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NONLINEAR DYNAMICS OF A MODIFIED AUTONOMOUS
VAN DER POL-DUFFING CHAOTIC CIRCUIT

A.M.A. EL-SAYED, A.E. MATOUK, A. ELSAID, H.M. NOUR, A. ELSONBATY

Abstract. In this work, we investigate the dynamical behaviors of the modi-
�ed autonomous Van der Pol-Du¢ ng chaotic circuit (MADVP). Some stability
conditions of the equilibrium points are discussed. The existence of pitchfork
bifurcation is veri�ed by using the bifurcation theory and the center manifold
theorem. The occurrences of Hopf bifurcation about the equilibrium points
are proved. Conditions for supercritical and subcritical Hopf bifurcations are
also derived. A route to chaos in this system is shown via period-doubling
bifurcations. Furthermore, the analytical conditions of the existence of homo-
clinic orbits and Smale horseshoe chaos in this system are obtained. Numerical
simulations are used to support the theoretical predictions.

1. Introduction

Chaos is one of the most fascinating phenomena which has been extensively stud-
ied and developed by scientists since the pioneering work of Lorenz in 1963 [1]-[7].
The chaotic system has complex dynamical behaviors such as the unpredictability
of the long-term future behavior and irregularity. Thus, chaos has great poten-
tial applications in many disciplines such as encryption, cryptography [8]-[9], chaos
control and synchronization [10]-[17], secure communications [18], neuroscience [19],
and mathematical biology [20].
As a matter of fact, nonlinear electronic circuits play an important role in study-

ing various phenomena that undergo complex dynamical behaviors and chaos.
Thus, nonlinear electronic circuits are widely used as an experimental vehicle to
study nonlinear phenomena. This �eld of research was initiated by L.O. Chua who
developed a nonlinear circuit with a piecewise nonlinear term called Chua�s circuit
[21], however the simplest autonomous nonlinear circuit which generates chaotic
signals was presented in [22]. Recently, Chen circuit [23] and Lü circuit [24] have
been implemented with quadratic nonlinear terms. Thus, our objective is to study
the nonlinear dynamics of MADVP circuit. We show that the circuit�s system has
three equilibrium points E0, E+; and E�, then we study their stability conditions.
The conditions of existence of pitchfork bifurcation are derived by using center
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manifold theorem and the bifurcation theory [25]. The occurrences of Hopf bifurca-
tion near the equilibrium points are also discussed. The stability conditions of the
periodic solutions are obtained by using Hopf bifurcation theorems [26]-[27]. Also,
we investigate the analytical conditions for the existence of the homoclinic orbits
in this system by using the theorem given in [28].
The paper is organized as follows: In Section 2, a circuit realization of MADVP

system is proposed. In Section 3, some stability conditions of the equilibrium points
are investigated. In Section 4, pitchfork bifurcation analysis is demonstrated. In
Section 5, Hopf bifurcation analysis of the equilibrium points is discussed. In Section
6, the existence of homoclinic orbits is analytically obtained. Finally, in Section 7,
conclusions are drawn.

2. The circuit realization of MADVP system

The circuit implementation of MADVP circuit is shown in �gure 1. The MADVP
system is given as follows [13]:

_x = ��(x3 � �x� y);
_y = x� 
y � z; (1)

_z = �y;

where �; 
; � are positive real numbers and � 2 R. The equilibrium points of
system (1) are:

E0 = (0; 0; 0); E+ = (
p
�; 0;

p
�); and E� = (�

p
�; 0;�p�) (2)

where E+ and E� exist if � > 0:

3. Some stability conditions of the equilibrium points

Consider the three-dimensional autonomous system

dX

dt
= F (X); X 2 R3 (3)

where the vector �eld F (X) : R3 ! R3 belongs to the class Cr(r � 2) and the �xed
point Xe 2 R3 is a hyperbolic saddle focus, i.e., the eigenvalues of the Jacobian
matrix J have the form:

�1 = �; �2;3 = � � iw; �� < 0; w 6= 0; and i =
p
�1 (4)

where �; �; and w are real constants. The eigenvalues equation of the equilibrium
point is given by the following polynomial:

P (�) = �3 + a1�
2 + a2�+ a3 = 0 (5)

and its discriminant D(P ) is given by:

D(P ) = 18a1a2a3 + (a1a2)
2 � 4(a1)3a3 � 4(a2)3 � 27(a3)2: (6)

If D(P ) < 0, then the characteristic equation (5) has one real root �0 and two
complex-conjugate roots �� = � � i!. Hence, the characteristic equation (5) can
be written as:

�3 � (2� + �0)�2 + (j�+j2 + 2��0)�� j�+j2 �0 = 0: (7)
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(a)

(b) (c)

Figure 1: (a) Circuit implementation of MADVP circuit; (b) and (c) Simulations results
via oscilloscope when 
 = 2:85.

