients are given in Table 3.
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Table 3: coefficients of TBi and its derivatives
x xi−2 xi−1 xi xi+1 xi+2

TBi 0 sin2(h2 ) csc(h) csc( 3h
2 ) 2

1+2 cos(h) sin2(h2 ) csc(h) csc( 3h
2 ) 0

TB′i 0 3
4 csc( 3h

2 ) 0 −3
4 csc( 3h

2 ) 0

TB′′i 0
3(1+3 cos(h)) csc2(h

2 )

13(2 cos h
2 +cos( 3h

2 ))

−3 cot2(h
2 )

2+4 cos(h)

3(1+3 cos(h)) csc2(h
2 )

13(2 cos h
2 +cos( 3h

2 ))
0

3. Implementation of the method

The approximate solution U to the exact solution u(x, t) will be sought in form
of an expansion of uniform B-splines

Um(x) =

N+1∑
m=−1

δmBm(x), (6)

where δm are unknown parameters to be determined using cubic B-spline colloca-
tion form of (6). The nodal values Um, U

′

m and (U
′′

m) at the knots xm are derived
from expression (6) and Table 1 in the following form

U(xm) =
1

6
(δm+1 + 4δm + δm−1), (7)

U
′
(xm) =

3

6h
(δm+1 − δm−1), (8)

U
′′
(xm) =

1

h2
(δm+1 − 2δm + δm−1), (9)

These knots are used as collocation points. We discretize the time derivative by a
difference formula to the space derivative

Ut(x, tn) =
(U(x, tn+1)− U(x, tn))

τ
. (10)

Substitute (10) into (1), yields

U(x, tn+1) = U(x, tn)+τkUxx(x, tn)+aτU(x, tn)+bτ(U(x, tn))q+τψ(x, tn, u
n, unx)

(11)

where τ = ∆t is the time step and the superscripts n and n+ 1 are successive time
levels. Hence (11) can be rearranged as

U(x, tn+1) = τkUxx(x, tn)+bτ(U(x, tn))q+(1+aτ)U(x, tn)+τψ(x, tn, u
n, unx) (12)

substituting (6) into (12) for time step tn

(

N+1∑
m=−1

(δn+1
m Bm(x)) =

N+1∑
m=−1

(δnmB
′′
m(x))) + (1 + aτ)(

N+1∑
m=−1

(δnmBm(x))

+ bτ((

N+1∑
m=−1

(δnmBm(x)))q + ψ(xm, tn, u
n, unx) (13)
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Then putting the values of the nodal values U and its derivatives using (7) to (9)
at the knots in (13) yields the following difference equation with the variables δ.

δn+1
m+1 + 4δn+1

m + δn+1
m−1 = a

′
δnm+1 + b

′
δnm + c

′
δnm−1 + τψ(xm, tn, u

n, unx) (14)

Where m = 0, 1, ......, N

a
′

= c
′

= X + Y + Z, b
′

= 4X − 2Y + (4q)Z

X = aτ + 1, Y =
6τ

h2
, Z = bτ(1)q = bτ

The system (14) results in (N + 1) linear equations in (N + 3) unknowns. To
solve this system two additional constrains are required. These constrains are
obtained from the boundary conditions. Applying the boundary conditions enables
us to add the parameters δ−1, δN+1 in the system and then the system can be
reduced to (N + 3)× (N + 3) solvable system diven by

Aδn+1 = Bδn + C (15)

Where δ = (δ−1, δ0, ......, δN+1)
T

and the matrix A,B and C is given by

B=



1
6

4
6

1
6 0 0 0 0 0 0

a
′

b
′

c
′

0 0 0 0 0 0

0 a
′

b
′

c
′

0 0 0 0 0

0 0 a
′

b
′

c
′

0 0 0 0

0 0 0
. . .

. . .
. . .

. . .
. . . 0

0 0 0 0 0 0 a
′

b
′

c
′

0 0 0 0 0 0 1
6

4
6

1
6


,

A=



1 4 1 0 0 0 0 0 0
0 1 4 1 0 0 0 0 0
0 0 1 4 1 0 0 0 0
0 0 0 1 4 1 0 0 0

0 0 0
. . .

