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MULTIPLE POSITIVE SOLUTIONS FOR FUNCTIONAL

DYNAMIC EQUATIONS ON TIME SCALES

ARZU DENK OGUZ AND FATMA SERAP TOPAL

Abstract. This paper is concerned with the existence of multiple positive

solutions for a functional dynamic equations with multi-point boundary condi-
tions on time scales by using fixed point theorems in a cone. As an application,
we also give an example to demonstrate our results.

1. Introduction

The theory of dynamic equations on time scales has become important mathe-
matical branch [2, 3, 12] since it was initiated by Hilger [14]. The study of time
scales theory has led to many important applications, for example, in the study of
insect population models, neural networks, heat transfer, quantum mechanics, epi-
demic, crop harvest and stock market [5, 6, 15, 16, 24]. Boundary-value problems
for scalar dynamic equations on time scales have received considerable attention
[4, 19, 20]. Recently, existence and multiplicity of solutions for boundary value
problems of dynamic equations have been of great interest in mathematics and its
applications to engineering sciences [1, 7, 10, 18, 26]. But very little work has
been done to the existence of positive solutions for functional dynamic equations
on time scales [17, 22, 23, 25]. In particular, we would like to mention some results
of Kaufmann and Raffoul [17] and Tang, Sun and Chen [23] which motivate us to
consider our problem.

In [17], authors studied the existence of at least one positive solution to the nonlocal
eigenvalue problem for a class of nonlinear functional dynamic equations on time
scales

u△∇(t) + λa(t)f(u(t), u(θ(t))) = 0, t ∈ (0, T ),

u(s) = ψ(s) s ∈ [−r, 0], u(0) = 0, αu(η) = u(T ).

In [23], authors discussed the existence of single and multiple positive solutions of
the boundary value problems for a p-Laplacian functional dynamic equations on
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time scales

(φp(u
△(t)))∇ + h(t)f(u(t), u(θ(t))) = 0, t ∈ (0, T ),

u(t) = ψ(t) s ∈ [−r, 0], u(0)− βu△(0) = γu△(η) u△(T ) = 0.

In [21], authors considered the existence of positive solutions of the boundary value
problems for the following second order multipoint boundary value problem on time
scales

u△∇(t) + f(t, u(t)) = 0, t ∈ [0, 1],

βu(0)− γu△(0) = 0 u(1) =

m−2∑
i=1

αiu(ξi), m ≥ 3.

Motivated by those works and the references therein, in this paper we shall consider
the following functional multi point problem on time scales:

u△△(t) + f(u(t), u(θ1(t)), u(θ2(t))) = 0, t ∈ [0, T ] (1)

u(s) = φ1(s), s ∈ [−r, 0], u(s) = φ2(s), s ∈ [T, p],

αu(0)− βu△(0) = 0, δu(T ) + γu△(T ) =
m−2∑
i=1

aiu(ξi), (2)

where −r, 0, T, p ∈ T and an closed interval [0, T ] is defined by [0, T ] = {t ∈ T : 0 ≤
t ≤ T}. Other types of intervals are defined similarly. Some preliminary definitions
and theorems on time scales can be found in the books [8, 9].

In this paper, we study more general problem and some new results are obtained
for the existence of at least one, three and four positive solutions for the above
problem by using cone theory techniques [7, 13]. The results are even new for the
special cases of differential equations and difference equations, as well as in the
general time scale setting.

The plan of this paper is as follows. In Section 2, we provide some necessary
backgrounds. In particular, we construct the Green’s function of the linear bound-
ary value problem and develop upper and lower bounds on the Green’s function.
In Section 3, we establish the main results of the paper. Finally, one example is
also included to illustrate the main results.