The equilibrium points E� have the same characteristic equation

�3 + (
 + 2��)�2 + (� � � + 2��
)�+ 2��� = 0: (8)
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From the characteristic equation (8), we �nd that �0 =
�2���
j�+j2

< 0: Thus, the

conditions D(P ) < 0 and 
 <
(� � �)
2��

are su¢ cient conditions for the equilibrium

points E� to be a saddle focus.
Using the parameter values � = 200; � = 0:1; 
 = 1:6; and � = 100, we get:

D(P ) = �0:389� 109; �0 = �23:3; and �� = 0:85� 13:7i; (9)

i.e. the equilibrium points E� are saddle focus at this choice of the parameter
values.
By applying Routh-Hurwitz criterion, the necessary and su¢ cient condition for

the equilibrium points E� to be locally asymptotically stable is

2��
2 + (� � � + 4�2�2)
 � 2��2 > 0: (10)

Thus, we have the following Lemma:

Lemma 1. The equilibrium points are asymptotically stable if and only if 
 > 
+

where


+ =
�(� � � + 4�2�2) +

p
(� � � + 4�2�2)2 + 16�2�3
4��

:

The characteristic equation of the equilibrium point E0 is given by:

�3 + (
 � ��)�2 + (� � � � ��
)�� ��� = 0; (11)

which implies that �0 =
���

j�+j2
> 0 for � > 0: This means that E0 is unstable when

� > 0:

4. Analysis of pitchfork bifurcation

Assume that 
 =
�(2� �)
1� � ; � =

�

1� � ; and � = �c = 0 (where � 6= 1 ), then by
using the characteristic equation (11), the equilibrium point E0 has the eigenvalues
0;��; and ��. Therefore E0 is not hyperbolic and consequently we can use the
center manifold theorem [25] to discuss the dynamics near E0.
By using the transformation:0@ x

y
z

1A =

0@ 1 1� � 1� �
0 � � 1 �1
1 1 1

1A0@ x1
x2
x3

1A ; �� = �� �c;
system (1) is transformed into the following form:0@ _x1

_x2
_x3

1A =

0@ 0 0 0
0 �� 0
0 0 ��

1A0@ x1
x2
x3

1A+
0@ g1
g2
g3

1A ; (12)

where

g1 = �x31 + 3(� � 1)(x2 + x3)x21 � (1� �)2(3x22 + 6x2x3 + 3x23)x1
+��x1 � (1� �)3x32 � 3(1� �)3x22x3 + (��(1� �)� 3(1� �)3x23)x2
�(1� �)3x23 + ��(1� �)x3;
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g2 = �g1
�
;

g3 = (� � 1)g2:
Consider the parameter �� to be the bifurcation parameter of system (12) and

also as a new independent variable of system (12). Thus, from center manifold
theory, there exists a center manifold for (12) given by:

W c(0) = f(x1; x2; x3; ��) 2 R4 j x2 = h1 (x1; ��) ; x3 = h2 (x1; ��) ;
jx1j < �1; j��j < �2; hi (0; 0) = 0; Dhi (0; 0) = 0; i = 1; 2g; (13)

for �1 and �2 su¢ ciently small. To compute the center manifold W
c(0) we assume

that

x2 = h1 (x1; ��) = �1x
2
1 + �2��x1 + �3��

2 + �4x
3
1 + �5��x

2
1 + :::; (14)

x3 = h2 (x1; ��) = �1x
2
1 + �2��x1 + �3��

2 + �4x
3
1 + �5��x

2
1 + ::: : (15)

The center manifold must satisfy

@(h (x1; ��)) u Dx1h (x1; ��) [Ax1 + f(x1; h (x1; ��) ; ��)]�Bh (x1; ��) (16)

�g(x1; h (x1; ��) ; ��) = 0;

where A = 0; f = g1; h =
�
h1
h2

�
; B =

�
�� 0
0 ��

�
; and g =

�
g2
g3

�
:

Thus, substituting (14-15) into (16), and then equating terms of like powers to
zero, we get

h1 (x1; ��) = � 1

�2
��x1 +

1

�2
x31 +

1� (1� �)3
�4

��2x1 + :::; (17)

h2 (x1; ��) =
1

�2
��x1 �

1

�2
x31 +

(� � 3)(1� �)3
�3

��2x1 + ::: . (18)

Using equations (12) and (17-18), we obtain the vector �eld reduced to the center
manifold as follows

dx1
dt

= ��x1 + (1� �)(
1

�2
� 1

�2
)��2x1 � x31 + :::;

(19)
d��

dt
= 0:

The equilibrium point (0; 0) of system (19) undergoes a pitchfork bifurcation at
�� = 0, since it satis�es the conditions:

G(0; 0) = 0;
@G

@x1
j(0;0) = 0;

@G

@��
j(0;0) = 0;

@2G

@x21
j(0;0) = 0;

@2G

@x1@��
j(0;0) 6= 0;

and
@3G

@x31
j (0;0) 6= 0; (20)

where G(x1; ��) � ��x1 + (1� �)(
1

�2
� 1

�2
)��2x1 � x31:

Thus, by choosing 
 =
�(2� �)
1� � ; � =

�

1� � and varying the parameter � near the
critical value �c, system (1) has a unique locally asymptotically stable equilibrium
point E0 as � < �c. When � = �c, system (1) undergoes a pitchfork bifurcation at
E0. Then, by varying the parameter � above the critical value �c, the equilibrium
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point becomes unstable and two other equilibrium points E� appear and they are
locally asymptotically stable (near � = �c).

5. Hopf bifurcation analysis of the equilibrium points

In this Section, we apply Hopf bifurcation theorems [26]�[27] to the equilibrium
points of system (1). The characteristic equation of the equilibrium points E+ and
E� is given by equation (8). So, we carry out the analysis for the equilibrium point
E+, similar analysis holds for E�.
We shift the origin to the point E+ by writing x =

p
� + x̂; y = ŷ; z =

p
� + ẑ

into equation (1) and obtain in vector form:

_X = J+X + F̂ (X;�; 
; �; �); (21)

where

X =

0@ x
y
z

1A ; J+ =
0@ �2�� � 0

1 �
 �1
0 � 0

1A ; F̂ =
0@ ��(x3 + 3p�x2)

0
0

1A ;
and we have dropped the cap on x; y and z. We wish to determine the su¢ cient
conditions to ensure that equation (8) will have one negative �0(
) and two complex-
conjugate roots �(
)� i!(
) whose real part �(
) vanishes at the critical point 
c,
while �0(
c) 6= 0 ( �0(
) =

d�

d

).

Equating the coe¢ cients of like powers of in (7) and (8), we get:

2� + �0 = �(
 + 2��); (22)

j�+j2 + 2��0 = � � � + 2��
; (23)

j�+j2 �0 = �2���: (24)

On the other hand, equation (8) has two pure imaginary roots (�(
c) = 0 ) if
and only if the product of the coe¢ cients of �2 and � equals the constant term,
that is i¤

2��
2 + (� � � + 4�2�2)
 � 2��2 = 0: (25)

Hopf bifurcation takes place when the real parts of the two complex eigenvalues
vanish; therefore the roots of equation (25) are the critical values at which Hopf
bifurcation takes place. Thus, the critical Hopf bifurcation point is 
c = 


+:
Multiplying (23) by �0, then using (22) and (24) we obtain:

�(
 + 2�� + 2�)(� � � + 2��
) = �2��� + 2�(
 + 2�� + 2�)2:

Di¤erentiating with respect to 
 and setting 
 = 
+, we have:

d�

d

j
=
+ =

�(��
+2

+ ��2)

2��2 + (
+2 + 4��
+)
+
< 0: (26)

For 
 = 
+, �0 is given by �0 = �(
+ + 2��) < 0 whereas j�+j2 =
2���


+ + 2��
:

Consequently, system (1) satis�es the conditions of Hopf bifurcation theorem at E�
[26]-[27] which ensures the existence of a one-parameter family of periodic solutions
in the neighborhood of the parameters (
+; �; �; �).
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We next study the stability of these periodic solutions. It is easy to verify that
there exists a matrix:

T =

0B@
1
s

1
!(
+) � 1

!(
+)

�
+

�s
�
�s +

1

+!(
+)


+

�!(
+)

+

� + 1

+ ��

�
�
�

1CA ;
where s = ��0(
+) = (
++2��) and � = !(
+)�

�

!(
+)
: It is easy to verify that

the matrices T and T�1 (the inverse matrix of T ) satisfy the following relation:

T�1J+j
=
+T =

0@ 0 !(
+) 0
�!(
+) 0 0
0 0 �s

1A :
Let the vector y = (y1; y2; y3) and assume that �! =

1

s
y1 +

1

!(
+)
y2 �

1

!(
+)
y3

which implies that

F̂ (Ty; 
+) =

0@ ��(�!3 + 3p��!2)
0
0

1A :
Now,

F (y) = T�1F̂ (Ty; 
+)

=
1

d

0B@ ��(�!3 + 3p��!2)
�
+(�!3 + 3p��!2)
�


+
(�!3 + 3

p
��!2)

1CA =

0@ F 1

F 2

F 3

1A ;
where d =

�

�s
+

1

!(
+)
(

+

�
+

1


+
) and F (y) is de�ned by Eq. (3.6) of [27]. The

quantities F kijl and F
k
ij (i; j; k = 1; 2; 3 and l = 1; 2) appearing in Eq. (3.4) of [27]

can easily be obtained as follow:

F 111 = �
6�
p
�

ds2
; F 112 = �

6�
p
�

ds!(
+)
; F 113 = �F 112; F 122 = �

6�
p
�

d!2(
+)
; F 123 = �F 122;

F 211 = �
6
+

p
�

ds2
; F 212 = �

6
+
p
�

ds!(
+)
; F 213 = �F 212; F 222 = �

6
+
p
�

d!2(
+)
; F 223 = �F 222;

F 311 =
6�
p
�

ds2
+
; F 322 =

6�
p
�

d!2(
+)
+
; F 312 =

6�
p
�

ds!(
+)
+
; F 1111 = �

6�

ds3
;

F 1112 = � 6�

ds!2(
+)
; F 2222 = �

6
+

d!3(
+)
; and F 2112 = �

6
+

ds2!(
+)
: (27)

Substituting all these quantities (27) in Eq. (3.4) of [27], we obtain the fol-
lowing result: the bifurcating periodic solutions exist for given �; �; and � > 0 in
the neighborhood of 
c = 
+ is stable or unstable according to ��0(
+) > 0 or
��0(
+) < 0; respectively, and the direction of bifurcation is above or below 
+

according to � > 0 or � < 0; respectively, where ��0(
+) and �0(
+) are de�ned
in Eq. (3.4) of [27] and (26), respectively. Using these criteria, one can compute
the stability of the bifurcating periodic solutions for speci�c numerical values of the
parameters.
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Remark 1. The point E� has the same discussion as the point E+ because the
terms F kij of (27) equal negative F

k
ij of E� and when we substitute these quantities

in Eq. (3.4) of [27], the negative sign will disappear. Hence, the value of ��0(
+)
in the case of E� will be the same as in case of E+.

The above-mentioned analysis of Hopf bifurcation is also applied to the equilib-
rium point E0 and the main results can be summarized as follows:

Lemma 2. System (1) undergoes a Hopf bifurcation at E0 for � > 0; � < 0; and
� > 0 and 
 near to 
0. Moreover, the bifurcating periodic solutions emanating from
E0 have two cases: (i) If 
0 > ��+

p
�2�2 + �, the bifurcating periodic solutions are

asymptotically orbitally stable with asymptotic phase. The direction of bifurcation
is below and the bifurcation is supercritical, (ii)If 
0 < �� +

p
�2�2 + �, then the

bifurcating periodic solutions are unstable. The direction of bifurcation is above and
the bifurcation is subcritical, where


0 =
�(� � � + �2�2) +

p
(� � � + �2�2)2 + 4�2�3
�2�� :

6. Numerical results

For the parameter values � = 200; � = 0:1; and � = 100, the critical Hopf
bifurcation point is 
+ = 3:5078: The equilibrium points E� are stable for 
 > 
+

and lose their stability during 
 is decreased and passed 
+. Using the criteria
of the stability of periodic solution which has been discussed above, we �nd that
��0(
+) = �1:0746 < 0 then the periodic solutions are unstable. Since �0(
+) < 0
(see Eq. (26)), it follows that � > 0 and the bifurcation occurs above 
+. In this
case, the Hopf bifurcation is subcritical and as 
 is decreased less than 
+, periodic
solutions with higher orders and even chaos appear. Thus, system (1) exhibits
period-doubling bifurcations leading to chaos as the parameter 
 is decreased (see
�gure 2). Furthermore, the bifurcation diagrams in �gure 3 show that system (1)
has rich variety of dynamical behaviors including the complete chaotic and periodic
behaviors.

