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ON THE MAXIMAL AND MINIMAL SOLUTIONS OF A

STOCHASTIC DIFFERENTIAL EQUATION

A. M. A. EL-SAYED AND M. EL-GENDY

Abstract. In this paper we are concerned with a problem of stochastic dif-
ferential equation with nonlocal condition, the solution is represented as a

stochastic integral equation that contains stochastic Riemann integral and sto-
chastic Riemann-Stieltjes integral. We study the existence of at least one mean
square continuous solution for this type. The existence of the maximal and
minimal solutions will be proved.

1. Introduction

Stochastic differential equations have been extensively studied by several authors
(see [1]-[13] and references therein).
Let {W (t), t ∈ [0, T ]} be a Brownian motion, let X0 be a second order random
variable independent of the Brownian motion {W (t), t ∈ [0, T ]}.
Let g : [0, T ] → R+ is a continuous deterministic function.
Consider the stochastic differential equation

dX(t) = f(t,X(t))dt+ g(t)dW (t), t ∈ (0, T ] (1)

with the random nonlocal initial condition

X(0) +

m∑
k=1

akX(τk) = X0, τk ∈ (0, T ) (2)

where ak are positive real numbers. The existence of unique mean square continuous
solution of the problem (1)-(2), continuous dependence of random initial value X0

and continuous dependence of nonrandom initial coefficients ak have been proved
in [4].
Here, the existence of at least one mean square continuous solution for the nonlocal
problem will be studied. The existence of the maximal and minimal solutions will
be proved.
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2. Preliminaries

Here we give some preliminaries which will be needed in our work.
Definition 1 [12][Random Caratheodory function] Let X be a stochastic process
and let t ∈ I = [a, b], a and b are real numbers. A stochastic function f(t,X(ω)) is
called a Caratheodory function if it satisfies the following conditions

(1) f(t,X(.)) is measurable for every t,
(2) f(., X(ω)) is continuous for a.e. stochastic process X.

Theorem 1[11][ Schauder and Tychonoff theorem]
Let Q be a closed bounded convex set in a Banach space and Let T be a completely
continuous operator on Q such that T (Q) ⊂ Q. Then T has at least one fixed point
in Q. That is, there is at least one x∗ ∈ Q such that T (x∗) = x∗.
Definition 2 [9] A family of real random functions (X1(t), X2(t), ..., Xk(t)) is uni-
formly bounded in mean square sense if there exist a β ∈ R (β is finite) such that
E(X2

n(t)) < β for all n ≥ 1 and all t ∈ I = [a, b], where a, b are real numbers.
Definition 3 [9] A family of real random functions (X1(t), X2(t), ..., Xk(t)) is
equicontinuous in mean square sense if for each t ∈ I = [a, b], where a, b are
real numbers and ϵ > 0, there exist a δ > 0 such that

E([Xn(t2)−Xn(t1)]
2) < ϵ, ∀ n ≥ 1 when ever | t2 − t1 |< δ.

Theorem 2[9][Arzela theorem]
Every uniformly bounded equicontinuous family (sequence) of functions (f1(x), f2(x), ..., fk(x))
has at least one subsequence which converges uniformly on the I = [a, b], where
a, b are real numbers
Theorem 3[10][Stochastic Lebesgue dominated convergence theorem]
Let Xn(t) be a sequence of random vectors (or functions) is converging to X(t)
such that

X(t) = lim
n→∞

Xn(t), a.s.,

and Xn(t) is dominated by an integrable function a(t) such that ∥ Xn(t) ∥2≤ a(t).
Then

(1) E[ lim
n→∞

Xn] = lim
n→∞

E[Xn] and

(2) E[Xn(t)−X(t)] → 0 as n → ∞
where a.s. means that it happens with probability one.
Lemma 1[6] [Properties of Itô Integral] For all constants a, b ∈ R and for all step
processes G,H ∈ L2(Ω) :

(1)
T∫
0

(aG+ bH)dW = a
T∫
0

GdW + b
T∫
0

HdW.

(2) E

(
T∫
0

GdW

)
= 0.

(3) E

(
T∫
0

GdW

)2

= E

(
T∫
0

G2dt

)
.