2. The Preliminary Lemmas

Throughout the paper we assume that the following conditions are satisfied:

(H1) α, β, γ ≥ 0, δ > 0, 0 < β + α ≤ 1, 0 < ξ1 < ξ2 < ... < ξm−2 < T ,

(H2) D = α(δT + γ −
∑m−2

i=1 aiξi) + β(δ −
∑m−2

i=1 ai) > 0, 0 <
∑m−2

i=1 aiξi < T ,∑m−2
i=1 ai < δ with ai ∈ (0,∞),

(H3) f : [0,∞)× [0,∞)× [0,∞) → [0,∞) is continuous,
(H4) φ1 : [−r, 0] → [0,∞), φ2 : [T, p] → [0,∞) are continuous where r > 0 and
p > T ,
(H5) θ1 : [0, T ] → [−r, T ], θ2 : [0, T ] → [0, p] are continuous and nondecreasing with
θ1(0) < 0, θ1(T ) > 0 and θ2(T ) > T ,
(H6) υ = sup{t ∈ [0, T ] : θ1(t) ≤ 0}, µ = sup{t ∈ [0, T ] : θ2(t) ≤ T} and υ < µ.

Remark Let T = R. If the assumption (H5) satisfies, then (H6) satisfies.
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To prove the main results in this paper, we will employ several lemmas. These
lemmas are based on the linear boundary value problem

u△△(t) + y(t) = 0, t ∈ [0, T ] (3)

αu(0)− βu△(0) = 0, δu(T ) + γu△(T ) =
m−2∑
i=1

aiu(ξi) (4)

Lemma 1 Let D = α(δT + γ−
∑m−2

i=1 aiξi)+ β(δ−
∑m−2

i=1 ai) ̸= 0 and 0 < ξ1 <
ξ2 < ... < ξm−2 < T , then for y ∈ C([0, T ]), the boundary value problem (3)− (4)
has the unique solution

u(t) = β+αt
D

∫ T

0
(δT − δs+ γ)y(s)∆s− β+αt

D

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)y(s)∆s

−
∫ t

0
(t− s)y(s)∆s.

Lemma 2 Suppose D = α(δT + γ −
∑m−2

i=1 aiξi) + β(δ −
∑m−2

i=1 ai) ̸= 0 and
0 < ξ1 < ξ2 < ... < ξm−2 < T , then the Green’s function for the boundary value
problem (3)− (4) is given by

G(t, s) =



G1(t, s), ξ0 ≤ s ≤ ξ1, (ξ0 = 0),
G2(t, s), ξ1 ≤ s ≤ ξ2,
.
.
.
Gm−2(t, s), ξm−3 ≤ s ≤ ξm−2,
H(t, s) ξm−2 ≤ s ≤ T ,

where for all i = 1, 2, ...,m− 2,

Gi(t, s) =

{
(β+αt)(δ(T−s)+γ−

∑m−2
j=i aj(ξj−s))

D − (t− s), s ≤ t,
(β+αt)(δ(T−s)+γ−

∑m−2
j=i aj(ξj−s))

D , t ≤ s,

and

H(t, s) =


(β+αt)(δ(T−s)+γ)

D − (t− s), s ≤ t,

(β+αt)(δ(T−s)+γ)
D , t ≤ s.

Using the above Green’s function, the solution of the problem (3)−(4) is expressed
as

u(t) =
∫ T

0
G(t, s)y(s)∆s.

Lemma 3 Assume that the conditions (H1)− (H2) are satisfied. Then
i) G(t, s) ≥ 0 for all t, s ∈ [0, T ],

ii) There exist a number η ∈ (0, 1) and a continuous function ϕ : [0, T ] → (0,∞)
such that G(t, s) ≤ ϕ(s) and G(t, s) ≥ ηϕ(s) for all t, s ∈ [0, T ], where ϕ(s) =
(β+αs)(δT+γ)

D and η = βγ
δT+γ .