7. The existence of homoclinic orbits

In this Section, we are going to use an analytical approach to discuss the existence
of chaotic attractor of MADVP system. The method is described as follows:

Theorem 3. [28] Suppose that the equilibrium point Xe of system (3) is a saddle
focus, whose eigenvalues satisfy j�j > j�j > 0: Suppose also that there exists a ho-
moclinic orbit connecting Xe to itself. Hence, we have the following: (a) There are
a countable number of Smale horseshoes de�ned in a neighborhood of the homoclinic
orbit. (b) For any su¢ ciently small C1-perturbation H of F the perturbed system

dX

dt
= H(x); (28)

has at least a �nite number of small horseshoes de�ned near the homoclinic orbit.
(c) Both the original system (3) and the perturbed system (28) have horseshoe kind
of chaos.

Now, we are going to apply Shil�nikov theorem to the equilibrium points E� of
system (1). These equilibrium points have the same characteristic equation. So,
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it is su¢ cient to study the case of E+ and similar results can be obtained for the
point E�.
For a homoclinic orbit joining E+ to itself, the orbit is doubly asymptotic with

respect to time t. Suppose that for t > 0

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 2: 3-D view of system (1) with the parameter values � = 200; � = 0:1; and
� = 100, showing the appearance of; (a) Two period one limit cycles around the two equi-
librium points E� for 
 = 3:4: (b) Two period two limit cycles around the two equilibrium
points E� for 
 = 3:1: (c) Two period four limit cycles around the two equilibrium points
E� for 
 = 3:05:(d) Two period three limit cycles around the two equilibrium points E�
for 
 = 2:97: (e) One scroll chaotic attractors for 
 = 2:85: (f) Double scroll chaotic at-
tractor for 
 = 2:6: (g) Homoclinic orbit for 
 = 1:68: (h) Double scroll chaotic attractor
for 
 = 1:6.
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(a) (b)

(c) (d)

Figure 3(a-d): The bifurcation diagrams of system (1).

x(t) = �x(t) = a0 +
1X
k=1

ake
k�t; y(t) = �y(t) = b0 +

1X
k=1

bke
k�t; (29)

z(t) = �z(t) = c0 +
1X
k=1

cke
k�t; (30)

where ak; bk; ck (k � 0) are undetermined coe¢ cients and � is a decaying exponent.
Therefore, �nding the homoclinic orbit connecting E+ is now changed to seeking
�(t) = (�x(t); �y(t); �z(t)) such that �(t)! E+ as t! �1:
Substituting (29)-(30) into system (1) and then comparing coe¢ cients of ek�t

(k � 1) of like powers which yield a set of algebraic equations with the undetermined
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coe¢ cients. For the constant term, we obtain:

� �(a30 � �a0 � b0) = 0; a0 � 
b0 � c0 = 0; and �b0 = 0: (31)

Hence (a0; b0; c0) = (
p
�; 0;

p
�); By equating coe¢ cients of e�t , we get:

�a1 = ��(3a20a1 � �a1 � b1);
�b1 = ��(a1 � 
b1 � c1); (32)

�c1 = �b1;

which can be rewritten as:

(�I � J+)

0@ a1
b1
c1

1A = 0; (33)

where I is the identity matrix of order three.
By equating coe¢ cients of e2�t, we obtain:

(2�I � J+)

0@ a2
b2
c2

1A =

0@ �3�a0a21
0
0

1A : (34)

For general k > 1; we have:

(k�I � J+)

0@ ak
bk
ck

1A =

0@ 	1k(�; 
; �; �; �; �)
	2k(�; 
; �; �; �; �)
	3k(�; 
; �; �; �; �)