. . .
. . .

. . .
. . . 0

0 0 0 0 0 1 4 1 0
0 0 0 0 0 0 1 4 1


,

And

C = [g1(tn), ψ(x0, tn, u
n, unx), ψ(x1, tn, u

n, unx), · · · · · · , ψ(xm+1, tn, u
n, unx), g2(tn)]T

where ψ(x, t, u, ux) denotes the right hand side of the equation after calculating
the initial state from the boundary conditions. All calculations were carried out
using Matlab 7 (R 2008 a). The same procedure is carried out using the trigono-
metric B-spline and the extended B-spline in the same sense of the uniform B-spline
as stated in the previous section by changing the basis used.

4. Stability analysis

In this section we will investigate the stability analysis by applying Von-Neumann
stability analysis. For sake of simplicity we let ψ(x, t, u, ux) = 0. We substitute
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δnm = εne
iβh into linearized form of (14)where β is the mode number, h is size

element and i=
√
−1 we obtain,

εn(a
′
ei(m+1)φ + b

′
ei(m)φ + c

′
ei(m−1)φ) = εn+1(ei(m+1)φ + 4ei(m)φ + ei(m−1)φ)

Here we have taken, βh = φ, dividing both sides by ei(m)φ we get

εn(a
′
eiφ + b

′
+ c

′
e−iφ) = εn+1(eiφ + 4 + e−iφ)

ε =
(a
′
eiφ + b

′
+ c

′
e−iφ)

(eiφ + 4 + e−iφ)
(16)

and by simplifying (16), we get

ε =
Â

Ĉ

Where Â, Ĉ can be put in the form

Â = (a′ + c′) cosφ+ b′, Ĉ = 2 cosφ+ 4 (17)

after simplifying and substitution we see that

Â2 − Ĉ2 = −24a2τ2 − 72aτ − 24abτ2 − 12abτ24q − 24bτ − 12bτ4q − 4b2τ2

−2(2+2q)b2τ2 − 16qb2τ2 ≤ 1

Which implies that the scheme is unconditionally stable.

5. Test problems

Numerical method described in the previous section is tested on six test problems
from [9], [11] and [12] for different values of coefficients for getting solutions of the
NWS equation in order to demonstrate the robustness and numerical accuracy. The
L∞ error norm

L∞ = |U − UN |∞ = maxj |Uj − (UN )nj |

is used to measure error between the exact and numerical solutions.

5.1. Problem (1). In (1) a = 2, b = −3, q = 2, k = 1 and ψ(x, t, u, ux) = 0 then
the NWS equation is written with class no (1) of boundary conditions as in [9]

ut − uxx − 2u+ 3u2 = 0,

u(x, 0) = λ, u(0, t) =
(−2λe2t)

(−2 + 3λ(1− e2t))
,

u(1, t) =
(−2λe2t)

(−2 + 3λ(1− e2t))
, u(x, t) =

(−2λe2t)

(−2 + 3λ(1− e2t))
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Table 4: Absolute maximum error for 0≤ x ≤1 ,0≤ t ≤1 and λ=0.1
x/t Method 0.2 0.4 0.6 0.8 1.0
0.2 UCBS 8.323E-04 1.011E-03 8.581E-04 4.745E-04 1.991E-05

TCBS 8.295E-04 1.007E-03 8.514E-04 4.651E-04 3.239E-05
ECBS 6.068E-04 6.800E-04 5.476E-04 2.746E-04 6.339E-05

0.4 UCBS 1.226E-03 1.520E-03 1.302E-03 7.334E-04 4.932E-06
TCBS 1.222E-03 1.514E-03 1.292E-03 7.194E-04 2.342E-05
ECBS 9.013E-04 1.023E-03 8.289E-04 4.221E-04 8.366E-05

0.6 UCBS 1.226E-03 1.520E-03 1.302E-03 7.334E-04 4.932E-06
TCBS 1.222E-03 1.514E-03 1.292E-03 7.194E-04 2.342E-05
ECBS 9.013E-04 1.023E-03 8.289E-04 4.221E-04 8.366E-05