(4) E

(
T∫
0

GdW
T∫
0

HdW

)
= E

(
T∫
0

GHdt

)
.
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3. Existence of at least one solution

Let I = [0, T ], (Ω, F, P ) be a fixed probability space, where Ω is a sample space,
F is a σ−algebra and P is a probability measure. We denote by L2(Ω) the Banach
space of random variables X : Ω → R such that∫

Ω

X2dP < ∞.

Let X(t;ω) = {X(t), t ∈ I, ω ∈ Ω} be a second order stochastic process, i.e.,

E(X2(t)) < ∞, t ∈ I.

Now let C = C(I, L2(Ω)) be the class of all mean square continuous second order
stochastic processes with the norm

∥ X ∥C= sup
t∈[0,T ]

∥ X(t) ∥2= sup
t∈[0,T ]

√
E(X(t))2.

Consider the following assumptions
(i) The functions f : [0, T ]× L2(Ω) → L2(Ω) is Caratheodory function.
(ii)There exists an integrable function l(t) ∈ L1 such that

∥ f(t,X) ∥2≤ l(t), ∀(t,X) ∈ I × L2(Ω)

and
t2∫

t1

l(t) ≤ k1.

(iii) The function g : I → R+ is a continuous deterministic function such that

t2∫
t1

g2(t) ≤ k22, ∀t ∈ I.

Now we have the following lemmas.
Lemma 2[6] For a deterministic function g(t) : I → R+ and a Brownian motion
W (t) ∣∣∣∣∣∣

∣∣∣∣∣∣
t∫

0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

t∫
0

g2(s)ds.

Lemma 3 The solution of the stochastic nonlocal problem (1) and (2) can be
expressed by the stochastic integral equation

X(t) = a

X0 −
m∑

k=1

ak

τk∫
0

f(s,X(s))ds−
m∑

k=1

ak

τk∫
0

g(s)dW (s)


+

t∫
0

f(s,X(s))ds+

t∫
0

g(s)dW (s) (3)
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where a =

(
1 +

m∑
k=1

ak

)−1

.

Proof. Integrating equation (1), we obtain

X(t) = X(0) +

t∫
0

f(s,X(s))ds+

t∫
0

g(s)dW (s),

then

m∑
k=1

akX(τk) =
m∑

k=1

akX(0) +
m∑

k=1

ak

τk∫
0

f(s,X(s))ds+
m∑

k=1

τk∫
0

g(s)dW (s),

X0 −X(0) =

m∑
k=1

akX(0) +

m∑
k=1

ak

τk∫
0

f(s,X(s))ds+

m∑
k=1

τk∫
0

g(s)dW (s)

and (
1 +

m∑
k=1

ak

)
X(0) = X0 −

m∑
k=1

ak

τk∫
0

f(s,X(s))ds−
m∑

k=1

τk∫
0

g(s)dW (s),

then

X(0) =

(
1 +

m∑
k=1

ak

)−1
X0 −

m∑
k=1

ak

τk∫
0

f(s,X(s))ds−
m∑

k=1

ak

τk∫
0

g(s)dW (s)

 .

Hence

X(t) = a

X0 −
m∑

k=1

ak

τk∫
0

f(s,X(s))ds−
m∑

k=1

ak

τk∫
0

g(s)dW (s)


+

t∫
0

f(s,X(s))ds+

t∫
0

g(s)dW (s),

where a =

(
1 +

m∑
k=1

ak

)−1

.

Now for the existence of at least continuous solution X ∈ C of the stochastic
nonlocal problem (1)-(2), we have the following theorem.
Theorem 4 Let the assumptions (i)-(iii) be satisfied, then the problem (1)-(2) has
at least one solution X ∈ C given by the stochastic integral equation (3).
Proof. Define the set Q,

Q = {X ∈ C :∥ X ∥C≤ β} ⊂ C.

