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FEKETE-SZEGÖ INEQUALITIES FOR CLASSES OF

BI-STARLIKE AND BI-CONVEX FUNCTIONS

JAY M. JAHANGIRI∗, N. MAGESH AND J. YAMINI

Abstract. We investigate the Fekete-Szegö inequalities for two comprehen-

sive classes of bi-starlike and bi-convex functions. The coefficient bounds ob-
tained in this article, in some cases, improve some of the previously published
results.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n (1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1} and let S
denote the class of functions in A that are univalent in U.

For two functions f and g, analytic in U, we say that the function f is subordinate
to g in U, and write f ≺ g, if there exists a Schwarz function w, analytic in U, with
w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)); z, w ∈ U. In particular, if the
function g is univalent in U, the above subordination is equivalent to f(0) = g(0)
and f(U) ⊂ g(U).

It is well known (e.g. see Duren [5]) that every function f ∈ S has an inverse
map f−1, defined by

f−1(f(z)) = z (z ∈ U)
and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥

1

4

)
,

where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + . . . . (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. We let Σ denote the class of bi-univalent functions in U given by (1). For
a history and examples of functions which are (or which are not) in the class Σ,
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Key words and phrases. Fekete-Szegö Inequalities, Bi-univalent, bi-starlike and bi-convex

functions.
Submitted July 12, 2015.
∗ Corresponding author : Jay M. Jahangiri (jjahangi@kent.edu).

133



134 JAY M. JAHANGIRI∗, N. MAGESH AND J. YAMINI EJMAA-2015/3(1)

together with various other properties of classes of bi-univalent functions refer to
[1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22]).

Two of the most famous subclasses of univalent functions are the class S∗(α) of
starlike functions of order α and the class K(α) of convex functions of order α. By
definition, we have

S∗(α) :=

{
f ∈ S : ℜ

(
zf ′(z)

f(z)

)
> α; z ∈ U; 0 ≤ α < 1

}
and

K(α) :=

{
f ∈ S : ℜ

(
1 +

zf ′′(z)

f ′(z)

)
> α; z ∈ U; 0 ≤ α < 1

}
.

For 0 ≤ α < 1, a function f ∈ Σ is in the class S∗
Σ(α) of bi-starlike functions of

order α, or KΣ,α of bi-convex functions of order α if both f and its inverse map
f−1 are, respectively, starlike or convex of order α. For 0 < β ≤ 1, a function f ∈ Σ
is strongly bi-starlike function of order β, if both the functions f and its inverse
map f−1 are strongly starlike of order β. We denote the class of all such functions
is denoted by S∗

Σ,β .

Let φ be an analytic and univalent function with positive real part in U, φ(0) = 1,
φ′(0) > 0 and φ maps the unit disk U onto a region starlike with respect to 1 and
symmetric with respect to the real axis. The Taylor’s series expansion of such
function is

φ(z) = 1 +B1z +B2z
2 +B3z

3 + . . . , (3)

where all coefficients are real and B1 > 0. Throughout this paper we assume that
the function φ satisfies the above conditions unless otherwise stated.

By S∗(φ) and K(φ) we denote the following classes of functions

S∗(φ) :=

{
f ∈ S :

zf ′(z)

f(z)
≺ φ(z); z ∈ U

}
and

K(φ) :=

{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
≺ φ(z); z ∈ U

}
.

The classes S∗(φ) and K(φ) are the extensions of a classical set of starlike and
convex functions (e.g. see Ma and Minda [13]). A function f is said to be bi-starlike
of Ma-Minda type or bi-convex of Ma-Minda type if both f and f−1 are, respec-
tively, of Ma-Minda starlike or convex type. These classes are denoted, respectively,
by S∗

Σ(φ) and KΣ(φ) (see [1]).
In order to derive our main results, we shall need the following lemma.