Proof. i) Since D > 0, we can easily get that G(t, s) ≥ 0 for all t, s ∈ [0, T ].
ii) Now, we will find an upper and a lower bound for the function G(t, s) for all

t, s ∈ [0, T ].
Upper bound:
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Case 1. Consider ξi−1 ≤ s ≤ ξi (i = 1, 2, 3, ...,m− 2), s ≤ t. Then

G(t, s) =
(β+αt)(δ(T−s)+γ−

∑m−2
j=i aj(ξj−s))

D − (t− s)

=
(β+αs)(δ(T−t)+γ)+

∑i−1
j=1 aj(β+αξj)(t−s)+

∑m−2
j=i aj(t−ξj)(β+αs)

D

≤ (β+αs)(δ(T−t)+γ)+
∑i−1

j=1 aj(β+αs)(t−s)+
∑m−2

j=i aj(t−ξj)(β+αs)

D

=
(β+αs)(δT−δt+γ+

∑i−1
j=1 ajt+

∑m−2
j=i ajt−s

∑i−1
j=1 aj−

∑m−2
j=i ajξj)

D

≤ (β+αs)(δT+γ+t(
∑m−2

j=1 aj−δ))

D

≤ (β+αs)(δT+γ)
D = ϕ(s).

Case 2. For ξi−1 ≤ s ≤ ξi (i = 1, 2, 3, ...,m− 2), s ≥ t, we have

G(t, s) =
(β+αt)(δ(T−s)+γ−

∑m−2
j=i aj(ξj−s))

D

≤ (β+αt)(δ(T−s)+γ)
D

≤ (β+αs)(δT+γ)
D = ϕ(s).

Case 3. For ξm−2 ≤ s ≤ T , s ≤ t, we obtain

G(t, s) = (β+αt)(δ(T−s)+γ)
D − (t− s)

=
(β+αs)(δT+γ−s

∑m−2
j=1 aj+t(

∑m−2
j=1 aj−δ))

D

≤ (β+αs)(δT+γ)
D = ϕ(s).

Case 4. For ξm−2 ≤ s ≤ T , s ≥ t, we clearly have

G(t, s) ≤ (β+αs)(δT+γ)
D = ϕ(s).

Lower bound:
Case 1. For ξi−1 ≤ s ≤ ξi (i = 1, 2, 3, ...,m− 2), s ≤ t, we get

G(t, s) =
(β+αt)(δ(T−s)+γ−

∑m−2
j=i aj(ξj−s))

D − (t− s)

=
(β+αs)(δ(T−t)+γ)+

∑i−1
j=1 aj(β+αξj)(t−s)+

∑m−2
j=i aj(t−ξj)(β+αs)

D

≥ (β+αs)(δ(T−t)+γ)+
∑m−2

j=i aj(t−ξj)(β+αs)

D

=
(β+αs)(δ(T−t)+γ+

∑m−2
j=i aj(t−ξj))

D

=
(β+αs)(δT+γ+(

∑m−2
j=i aj−δ)t−

∑m−2
j=i ajξj)

D

≥ (β+αs)(δT+γ+(
∑m−2

j=i aj−δ)ξm−2−
∑m−2

j=i ajξm−2)

D

= (β+αs)(δT+γ)(δ(T−ξm−2)+γ)
D(δT+γ)

≥ ηϕ(s).

Case 2. For ξi−1 ≤ s ≤ ξi (i = 1, 2, 3, ...,m− 2), s ≥ t, we get

G(t, s) =
(β+αt)(δ(T−s)+γ−

∑m−2
j=i aj(ξj−s))

D
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=
(β+αt)(δT+γ+(

∑m−2
j=i aj−δ)s−

∑m−2
j=i ajξj)

D

≥ (β+αt)(δT+γ+(
∑m−2

j=i aj−δ)ξm−2−
∑m−2

j=i ajξm−2)

D

≥ (β+αs)(δT+γ)β(δ(T−ξm−2)+γ)
D(δT+γ)

≥ ηϕ(s).

Case 3. For ξm−2 ≤ s ≤ T , s ≤ t, we obtain

G(t, s) = (β+αt)(δ(T−s)+γ)
D − (t− s)

=
(β+αs)(δ(T−t)+γ)+

∑m−2
j=1 aj(β+αξj)(t−s)

D

≥ (β+αs)(δT+γ)γ
D(δT+γ)

≥ ηϕ(s).