0.8 UCBS 8.323E-04 1.011E-03 8.581E-04 4.745E-04 1.991E-05
TCBS 8.295E-04 1.007E-03 8.514E-04 4.651E-04 3.239E-05
ECBS 6.068E-04 6.800E-04 5.476E-04 2.746E-04 6.339E-05

(a)

(b)
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(c)

(d)

Fig. 3. Approximate solution (a) Uniform, (b) Trigonometric, (c) Extended, (d)
Error (UCBS)

5.2. Problem(2). In (1) a = −2, b = 0, q = 1, k = 1 and ψ(x, t, u, ux) = 0 then
the NWS equation is written with class no (1) of boundary conditions as in [11]

ut − uxx + 2u = 0,

u(x, 0) = ex, u(0, t) = e−t,

u(1, t) = e(1−t), u(x, t) = e(x−t)
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Table 5: Absolute maximum error for 0≤ x ≤1 ,0≤ t ≤1
x/t Method 0.2 0.4 0.6 0.8 1.0
0.2 UCBS 3.426E-03 3.544E-03 3.058E-03 2.536E-03 2.080E-03

TCBS 3.258E-03 3.372E-03 2.910E-03 2.413E-03 1.982E-03
ECBS 3.258E-03 3.372E-03 2.910E-03 2.413E-03 1.982E-03

0.4 UCBS 5.426E-03 5.651E-03 4.879E-03 4.048E-03 3.325E-03
TCBS 5.160E-03 5.376E-03 4.643E-03 3.851E-03 3.164E-03
ECBS 5.160E-03 5.376E-03 4.643E-03 3.851E-03 3.164E-03

0.6 UCBS 5.940E-03 6.094E-03 5.243E-03 4.345E-03 3.569E-03
TCBS 5.649E-03 5.798E-03 4.989E-03 4.135E-03 3.396E-03
ECBS 5.649E-03 5.798E-03 4.989E-03 4.135E-03 3.396E-03

0.8 UCBS 4.474E-03 4.438E-03 3.791E-03 3.136E-03 2.575E-03
TCBS 4.255E-03 4.223E-03 3.607E-03 2.985E-03 2.450E-03
ECBS 4.255E-03 4.223E-03 3.607E-03 2.985E-03 2.450E-03

(a)

(b)
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(c)

(d)

Fig. 4. Approximate solution (a) Uniform, (b) Trigonometric, (c) Extended, (d)
Error (UCBS)

5.3. Problem(3). In (1) a = 1, b = −1, q = 2, k = 1 and ψ(x, t, u, ux) = 0 then
the NWS equation is written with class no (1) of boundary conditions as in [11]

ut − uxx − u+ u2 = 0

u(x, 0) = (1− e(
x√
6
)
)−2,

u(0, t) = (1+e(−
5
6t ))−2 , u(1, t) = (1+e

( 1√
6
− 5

6t ))−2 , u(x, t) = (1+e
( x√

6
− 5

6t ))−2
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Table 6: Absolute maximum error for 0≤ x ≤1 ,0≤ t ≤1
x/t Method 0.2 0.4 0.6 0.8 1.0
0.2 UCBS 2.810E-04 3.030E-04 2.480E-04 1.660E-04 7.410E-05

TCBS 2.716E-04 3.249E-04 2.341E-04 1.506E-04 5.793E-05
ECBS 6.909E-04 6.760E-04 5.184E-04 3.196E-04 1.094E-04

0.4 UCBS 4.270E-04 4.740E-04 3.970E-04 2.760E-04 1.390E-04
TCBS 4.126E-04 4.551E-04 3.764E-04 2.536E-04 1.148E-04
ECBS 1.056E-03 1.059E-03 8.328E-04 5.384E-04 2.226E-04

0.6 UCBS 4.380E-04 4.910E-04 4.180E-04 2.990E-04 1.620E-04
TCBS 4.247E-04 4.723E-04 3.972E-04 2.765E-04 1.381E-04
ECBS 1.085E-03 1.099E-03 8.799E-04 5.897E-04 2.744E-04