Lemma 1 (see [5] or [11]) Let p(z) = 1 + p1z + p2z
2 + · · · ∈ P, where P is the

family of all functions p, analytic in U, for which ℜ{p(z)} > 0 (z ∈ U). Then

|pn| ≤ 2;n = 1, 2, 3, ...,

and ∣∣∣∣p2 − 1

2
p21

∣∣∣∣ ≤ 2− 1

2
|p1|2.

Motivated by the recent publications (especially [1, 19, 22]), we consider the fol-
lowing comprehensive class of functions in Σ.
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A function f ∈ Σ given by (1) is said to be in the class Mλ
Σ(φ) if the following

conditions are satisfied:

zf ′(z)

(1− λ)z + λf(z)
≺ φ(z) (0 ≤ λ ≤ 1, z ∈ U)

and for g = f−1 given by (2)

wg′(w)

(1− λ)w + λg(w)
≺ φ(w) (0 ≤ λ ≤ 1, w ∈ U).

A function f ∈ Σ given by (1) is said to be in the class KΣ(φ, λ) if the following
conditions are satisfied:

f ′(z) + zf ′′(z)

f ′(z) + λzf ′′(z)
≺ φ(z) (0 ≤ λ < 1; z ∈ U)

and for g = f−1 given by (2)

g′(w) + wg′′(w)

g′(w) + λwg′′(w)
≺ φ(w) (0 ≤ λ < 1; w ∈ U).

Remark 1 The following 8 special cases demonstrate the significance of compre-
hensiveness of the defined classes Mλ

Σ(φ) and KΣ(φ, λ):

(1) M0
Σ(φ) = Hφ

Σ [1].

(2) M0
Σ(

(
1+z
1−z

)β

) = Hβ
Σ (0 < β ≤ 1) and M0

Σ(
1+(1−2α)z

1−z ) = Hα
Σ (0 ≤ α < 1)

[19].
(3) M1

Σ(φ) = S∗
Σ(φ) [1].

(4) M1
Σ(

(
1+z
1−z

)β

) = S∗
Σ,β (0 < β ≤ 1) and M1

Σ(
1+(1−2α)z

1−z ) = S∗
Σ(α) (0 ≤

α < 1).

(5) Mλ
Σ(

(
1+z
1−z

)β

) = Mλ
Σ(β) (0 ≤ λ ≤ 1; 0 < β ≤ 1)

and
Mλ

Σ(
1+(1−2α)z

1−z ) = Mλ
Σ(α) (0 ≤ λ ≤ 1; 0 ≤ α < 1) [14].

(6) KΣ(φ, 0) = KΣ(φ) [1].

(7) KΣ(
(

1+z
1−z

)β

, λ) = KΣ(β, λ) (0 ≤ λ < 1; 0 < β ≤ 1)

(8) KΣ

(
1+(1−2α)z

1−z , λ
)
= KΣ(α, λ) (0 ≤ λ < 1; 0 ≤ α < 1).

In this paper we shall obtain the Fekete-Szegö inequalities for Mλ
Σ(φ) and KΣ(φ, λ)

as well as its special classes. Some of the coefficient estimates obtained in this paper
prove to be better than these obtained in [1, 14, 19].

2. Fekete-Szegö inequalities

Theorem 1 Let f of the form (1) be in Mλ
Σ(φ). Then

|a2| ≤


√

B1

λ2−3λ+3 , if |B2| ≤ B1;√
|B2|

λ2−3λ+3 , if |B2| ≥ B1

(4)

and
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∣∣∣∣a3 − λ(2− λ)

3− λ
a22

∣∣∣∣ ≤


B1

3−λ , if |B2| ≤ B1;

|B2|
3−λ , if |B2| ≥ B1.