Case 4. For ξm−2 ≤ s ≤ T , s ≥ t, we clearly have

G(t, s) = (β+αt)(δ(T−s)+γ)
D

≥ (β+αs)(δT+γ)βγ
D(δT+γ)

≥ ηϕ(s).

Lemma 4 Let the conditions (H1)−(H2) be satisfied; then for y ∈ C([0, T ], [0,∞)),
the solution of the boundary value problem (3)−(4) satisfies u(t) ≥ η∥u∥, t ∈ [0, T ].
Proof. By using Lemma 3, we get

u(t) =
∫ T

0
G(t, s)y(s)∆s ≤

∫ T

0
ϕ(s)y(s)∆s, t ∈ [0, T ],

and so

∥u∥ ≤
∫ T

0
ϕ(s)y(s)∆s,

Now, by using Lemma 3 again , we obtain for t ∈ [0, T ],

u(t) =
∫ T

0
G(t, s)y(s)∆s ≥ η

∫ T

0
ϕ(s)y(s)∆s ≥ η∥u∥.

This completes the proof.

The following two theorems are crucial in our arguments.

Theorem 1 Let E = (E, ∥.∥) be a Banach space, and let P ⊂ E be a cone in
E. Assume Ω1,Ω2 are bounded open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let
A : P ∩ (Ω2\Ω1) → P

be a completely continuous operator such that, either
(a) ∥Au∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1 and ∥Au∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω2 or
(b) ∥Au∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1 and ∥Au∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2\Ω1).

Theorem 2 Let P be a cone in the real Banach space E, A : Pc → Pc be
completely continuous and ψ be a nonnegative continuous concave functional on P
with ψ(u) ≤ ∥u∥ for all u ∈ Pc. Suppose there exist 0 < d < a < b ≤ c such that
the following conditions hold:
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(i) {u ∈ P (ψ, a, b) : ψ(u) > a} ≠ ∅ and ψ(Au) > a for all u ∈ P (ψ, a, b);
(ii) ∥Au∥ < d for u ∈ P d;
(iii) ψ(Au) > a for u ∈ P (ψ, a, c) with ∥Au∥ > b.

Then A has at least three fixed points u1, u2 and u3 satisfying
∥u1∥ < d, ψ(u2) > a, d < ∥u3∥ with ψ(u3) < a,

where Pc = {u ∈ P : ∥u∥ < c} and P (ψ, a, b) = {u ∈ P : a ≤ ψ(u), ∥u∥ ≤ b}.

3. Main Results

In this section, we present sufficient conditions for the existence of the positive
solutions of our problem. Firstly, we prove the existence of at least one positive
solution by applying Theorem 1. Secondly, we use Theorem 2 to prove the existence
of at least three positive solutions. Finally, we obtain that there exist at least four
positive solutions of our problem.

We note that u(t) is a solution of (1)− (2) if and only if

u(t) =


φ1(t), t ∈ [−r, 0],∫ T

0
G(t, s)f(u(s), u(θ1(s)), u(θ2(s)))∆s, t ∈ [0, T ],

φ2(t), t ∈ [T, p].

Let E denote the Banach space C([0, T ]) with the norm ∥u∥ = max
t∈[0,T ]

|u(t)|.

Define the cone P ⊂ E by P = {u ∈ E : u(t) ≥ η∥u∥, ∀t ∈ [0, T ]}.
For each u ∈ E, extend u(t) to [−r, T ] with u(t) = φ1(t) for t ∈ [−r, 0] and

extend u(t) to [0, p] with u(t) = φ2(t) for t ∈ [T, p].

Define an operator A : P → E by

Au(t) =
∫ T

0
G(t, s)f(u(s), u(θ1(s)), u(θ2(s)))∆s, for t ∈ [0, T ].

Let u1 be a fixed point of A in the cone P . Define

u(t) =

 φ1(t), t ∈ [−r, 0],
u1(t), t ∈ [0, T ],
φ2(t), t ∈ [T, p].