Now for each X ∈ Q, we can define the operator H by

HX(t) = a

X0 −
m∑

k=1

ak

τk∫
0

f(s,X(s))ds−
m∑

k=1

ak

τk∫
0

g(s)dW (s)


+

t∫
0

f(s,X(s))ds+

t∫
0

g(s)dW (s).
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We can prove that HQ ⊂ Q, f or this let X(t) ∈ Q, then

∥ HX(t) ∥2 ≤ a ∥ X0 ∥2 +a
m∑

k=1

ak

τk∫
0

∥ f(s,X(s)) ∥2 ds+ a
m∑

k=1

ak

∣∣∣∣∣∣
∣∣∣∣∣∣
τk∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+

t∫
0

∥ f(s,X(s)) ∥2 ds+

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ a ∥ X0 ∥2 +a
m∑

k=1

ak

τk∫
0

l(s)ds+ a
m∑

k=1

ak

√√√√√ τk∫
0

g2(s)ds

+

t∫
0

l(s)ds+

√√√√√ t∫
0

g2(s)ds

≤ a ∥ X0 ∥2 +a
m∑

k=1

akk1 + a
m∑

k=1

akk2 + k1 + k2.

Let

a ∥ X0 ∥2 +a
m∑

k=1

akk1 + a
m∑

k=1

akk2 + k1 + k2 = β.

β is clearly a positive real number, then (∥ HX ∥C≤ β), so HX ∈ Q and hence
HQ ⊂ Q and is uniformly bounded.
For t1, t2 ∈ R+ , t1 < t2, let | t2 − t1 | < δ, then

∥ HX(t2)−HX(t1) ∥2 ≤
t2∫

t1

∥ f(s,X(s)) ∥2 ds+

∣∣∣∣∣∣
∣∣∣∣∣∣

t2∫
t1

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
t2∫

t1

l(s)ds+

√√√√√ t2∫
t1

g2(s)ds ≤ k1 + k2 ≤ 2k

where k = sup{k1, k2}.
Then {HX} is a class of equicontinuous functions. Therefore the operator H is
equicontinuous and uniformly bounded.
Suppose that {Xn} ∈ C such that Xn → X with probability 1
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So,

l.i.m
n→∞ HXn(t) =

l.i.m
n→∞

aX0 − a

m∑
k=1

ak

τk∫
0

f(s,Xn(s))ds− a

m∑
k=1

ak

τk∫
0

g(s)dW (s)


+

l.i.m
n→∞

 t∫
0

f(s,Xn(s))ds+

t∫
0

g(s)dW (s)


= aX0 − a

m∑
k=1

ak
l.i.m
n→∞

 τk∫
0

f(s,Xn(s))ds

− a
m∑

k=1

ak

τk∫
0

g(s)dW (s)

+
l.i.m
n→∞

 t∫
0

f(s,Xn(s))ds

+

t∫
0

g(s)dW (s).

Then applying stochastic Lebesgue dominated convergence theorem, we get

l.i.m
n→∞ HXn(t) = aX0 − a

m∑
k=1

ak

τk∫
0

l.i.m
n→∞ [f(s,Xn(s))]ds− a

m∑
k=1

ak

τk∫
0

g(s)dW (s)

+

t∫
0

l.i.m
n→∞ [f(s,Xn(s))]ds+ g(s)dW (s)

= aX0 − a
m∑

k=1

ak

τk∫
0

[f(s,
l.i.m
n→∞ Xn(s))]ds− a

m∑
k=1

ak

τk∫
0

g(s)dW (s)

+

t∫
0

[f(s,
l.i.m
n→∞ Xn(s))]ds+

t∫
0

g(s)dW (s)

= aX0 − a

m∑
k=1

ak

τk∫
0

f(s,X(s))ds− a

m∑
k=1

ak

τk∫
0

g(s)dW (s)

+

t∫
0

f(s, x(s))ds+

t∫
0

g(s)dW (s) = HX(t).

This proves that H is continuous operator, then H is continuous and compact.
Applying Schauder fixed point theorem, we deduce that there exists a fixed point
X ∈ C which proves that there exists at least one solution of the stochastic differ-
ential equation (1)-(2) given by (3).

4. Maximal and minimal solution

Definition 4 Let q(t) be a solution of the problem (1)-(2), then q(t) is said
to be a maximal solution of (1)-(2) if every solution X(t) of (1)-(2) satisfies the
inequality

E(X2(t)) < E(q2(t)).
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A minimal solution s(t) can be defined by similar way by reversing the above
inequality i.e.

E(X2(t)) > E(s2(t)).

In this section f assumed to satisfy the following definition.
Definition 5 The function f : [0, T ]× L2(Ω) → L2(Ω) is said to be stochastically
increasing if for any X,Y ∈ L2(Ω) satisfying ∥ X(t) ∥2<∥ Y (t) ∥2 implies that

∥ f(t,X(t)) ∥2<∥ f(t, Y (t)) ∥2 .