0.8 UCBS 3.050E-04 3.370E-04 2.890E-04 2.110E-04 1.200E-04
TCBS 2.959E-04 2.905E-04 2.755E-04 1.962E-04 1.044E-04
ECBS 7.482E-04 7.547E-04 6.123E-04 4.219E-04 2.127E-04

(a)

(b)
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(c)

(d)

Fig. 5. Approximate solution (a) Uniform, (b) Trigonometric, (c) Extended, (d)
Error (UCBS)

5.4. Problem(4). In (1) a = 1, b = −1, q = 4, k = 1 and ψ(x, t, u, ux) = 0 then
the NWS equation is written with class no (1) of boundary conditions as in [11]

ut − uxx − u+ u4 = 0

u(x, 0) = (1− e
3x√
10 )
−2
3 ,

u(0, t) = (
1

2
tanh((

21

20t2
) +

1

2
))

2
3 , u(1, t) = (

1

2
tanh(

−3

2
√

10
(1− 7√

10
t) +

1

2
))

2
3 ,

u(x, t) = (
1

2
tanh(

−3

2
√

10
(x− 7√

10
t) +

1

2
))

2
3
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Table 7: Absolute maximum error for 0≤ x ≤1 ,0≤ t ≤1
x/t Method 0.2 0.4 0.6 0.8 1.0
0.2 UCBS 3.800E-04 8.190E-04 1.112E-03 1.184E-03 1.080E-03

TCBS 3.951E-04 8.362E-04 1.130E-03 1.204E-03 1.103E-03
ECBS 9.673E-04 1.900E-03 2.446E-03 2.519E-03 2.251E-03

0.4 UCBS 4.230E-04 1.111E-03 1.613E-03 1.777E-03 1.658E-03
TCBS 4.448E-04 1.137E-03 1.640E-03 1.806E-03 1.688E-03
ECBS 1.159E-03 2.641E-03 3.587E-03 3.805E-03 3.462E-03

0.6 UCBS 2.890E-04 1.008E-03 1.569E-03 1.789E-03 1.703E-03
TCBS 3.111E-04 1.034E-03 1.596E-03 1.818E-03 1.734E-03
ECBS 8.863E-04 2.444E-03 3.512E-03 3.838E-03 3.558E-03

0.8 UCBS 1.120E-04 6.120E-04 1.024E-03 1.206E-03 1.172E-03
TCBS 1.270E-04 6.300E-04 1.042E-03 1.225E-03 1.192E-03
ECBS 4.224E-04 1.505E-03 2.293E-03 2.583E-03 2.441E-03

(a)

(b)
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(c)

(d)

Fig. 6. Approximate solution (a) Uniform, (b) Trigonometric, (c) Extended, (d)
Error (UCBS)

5.5. Problem(5). In (1) a = 3, b = −4, q = 3, k = 1 and ψ(x, t, u, ux) = 0 then
the NWS equation is written with class no (1) of boundary conditions as in [11]

ut − uxx − 3u+ 4u3 = 0

u(x, 0) =

√
3

4
(

e
√
6x

e
√
6x + e(

√
6x
2 )

)

u(0, t) =

√
3

4
(

1

1 + e(1−
9t
2 )

), u(1, t) =

√
3

4
(

e
√
6

e
√
6 + e(

√
6

2 −
9t
2 )

) , u(x, t) =

√
3

4
(

e
√
6x

e
√
6x + e(

√
6x
2 −

9t
2 )

)



96 W. K. ZAHRA ET AL. EJMAA-2014/2(2)

Table 8: Absolute maximum error for 0≤ x ≤1 ,0≤ t ≤1
x/t Method 0.2 0.4 0.6 0.8 1.0
0.2 UCBS 6.129E-02 7.120E-02 4.312E-02 4.661E-02 1.560E-02

TCBS 6.134E-02 7.129E-02 6.430E-02 4.670E-02 1.563E-02
ECBS 5.166E-02 5.402E-02 4.511E-02 2.860E-02 1.518E-03

0.4 UCBS 8.711E-02 1.005E-01 8.771E-02 6.001E-02 1.640E-02
TCBS 8.718E-02 1.006E-01 8.786E-02 6.015E-02 1.650E-02
ECBS 7.224E-02 7.421E-02 5.888E-02 3.321E-02 4.323E-03