Then, u is a positive solution of the problem (1)− (2).

Fix υ ∈ T which is defined in (H6) and define the following sets

Y1 = {t ∈ [0, T ] : θ1(t) ≤ 0, θ2(t) ≤ T},
Y2 = {t ∈ [0, T ] : θ1(t) > 0, θ2(t) ≥ T},
Y3 = {t ∈ [0, T ] : θ1(t) > 0, θ2(t) < T}.

It is obvious that the sets are pairwise disjoint and Y1
∪
Y2

∪
Y3 = [0, T ].

For notational convenience, we denote m, k and M by

m = η2
∫
Y1
ϕ(s)∆s, k = η

∫
Y1
ϕ(s)∆s and M =

∫ T

0
ϕ(s)∆s.

Theorem 3 Suppose that the assumptions (H1)− (H6) hold and f satisfies the
following conditions:

(A1) lim
u1,u3→0+

f(u1, φ1(s), u3)

u1
≤ 1/M , uniformly in s ∈ [−r, 0],

lim
u1,u2→0+

f(u1, u2, φ2(s))

u1
≤ 1/M , uniformly in s ∈ [T, p]
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and

lim
u1→0+

f(u1, u1(s), u1(s))

u1
≤ 1/M , uniformly in s ∈ [0, T ].

(A2) lim
u1,u3→+∞

f(u1, φ1(s), u3)

u1
≥ 1/m, uniformly in s ∈ [−r, 0].

Then the problem (1)− (2) has at least one positive solution.
Proof. We use Theorem 1 to prove that A has a fixed point in our cone P . First,
it is obvious that A is completely continuous and A(P ) ⊆ P .

By the condition (A1), there exists an N1 > 0 such that if 0 < u1 < N1 and
0 < u3 < N1, then

f(u1, φ1(s), u3) ≤
1

M
u1, for s ∈ [−r, 0], (5)

and there exists an N2 > 0 such that if 0 < u1 < N2 and 0 < u2 < N2, then

f(u1, u2, φ2(s)) ≤
1

M
u1, for s ∈ [T, p]. (6)

and similarly, there exists an N3 > 0 such that if 0 < u1 < N3, then

f(u1, u1(s), u1(s)) ≤
1

M
u1, for s ∈ [0, T ]. (7)

Let r = min{N1, N2, N3} and Ω1 = {u ∈ E : ∥u∥ < r}. We shall prove that
∥Au∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω1. Let u ∈ P ∩ ∂Ω1. Then, for all t ∈ [0, T ], we have
0 ≤ u(t) ≤ r. Thus, by (5), (6), (7) and Lemma 3, for t ∈ [0, T ], we find

Au(t) =
∫ T

0
G(t, s)f(u(s), u(θ1(s)), u(θ2(s)))∆s

=
∫
Y1
G(t, s)f(u(s), φ1(θ1(s)), u(θ2(s)))∆s

+
∫
Y2
G(t, s)f(u(s), u(θ1(s)), φ2(θ2(s)))∆s

+
∫
Y3
G(t, s)f(u(s), u(θ1(s)), u(θ2(s)))∆s

≤
∫
Y1
ϕ(s) 1

M u(s)∆s+
∫
Y2
ϕ(s) 1

M u(s)∆s+
∫
Y3
ϕ(s) 1

M u(s)∆s

= 1
M

∫ T

0
ϕ(s)u(s)∆s

≤ 1
M

∫ T

0
ϕ(s)∥u∥∆s = ∥u∥.

Therefore, we get ∥Au∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω1.