Also The function f : [0, T ]×L2(Ω) → L2(Ω) is said to be stochastically decreasing
if for any X,Y ∈ L2(Ω) satisfying ∥ X(t) ∥2<∥ Y (t) ∥2 implies that

∥ f(t,X(t)) ∥2>∥ f(t, Y (t)) ∥2

Now we have the following lemma.
Lemma 4 let the assumptions (i)-(iii) be satisfied and let X,Y ∈ C satisfying

∥ X(t) ∥2 ≤ a

∥ X0 ∥2 +

m∑
k=1

ak

τk∫
0

∥ f(s,X(s)) ∥2 ds+

m∑
k=1

ak

∣∣∣∣∣∣
∣∣∣∣∣∣
τk∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2


+

t∫
0

∥ f(s,X(s)) ∥2 ds+

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

and

∥ Y (t) ∥2 ≥ a

∥ X0 ∥2 +

m∑
k=1

ak

τk∫
0

∥ f(s, Y (s)) ∥2 ds+

m∑
k=1

ak

∣∣∣∣∣∣
∣∣∣∣∣∣
τk∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2


+

t∫
0

∥ f(s, Y (s)) ∥2 ds+

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

If f(t,X) is stochastically increasing function, then

∥ X(t) ∥2<∥ Y (t) ∥2 . (4)

Proof. Let the conclusion 4 be false, then there exists t1 such that

∥ X(t1) ∥2=∥ Y (t1) ∥2, t1 > 0 (5)

and

∥ X(t) ∥2<∥ Y (t) ∥2, 0 < t < t1 (6)

Now from definition 4 and equation 6, we obtain

∥ X(t1) ∥2 ≤ a

∥ X0 ∥2 +
m∑

k=1

ak

τk∫
0

∥ f(s,X(s)) ∥2 ds+
m∑

k=1

ak

∣∣∣∣∣∣
∣∣∣∣∣∣
τk∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2


+

t1∫
0

∥ f(s,X(s)) ∥2 ds+

∣∣∣∣∣∣
∣∣∣∣∣∣

t1∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2
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< a

∥ X0 ∥2 +
m∑

k=1

ak

τk∫
0

∥ f(s, Y (s)) ∥2 ds+
m∑

k=1

ak

∣∣∣∣∣∣
∣∣∣∣∣∣
τk∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2


+

t1∫
0

∥ f(s, Y (s)) ∥2 ds+

∣∣∣∣∣∣
∣∣∣∣∣∣

t1∫
0

g(s)dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

< ∥ Y (t) ∥2, 0 < t < t1,

which contradicts (5), then ∥ X(t) ∥2<∥ Y (t) ∥2.

Now we have the following theorem.
Theorem 5 Let the assumptions (i)-(iii) be satisfied. If f(t,X) is stochastically
increasing, then there exists a maximal solution of problem (1)-(2).
Proof. Let ϵ > 0, be given, then

Xϵ(t) = a

X0 −
m∑

k=1

ak

τk∫
0

fϵ(s,Xϵ(s))ds−
m∑

k=1

ak

τk∫
0

gϵ(s)dW (s)


+

t∫
0

fϵ(s,Xϵ(s))ds+

t∫
0

gϵ(s)dW (s),

(7)

where

fϵ(t,Xϵ(t)) = f(t,Xϵ(t)) + ϵ

and

gϵ(t) = g(t) + ϵ.

Clearly the functions fϵ(t,Xϵ(t)) and gϵ(t) satisfy the conditions (i)-(iii) and

∥ fϵ(t,Xϵ(t)) ∥2≤ l(t) + ϵ = l̀(t),

then equation (7) is a solution of the problem (1)-(2) according to Theorem 3
Now let ϵ1 and ϵ2 be such that 0 < ϵ2 < ϵ1 < ϵ, then

Xϵ1(t) = a

X0 −
m∑

k=1

ak

τk∫
0

fϵ1(s,Xϵ1(s))ds−
m∑

k=1

ak

τk∫
0

gϵ1(s)dW (s)


+

t∫
0

fϵ1(s,Xϵ1(s))ds+

t∫
0

gϵ1(s)dW (s)

= a

X0 −
m∑

k=1

ak

τk∫
0

(f(s,Xϵ1(s)) + ϵ1) ds−
m∑

k=1

ak

τk∫
0

(g(s) + ϵ1) dW (s)



+

t∫
0

(f(s,Xϵ1(s)) + ϵ1) ds+

t∫
0

(g(s) + ϵ1) dW (s).