(5)

Proof. Since f ∈ Mλ
Σ(φ), there exist two analytic functions r, s : U → U, with

r(0) = 0 = s(0), such that

zf ′(z)

(1− λ)z + λf(z)
= φ(r(z)) (6)

and
wg′(w)

(1− λ)w + λg(w)
= φ(s(w)). (7)

Define the functions p and q by

p(z) =
1 + r(z)

1− r(z)
= 1 + p1z + p2z

2 + p3z
3 + . . .

and

q(w) =
1 + s(w)

1− s(w)
= 1 + q1w + q2w

2 + q3w
3 + . . .

or equivalently,

r(z) =
p(z)− 1

p(z) + 1
=

1

2

(
p1z +

(
p2 −

p21
2

)
z2 +

(
p3 +

p1
2

(
p21
2

− p2

)
− p1p2

2

)
z3 + . . .

)
(8)

and

s(w) =
q(w)− 1

q(w) + 1
=

1

2

(
q1w +

(
q2 −

q21
2

)
w2 +

(
q3 +

q1
2

(
q21
2

− q2

)
− q1q2

2

)
w3 + . . .

)
.

(9)
Using (8) and (9) in (6) and (7), we have

zf ′(z)

(1− λ)z + λf(z)
= φ

(
p(z)− 1

p(z) + 1

)
(10)

and
wg′(w)

(1− λ)w + λg(w)
= φ

(
q(w)− 1

q(w) + 1

)
. (11)

Again using (8) and (9) along with (3), it is evident that

φ

(
p(z)− 1

p(z) + 1

)
= 1 +

1

2
B1p1z +

(
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1

)
z2 + . . . (12)

and

φ

(
q(w)− 1

q(w) + 1

)
= 1 +

1

2
B1q1w +

(
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1

)
w2 + . . . . (13)

It follows from (10), (11), (12) and (13) that

(2− λ)a2 =
1

2
B1p1

(3− λ)a3 + (λ2 − 2λ)a22 =
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1 (14)
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−(2− λ)a2 =
1

2
B1q1

and

(λ2 − 4λ+ 6)a22 − (3− λ)a3 =
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1 . (15)

Dividing (14) by (3− λ) and taking the absolute values we obtain∣∣∣∣a3 − λ(2− λ)

3− λ
a22

∣∣∣∣ ≤ B1

2(3− λ)

∣∣∣∣p2 − 1

2
p21

∣∣∣∣+ |B2|
4(3− λ)

|p1|2.

Now applying Lemma 1 yields∣∣∣∣a3 − λ(2− λ)

3− λ
a22

∣∣∣∣ ≤ B1

3− λ
+

|B2| −B1

4(3− λ)
|p1|2.

Therefore

∣∣∣∣a3 − λ(2− λ)

3− λ
a22

∣∣∣∣ ≤


B1

3−λ , if |B2| ≤ B1;

|B2|
3−λ , if |B2| ≥ B1.

Adding (14) and (15), we have

2(λ2 − 3λ+ 3)a22 =
B1

2
(p2 + q2)−

(B1 −B2)

4
(p21 + q21). (16)

Dividing (16) by 2(λ2 − 3λ+ 3) and taking the absolute values we obtain

|a2|2 ≤ 1

2(λ2 − 3λ+ 3)

[
B1

2

∣∣∣∣p2 − 1

2
p21

∣∣∣∣+ |B2|
4

|p1|2 +
B1

2

∣∣∣∣q2 − 1

2
q21

∣∣∣∣+ |B2|
4

|q1|2
]
.

Once again, apply Lemma 1 to obtain

|a2|2 ≤ 1

2(λ2 − 3λ+ 3)

[
B1

2

(
2− 1

2
|p1|2

)
+

|B2|
4

|p1|2 +
B1

2

(
2− 1

2
|q1|2

)
+

|B2|
4

|q1|2
]
.

Upon simplification we obtain

|a2|2 ≤ 1

2(λ2 − 3λ+ 3)

[
2B1 +

|B2| −B1

2

(
|p1|2 + |q1|2

)]
.