In view of (A2), for all u1, u3 ≥ N , there exists N > 0 such that

f(u1, φ1(s), u3) ≥
1

m
u1, for s ∈ [−r, 0] (8)

Now, set

R = r +
1

η
N. (9)

Let Ω2 = {u ∈ E : ∥u∥ < R}. We shall prove that ∥Au∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω2.
Let u ∈ P ∩ ∂Ω2, then ∥u∥ = R. So from (9) and the fact that u ∈ P , we get
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u(t) ≥ η∥u∥ ≥ N, for t ∈ [0, T ]. (10)

Considering (8) and (10), we obtain

Au(t) =
∫ T

0
G(t, s)f(u(s), u(θ1(s)), u(θ2(s)))∆s

≥
∫ T

0
ηϕ(s)f(u(s), u(θ1(s)), u(θ2(s)))∆s

≥
∫
Y1
ηϕ(s)f(u(s), φ1(θ1(s)), u(θ2(s)))∆s

≥
∫
Y1
ηϕ(s) 1

mu(s)∆s

≥ η
m

∫
Y1
ϕ(s)η∥u∥∆s

and so we obtain

∥Au∥ ≥ ∥u∥η2

m

∫
Y1
ϕ(s)∆s = ∥u∥.

Therefore, we get ∥Au∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω2.

Then, it follows from Theorem 1 that A has a fixed point u1 such that r ≤
∥u1∥ ≤ R. It is clear that u is a positive solution of (1)− (2) with the form

u(t) =

 φ1(t), t ∈ [−r, 0],
u1(t), t ∈ [0, T ],
φ2(t), t ∈ [T, p].

The proof is complete.

Theorem 4 Suppose that the assumptions (H1)−(H6) , (A1) hold and f satisfies
the following condition:

(A′
2) lim

u1,u3→+∞

f(u1, φ1(s), u3)

u1
≥ 1/m1, uniformly in s ∈ [−r, 0],

or
lim

u1,u2→+∞

f(u1, u2, φ2(s))

u1
≥ 1/m2, uniformly in s ∈ [T, p],

where mi = η2
∫
Yi
ϕ(s)∆s, i = 1, 2.

Then the problem (1)− (2) has at least one positive solution.
Proof. The proof is similar to the proof of the Theorem 3.

In order to establish existence criteria of at least three positive solutions of the
problem (1)− (2), we define a nonnegative continuous concave functional on P by

ψ(u) = min
t∈[0,T ]

u(t).

Theorem 5 Assume that the assumptions (H1)− (H6) are satisfied. Let

0 < d < a <
a

η
≤ c

and suppose that f satisfies the following conditions:

(C1) f(u1, φ1(s), u3) >
a

k
, for a ≤ u1, u3 ≤ a

η
, uniformly in s ∈ [−r, 0].

(C2) f(u1, φ1(s), u3) <
d

M
, for 0 ≤ u1, u3 ≤ d, uniformly in s ∈ [−r, 0],

f(u1, u2, φ2(s)) <
d

M
, for 0 ≤ ui ≤ d, i = 1, 2, uniformly in s ∈ [T, p],
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f(u1, u2, u3) <
d

M
, for 0 ≤ ui ≤ d, i = 1, 2, 3.

(C3) f(u1, φ1(s), u3) ≤
c

M
, for 0 ≤ u1, u3 ≤ c, uniformly in s ∈ [−r, 0],

f(u1, u2, φ2(s)) ≤
c

M
, for 0 ≤ ui ≤ c, i = 1, 2, uniformly in s ∈ [T, p],

f(u1, u2, u3) ≤
c

M
, for 0 ≤ ui ≤ c, i = 1, 2, 3.

Then the problem (1)− (2) has at least three positive solutions of the form

u(t) =

 φ1(t), t ∈ [−r, 0],
ui(t), t ∈ [0, T ], i = 1, 2, 3,
φ2(t), t ∈ [T, p],

where ∥u1∥ < d, ψ(u2) > a, d < ∥u3∥ with ψ(u3) < a.
Proof. First, we prove that A : Pc → Pc. Let u ∈ Pc. Then, we have 0 ≤ u(t) ≤ c,
t ∈ [0, T ]. By condition (C3), for t ∈ [0, T ], we obtain

Au(t) =
∫ T

0
G(t, s)f(u(s), u(θ1(s)), u(θ2(s)))∆s

=
∫
Y1
G(t, s)f(u(s), φ1(θ1(s)), u(θ2(s)))∆s

+
∫
Y2
G(t, s)f(u(s), u(θ1(s)), φ2(θ2(s)))∆s

+
∫
Y3
G(t, s)f(u(s), u(θ1(s)), u(θ2(s)))∆s

≤
∫
Y1
ϕ(s) c

M∆s+
∫
Y2
ϕ(s) c

M∆s+
∫
Y3
ϕ(s) c

M∆s

= c
M

∫ T

0
ϕ(s)∆s = c.