Now
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∥ Xϵ2(t) ∥2 =

∣∣∣∣∣∣
∣∣∣∣∣∣aX0 +

t∫
0

(f(s,Xϵ2(s)) + ϵ2) ds+

t∫
0

(g(s) + ϵ2) dW (s)

− a

m∑
k=1

ak

τk∫
0

(f(s,Xϵ2(s)) + ϵ2) ds− a

m∑
k=1

ak

τk∫
0

(g(s) + ϵ2) dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣aX0 +

t∫
0

(f(s,Xϵ1(s)) + ϵ1) ds+

t∫
0

(g(s) + ϵ1) dW (s)

− a

m∑
k=1

ak

τk∫
0

(f(s,Xϵ2(s)) + ϵ2) ds− a

m∑
k=1

ak

τk∫
0

(g(s) + ϵ2) dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣Xϵ1(t) + a

m∑
k=1

ak

τk∫
0

(f(s,Xϵ1(s)) + ϵ1) ds+ a
m∑

k=1

ak

τk∫
0

(g(s) + ϵ1) dW (s)

− a
m∑

k=1

ak

τk∫
0

(f(s,Xϵ2(s)) + ϵ2) ds− a
m∑

k=1

ak

τk∫
0

(g(s) + ϵ2) dW (s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ∥ Xϵ1(t) ∥2 +a
m∑

k=1

ak

τk∫
0

||f(s,Xϵ1(s))− f(s,Xϵ2(s)||2 ds

+ a

m∑
k=1

ak

τk∫
0

| ϵ1 − ϵ2 | ds+ a

m∑
k=1

ak

√√√√√ τk∫
0

| ϵ1 − ϵ2 |2 ds.

Since ϵi are very small and near real numbers, then | ϵ1 − ϵ2 |→ 0, also the
function f(t,X(t)) is stochastically increasing, then

||f(s,Xϵ1(s))− f(s,Xϵ2(s)||2 → 0.

Hence

∥ Xϵ2(t) ∥2≤∥ Xϵ1(t) ∥2 .

For ϵn ≤ ϵn−1 ≤ .... ≤ ϵ2 ≤ ϵ1 ≤ ϵ, we can prove that

∥ Xϵn(t) ∥2∥≤∥ Xϵn−1(t) ∥2≤ ... ≤∥ Xϵ2(t) ∥2≤∥ Xϵ1(t) ∥2≤∥ Xϵ(t) ∥2 .

As shown before in the proof of Theorem 3 the family of functions Xϵ(t) defined by
equation (3) is uniformly bounded and equi-continuous functions. Hence by Arzela
Theorem [9], there exists a decreasing sequence ϵn such that ϵ → 0 as n → ∞ and
l.i.m
n→∞ Xϵn(t) exists uniformly in C.
Denote this limit by q(t), then from the continuity of the function fϵn in the second
argument, we can apply Lebesgue dominated convergence theorem to get

q(t) =
l.i.m
n→∞ Xϵn(t).
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This proves that q(t) is a solution of the problem (1)-(2).
Finally, we shall show that q(t) is the maximal solution of the problem (1)-(2).
To do this, let X(t) be any solution of the problem (1)-(2). Then

∥ Xϵ(t)−X(t) ∥2= ϵ.

So
∥ Xϵ(t) ∥2 − ∥ X(t) ∥2≥ ϵ.

As ϵ → 0, we obtain
∥ Xϵ(t) ∥2≥∥ X(t) ∥2 .

From the uniqueness of the maximal solution (see [2]), it is clear that Xϵ(t) tends
to q(t) uniformly as ϵ → 0. This completes the proof.
By a similar way, we can prove the following theorem.
Theorem 6 Let the assumptions (i)-(iii) be satisfied. If f(t,X) is stochastically
decreasing, then there exists a minimal solution of the problem (1)-(2).
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