Therefore

|a2| ≤


√

B1

λ2−3λ+3 , if |B2| ≤ B1;√
|B2|

λ2−3λ+3 , if |B2| ≥ B1

which completes the proof.
Remark 2 Taking

φ(z) =

(
1 + z

1− z

)β

= 1 + 2βz + 2β2z2 + . . . (0 < β ≤ 1) (17)

the inequalities (4) and (5) become

|a2| ≤
√

2β

λ2 − 3λ+ 3
and

∣∣∣∣a3 − λ(2− λ)

3− λ
a22

∣∣∣∣ ≤ 2β

3− λ
. (18)

The bound on |a2| given in (18) is better than that given in [14, Corollary 2.2].
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For

φ(z) =
1 + (1− 2α)z

1− z
= 1 + 2(1− α)z + 2(1− α)z2 + . . . (0 ≤ α < 1) (19)

the inequalities (4) and (5) become

|a2| ≤
√

2(1− α)

λ2 − 3λ+ 3
and

∣∣∣∣a3 − λ(2− λ)

3− λ
a22

∣∣∣∣ ≤ 2(1− α)

3− λ
. (20)

The bound on |a2| given in (20) is coincides with that in [14, Corollary 2.3].
Theorem 2 Let f of the form (1) be in KΣ(φ, λ). Then

|a2| ≤


√

B1

2(1−λ)(1−2λ) , if |B2| ≤ B1;√
|B2|

2(1−λ)(1−2λ) , if |B2| ≥ B1

(21)

and

∣∣∣∣a3 − 2(1 + λ)

3
a22

∣∣∣∣ ≤


B1

6(1−λ) , if |B2| ≤ B1;

|B2|
6(1−λ) , if |B2| ≥ B1.

(22)

The proof is omitted as it is similar to the proof of Theorem 1.
Remark 3 For φ(z) as given in (17) the inequalities (21) and (22) become

|a2| ≤

√
β

(1− λ)(1− 2λ)
and

∣∣∣∣a3 − 2(1 + λ)

3
a22

∣∣∣∣ ≤ β

3(1− λ)
.

Taking φ(z) as given in (19) the inequalities (21) and (22) become

|a2| ≤

√
1− α

(1− λ)(1− 2λ)
and

∣∣∣∣a3 − 2(1 + λ)

3
a22

∣∣∣∣ ≤ 1− α

3(1− λ)
.

Corollary 1 If f ∈ Hφ
Σ then

|a2| ≤


√

B1

3 , if |B2| ≤ B1;√
|B2|
3 , if |B2| ≥ B1

(23)

and

|a3| ≤


B1

3 , if |B2| ≤ B1;

|B2|
3 , if |B2| ≥ B1.

(24)

Remark 4 The bounds on |a2| and |a3| given by (23) and (24) are better than
those given in [1, Theorem 2.1] and [17, Theorem 2.1].
Corollary 2 If f ∈ S∗

Σ(φ) then

|a2| ≤


√
B1, if |B2| ≤ B1;√
|B2|, if |B2| ≥ B1

(25)
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and

∣∣∣∣a3 − 1

2
a22

∣∣∣∣ ≤


B1

2 , if |B2| ≤ B1;

|B2|
2 , if |B2| ≥ B1.

(26)

Remark 5 For φ(z) as given in (17) the inequalities (25) and (26) become

|a2| ≤
√
2β and

∣∣∣∣a3 − 1

2
a22

∣∣∣∣ ≤ β. (27)

The bound on |a2| given in (27) is better than that given in [17, Remark 2.2].
Taking φ(z) as given in (19), the inequalities (25) and (26) become

|a2| ≤
√
2(1− α) and

∣∣∣∣a3 − 1

2
a22

∣∣∣∣ ≤ 1− α. (28)

The bound on |a2| given in (28) is better than that given in [17, Remark 2.2].
Corollary 3 If f ∈ KΣ(φ) then

|a2| ≤


√

B1

2 , if |B2| ≤ B1;√
|B2|
2 , if |B2| ≥ B1

and

∣∣∣∣a3 − 2

3
a22

∣∣∣∣ ≤


B1

6 , if |B2| ≤ B1;

|B2|
6 , if |B2| ≥ B1.

Remark 6 The bound on |a2| given in Corollary 3 is better than that given in [1,
Corollary 2.2].
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