Therefore, we get ∥Au∥ ≤ c. This implies Au ∈ Pc for u ∈ Pc.

We now show that all the conditions of Theorem 2 are satisfied. By (C2) and the
argument above, we can get that A : Pd → Pd. Hence condition (ii) of Theorem 2
holds.

We now verify that (i) of Theorem 2 is fulfilled. We note that u(t) = a
η , t ∈ [0, T ]

is a member of P (ψ, a, aη ) since ψ(u) =
a
η > a. Therefore P (ψ, a, aη ) ̸= ∅. Now let

u ∈ P (ψ, a, aη ). Then, we have a ≤ u(t) ≤ a
η , t ∈ [0, T ]. Combining this with (C1),

we get

f(u1, φ1(s), u3) >
a

k
, for a ≤ u1, u3 ≤ a

η
, uniformly in s ∈ [−r, 0],

Thus,

ψ(Au) = mint∈[0,T ]Au(t) = mint∈[0,T ]

∫ T

0
G(t, s)f(u(s), u(θ1(s)), u(θ2(s)))∆s

≥
∫ T

0
ηϕ(s)f(u(s), u(θ1(s)), u(θ2(s)))∆s

≥ η
∫
Y1
ϕ(s)f(u(s), φ1(θ1(s)), u(θ2(s)))∆s

> η
∫
Y1
ϕ(s)ak∆s = a

Then condition (i) of Theorem 2 is satisfied.
Finally, we show that (iii) of Theorem 2 is also satisfied. In fact, let u ∈ P (ψ, a, c)

with ∥Au∥ > a
η , we get

ψ(Au) = mint∈[0,T ]Au(t) ≥ η∥Au∥ > η a
η = a,

that is to say condition (iii) of Theorem 2 holds.



EJMAA-2017/5(2) FUNCTIONAL DYNAMIC EQUATIONS 37

Since all conditions of Theorem 2 are verified, the operator A has at least three
fixed points satisfying

∥u1∥ < d, min
t∈[0,T ]

u2(t) > a, d < ∥u3∥ with min
t∈[0,T ]

u3(t) < a.

Now, let

u(t) =

 φ1(t), t ∈ [−r, 0],
ui(t), t ∈ [0, T ], i = 1, 2, 3,
φ2(t), t ∈ [T, p],

which are three positive solutions of the problem (1)− (2).

Theorem 6 Suppose that the assumptions (H1)− (H6) hold. If there exist

0 < d < a <
a

η
≤ c

such that the assumptions (C1)− (C3) and (A2) are satisfied.

Then the problem (1)− (2) has at least four positive solutions of the form

u(t) =

 φ1(t), t ∈ [−r, 0],
ui(t), t ∈ [0, T ], i = 1, 2, 3, 4,
φ2(t), t ∈ [T, p],

where ∥u1∥ < d, ψ(u2) > a, d < ∥u3∥ with ψ(u3) < a, c < ∥u4∥.
Proof. First, it follows from Theorem 5 that the problem (1)−(2) has at least three
positive solutions.

We now show that the condition of Theorem 1 is satisfied. Let Ω1 = {u ∈ E :
∥u∥ < c}. Then, from the proof of Theorem 5, we have ∥Au∥ ≤ c = ∥u∥ for
u ∈ P ∩ ∂Ω1.