1A ; (35)

where	jk(�; 
; �; �; �; �); j = 1; 2; 3 are some known functions depending on �; 
; �; �; �;
and �. Using (33)-(35), we exclude the trivial solution of (a1; b1; c1). Also, since

J+ has the unique negative eigenvalue �0 =
�2���
j�+j2

; then from (33), we deduce

that there exists unique negative �: Hence, (a1; b1; c1) can be uniquely determined
in terms of the parameter �: Moreover, for k > 1, we have det(k�I�J+) 6= 0 which
ensures that the coe¢ cients ak; bk; and ck are uniquely determined using equation
(35). Thus, (�x(t); �y(t); �z(t)) have been uniquely determined for t > 0.
For the reverse time-asymptotic trajectories, we can use the transformation � =

�t with t > 0: Then system (1) becomes:

dx

d�
= �(x3 � �x� y);

dy

d�
= �x+ 
y + z; (36)

dz

d�
= ��y:

Hence, we suppose that

x(�) = �0x(�) = a
0
0 +

1X
k=1

a0ke
�k�� ; y(�) = �0y(�) = b

0
0 +

1X
k=1

b0ke
�k�� ; (37)

z(�) = �0z(�) = c
0
0 +

1X
k=1

c0ke
�k�� : (38)

Similar to the case of t > 0; we compare coe¢ cients of e�k�� (k � 1) of equal
powers, so we get a set of algebraic equations with the undetermined coe¢ cients
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a0k; b
0
k; c

0
k and the decaying exponent �: By comparing coe¢ cients of the constant

term, we get (a00; b
0
0; c

0
0) = (a0; b0; c0): However, by equating terms of equal powers

at k = 1, we obtain:

(�I � J+)

0@ a01
b01
c01

1A = 0; (39)

which implies that � = �: Thus, the rest of coe¢ cients a0k(�; 
; �; �; �; �); b
0
k(�; 
; �; �; �; �);

and c0k(�; 
; �; �; �; �) (for k > 1) can also be uniquely determined. If one sets � = �;
then a0k(�; 
; �; �; �; �) = ak(�; 
; �; �;��; �); b0k(�; 
; �; �; �; �) = bk(�; 
; �; �;��; �);
and c0k(�; 
; �; �; �; �) = ck(�; 
; �; �;��; �), (k > 1 ).
The parameter � can be determined using the continuity condition of �(t) at

t = 0. From the previous analysis we conclude that the homoclinic orbit connecting
E+ has the following form:

x(t) =

8>>>><>>>>:
p
�+

1X
k=1

ak(�; 
; �; �; �; �)e
k�t; t > 0

p
�+

1X
k=1

ak(�; 
; �; �;��; �)e�k�t; t < 0
(40)

y(t) =

8>>>><>>>>:
1X
k=1

bk(�; 
; �; �; �; �)e
k�t; t > 0

1X
k=1

bk(�; 
; �; �;��; �)e�k�t; t < 0
(41)

z(t) =

8>>>><>>>>:
p
�+

1X
k=1

ck(�; 
; �; �; �; �)e
k�t; t > 0

p
�+

1X
k=1

ck(�; 
; �; �;��; �)e�k�t; t > 0
(42)

where ak; bk; ck (k > 1) are given by (35), � by det(�I � J+) = 0 and � by
1X
k=1

ak(�; 
; �; �; �; �) =
1X
k=1

bk(�; 
; �; �;��; �): (43)

The following theorem is now proved:

Theorem 4. If the conditions D(P ) < 0, 
 <
(� � �)
2��

are satis�ed and system (1)

has one homoclinic orbit whose components has the form (40)-(42), then horseshoe
chaos occurs.

Similar analysis can be obtained from the equilibrium point E� since E+ and
E� are images of each others under the symmetry (x; y; z) ! (�x;�y;�z) and
they have the same eigenvalues equation.
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8. Conclusion

In this study, we have discussed the nonlinear dynamics of the chaotic MADVP
circuit. Some stability conditions of the system�s equilibrium points have been
obtained. The existence of pitchfork bifurcation has been demonstrated by using
center manifold theorem and the bifurcation theory. The conditions of Hopf bi-
furcation and its stability have been investigated. A route to chaos in this system
has been shown via period-doubling bifurcations. The analytical conditions of exis-
tence of homoclinic orbits and occurrence of Smale horseshoe chaos in this system
have been achieved. Numerical simulations show the e¤ectiveness of the theoretical
analysis.
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