0.6 UCBS 8.030E-02 9.072E-02 7.637E-02 4.899E-02 9.878E-03
TCBS 8.036E-02 9.085E-02 7.651E-02 4.911E-02 9.969E-03
ECBS 6.461E-02 6.456E-02 4.822E-02 2.328E-02 9.679E-03

0.8 UCBS 4.857E-02 5.319E-02 6.420E-02 2.582E-02 2.862E-03
TCBS 4.862E-02 5.328E-02 4.321E-02 2.590E-02 2.915E-03
ECBS 3.721E-02 3.588E-02 2.500E-02 9.644E-03 9.118E-03

(a)

(b)
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(c)

(d)

Fig. 7. Approximate solution (a) Uniform, (b) Trigonometric, (c) Extended, (d)
Error (UCBS)

5.6. Problem(6). In (1) setting k = 1 and ψ(x, t, u, ux) = u(α − 1)(1 − u) then
the equation becomes the famous Nagumo reaction diffusion equation in [12] under
class no (2) of boundary conditions as

ut − uxx − u(α− u)(1− u) = 0

subject to initial conditions u(x, 0) = ρ
And boundary conditions

ux(0, t) = 0, ux(1, t) = 0,

Where matrix A is the same and B and C in (15)becomes

B=



−3
6h 0 3

6h 0 0 0 0 0 0

d
′

e
′

d
′

0 0 0 0 0 0

0 d
′

e
′

d
′

0 0 0 0 0

0 0 d
′

e
′

d
′

0 0 0 0

0 0 0
. . .

. . .
. . .

. . .
. . . 0

0 0 0 0 0 0 d
′

e
′

d
′

0 0 0 0 0 0 −3
6h 0 3

6h


,
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Where

d′ = 1 +X − Y, e′ = 4 + 4X − 16Y

X = τ(1 + α), Y =
τ

3

And

C = [g1(tn), 0, 0, · · · · · · , 0, g2(tn)]T

Solving the above system gives the solution of the equation. Table(9) gives the ap-
proximate solution of the equation compared to the solution in [12]. The analytical
solution is given in [12]by

u(x, t) = 0.3−0.04201052049t+0.002794271318t2+0.0001237074665t3+(6.498086711(10−10)t

+2.063100590(10−9)t2 − 1.502107790(10−9)t3)x2(l − x)2 + (5.530644662(10−9)t

−1.727330167(10−8)t2 + 1.237824484(10−8)t3)x3(l − x)3

Table 9: Approximate solution for 0≤x≤1 ,0≤t≤0.1 using uniform cubic B-spline
withα = 0.5, l = 1, ρ = 0.3

x/t 0.02 0.04 0.06 0.08
UCBS Ref. [12] UCBS Ref. [12] UCBS Ref. [12] UCBS Ref. [12]

0 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.1 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.2 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.3 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.4 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.5 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.6 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.7 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.8 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
0.9 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788
1.0 0.299161 0.302659 0.298324 0.30534 0.297489 0.308053 0.296657 0.310788

(a) (b)

Fig. 8. (a) Our Method, (b) Ref. [12]
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As seen from the results of the previous problems, that UCBS method and TCBS
method are in good agreement with each other sense they have the same value of
the maximum error where on the other hand the ECBS method has a bigger error
at some nodal points of the solution domain. Even by changing the value of λ
it does not affect the accuracy of the solution over the domain proving that the
ECBS method is not a good technique for solving such problems unlike the two
other methods.

6. Conclusion

In this paper, we presented a numerical scheme for solving the NWS equation.
The method employed to find the solution of this equation is based on the B-spline
functions of different types. The methods applied to several test problems from the
literature to equations with constant coefficients. The computational results are
found to be in good agreement with the exact solutions. Applying von-Neumann
stability analysis proves the scheme to be unconditionally stable. The proposed
method can be used to solve a large class of both linear and nonlinear partial
differential equations with no computational effort.
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