Now, set

R = c+ 1
ηN ,

where N is given in the proof of Theorem 3.
Let Ω2 = {u ∈ E : ∥u∥ < R}. Then by the proof of Theorem 3, we know that

∥Au∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω2.
Therefore, by Theorem 1, A has a fixed point u4 satisfying c < ∥u4∥ ≤ R. Thus,

clearly, u is a positive solution of (1)− (2) with the form

u(t) =

 φ1(t), t ∈ [−r, 0],
ui(t), t ∈ [0, T ], i = 1, 2, 3, 4,
φ2(t), t ∈ [T, p],

which are four positive solutions of the problem (1)− (2) such that
∥u1∥ < d, min

t∈[0,T ]
u2(t) > a, d < ∥u3∥ with min

t∈[0,T ]
u3(t) < a, c < ∥u4∥.

Example Let T = [−3, 1] ∪ {1 + 1
3n : n ∈ N0} ∪ {3

2 ,
5
2 , 3} be a time-scale. We

consider the following dynamic equation on time scale T:

u△△(t) +
1000[u3(t) + u(t)u(t+ 1

2 )]

u2(t) + u2(t− 1) + u(t+ 1
2 ) + 1

= 0, for t ∈ [0, 2], (11)

u(s) = φ1(s) ≡ s2, s ∈ [−3, 0], u(s) = φ2(s) ≡ 0, s ∈ [2, 3],

1

4
u(0)− 1

2
u△(0) = 0, 2u(2) +

1

2
u△(2) =

1

2
u(

1

2
) +

1

3
u(

1

3
) +

1

4
u(

1

4
), (12)
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where α = 1
4 , β = γ = 1

2 , δ = 2, ξ1 = 1
4 , ξ2 = 1

3 , ξ3 = 1
2 , a1 = 1

4 , a2 = 1
3 , a3 = 1

2 ,

p = r = 3 , θ1 : [0, 2] → [−3, 2], θ2 : [0, 2] → [0, 3] , θ1(t) = t − 1, θ2(t) = t + 1
2 ,

υ = 1, µ = 3
2 and

f(u1, u2, u3) =
1000(u31 + u1u3)

u21 + u22 + u3 + 1
,

f(u1, φ1(s), u3) =
1000(u31 + u1u3)

u21 + s4 + u3 + 1
,

f(u1, u2, φ2(s)) =
1000u31

u21 + u22 + 1
.

Then we get η = 1
18 , Y1 = [0, 1], Y2 =

[
3
2 , 2

]
, Y3 =

[
1, 32

)
and after some simple

calculation, we find

D = α(δT + γ −
∑m−2

i=1 aiξi) + β(δ −
∑m−2

i=1 ai) ∼= 1, 07,

m = η2
∫
Y1
ϕ(s)∆s = 1

324

∫
Y1

(β+αs)(δT+γ)
D ∆s ∼= 0, 0011,

M =
∫ T

0
ϕ(s)∆s =

∫ T

0
(β+αs)(δT+γ)

D ∆s = 8.

Clearly, the conditions (H1) − (H6) hold. Now, we check that the conditions in
Theorem 3 are satisfied. Observe that

lim
u1,u3→0+

f(u1, φ1(s), u3)

u1
= lim

u1,u3→0+

1000(u31 + u1u3)

u1(u21 + s4 + u3 + 1)
= 0 ≤ 1/8,

lim
u1,u2→0+

f(u1, u2, φ2(s))

u1
= lim

u1,u2→0+

1000u31
u1(u21 + u22 + 1)

= 0 ≤ 1/8,

lim
u1→0+

f(u1, u1(s), u1(s))

u1
= lim

u1→0+

1000(u31 + u1u1)

u1(u21 + u21 + u1 + 1)
= 0 ≤ 1/8,

and

lim
u1,u3→+∞

f(u1, φ1(s), u3)

u1
= lim

u1,u3→+∞

1000(u31 + u1u3)

u1(u21 + s4 + u3 + 1)
= 1000 ≥ 1/0.0011.

Thus, by Theorem 3, the problem (11)− (12) has at least one positive solution.
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