RIGHT AND LEFT DISLOCATED b-METRIC SPACES AND
FIXED POINT THEOREMS

MUJEEB UR RAHMAN

Abstract. Using the concept of generalized contraction, some fixed point theorems are investigated in the context of right and left dislocated b-metric spaces. We have proved φ-contraction and Reich type contraction in right and left dislocated b-metric spaces.

1. Introduction

One branch of generalizations of celebrated Banach contraction principle is based on the replacement of contraction condition imposed on $T : X \to X$, where (X, d) is a complete metric space. The weaker condition described by Browder [1] as, $d(T x, T y) \leq \varphi d(x, y)$ for all $x, y \in X$, where φ is a comparison function introduced by Berinde [2]. Reich [3] generalized the Banach contraction principle by introducing a new type of contraction condition which were given the name of Reich type contraction. In similar direction Istratescu [4] introduced the convex type contraction and generalized Banach contraction principle for such a type of contraction condition.

The notion of b-metric space was introduced by Czerwik [5] in connection with some problems concerning with the convergence of non-measurable functions with respect to measure. Fixed point theorems regarding b-metric spaces was obtained in [6] and [7]. In 2013, Shukla [8] generalized the notion of b-metric spaces and introduced the concept of partial b-metric spaces. Rahman and Sarwar [9] further generalized the concept of b-metric space and initiated the notion of dislocated quasi-b-metric space. Fixed point theorems in dislocated quasi-b-metric spaces are established by the researchers in [10] and [11].

Recently in 2017, Mujeeb and Sarwar [12] investigated right and left dislocated b-metric spaces and proved some fixed point results in such type of spaces.

In this work, we have proved φ-contraction and Reich type of contraction in the setting of right and left dislocated b-metric space which generalize and extend some existing fixed point results of the literature in these newly discovered spaces.
2. Preliminaries

Definition 2.1.[9]. Let X be a non-empty set and $k \geq 1$ be a real number then a mapping $d : X \times X \to [0, \infty)$ is called dislocated quasi-b-metric if $\forall \ x, y, z \in X$

\[(d_1) \ d(x, y) = d(y, x) = 0 \text{ implies that } x = y; \]
\[(d_2) \ d(x, y) \leq k[d(x, z) + d(y, z)]. \]

The pair (X, d) is called dislocated quasi-b-metric space or shortly $(dq \ b$-metric) space.

Definition 2.2.[12]. Let X be a non empty set. Let $k \geq 1$ be a real number then a mapping $d : X \times X \to [0, \infty)$ is called right dislocated b-metric if $\forall \ x, y, z \in X$ satisfying

\[rd_1 \ d(x, y) = d(y, x) = 0 \text{ implies that } x = y; \]
\[rd_2 \ d(x, y) \leq k[d(x, z) + d(y, z)]. \]

And the pair (X, d) is called right dislocated b-metric (rd b-metric) space.

Definition 2.3.[12]. Let X be a non empty set. Let $k \geq 1$ be a real number then a mapping $d : X \times X \to [0, \infty)$ is called left dislocated b-metric if $\forall \ x, y, z \in X$ satisfying

\[ld_1 \ d(x, y) = d(y, x) = 0 \text{ implies that } x = y; \]
\[ld_2 \ d(x, y) \leq k[d(z, x) + d(z, y)]. \]

And the pair (X, d) is called left dislocated b-metric (ld b-metric) space.

Remarks. For some interesting properties and examples of right and left dislocated b-metric space see [12].

Definition 2.4.[12]. A sequence $\{x_n\}$ in X is called rd b-convergent in X if there exists $x \in X$ such that $\lim_{n \to \infty} d(x, x_n) = 0$. In this case x is called the rd b-limit of the sequence $\{x_n\}$.

Unlike b-metric space rd b-metric space need not be left and right convergent. But in case of rd b-metric space it is rd b-convergent only.

Definition 2.5.[12]. A sequence $\{x_n\}$ in X is called ld b-convergent in X if there exists $x \in X$ such that $\lim_{n \to \infty} d(x_n, x) = 0$. In this case x is called the ld b-limit of the sequence $\{x_n\}$.

In case of ld b-metric space a convergent sequence need only to be ld b-convergent.

Remarks. Since the notion of ld b-metric space is look like a dual notion of rd b-metric space. Therefore, we state the following definitions and some basic properties for right dislocated b-metric spaces only which may be easily carried out for left dislocated b-metric spaces.

The following definitions can be found in [12].

Definition 2.6. A sequence $\{x_n\}$ in rd or ld b-metric space is called Cauchy sequence if for $\epsilon > 0$ there exist $n_0 \in N$, such that for $m > n \geq n_0$, we have $d(x_n, x_m) < \epsilon$.

Definition 2.7. A rd or ld b-metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point in X.

Definition 2.8. Let (X, d) be a rd or ld b-metric space. A mapping $T : X \to X$ is called contraction if $k \geq 1$ there exists a constant $\alpha \in [0, 1)$ with $k\alpha < 1$ and for all $x, y \in X$ satisfying

\[d(Tx, Ty) \leq \alpha d(x, y). \]

The following result may be seen in [12].

Lemma 1. Every subsequence of rd or ld b-convergent sequence to x_0 is rd b-convergent to x_0.
Lemma 2. Limit of convergent sequence in \(rd\) or \(ld\) \(b\)-metric space is unique.

Lemma 3. Let \((X,d)\) be a \(rd\) or \(ld\) \(b\)-metric space and \(\{x_n\}\) be a sequence in \(rd\) \(b\)-metric space such that
\[
d(x_n, x_{n+1}) \leq \alpha d(x_{n-1}, x_n)
\]
for \(n = 1, 2, 3, \ldots\) and \(0 \leq \alpha k < 1\) where \(\alpha \in [0,1)\) and \(k\) is defined in \(rd\) \(b\)-metric space. Then \(\{x_n\}\) is a Cauchy sequence in \(X\).

Lemma 4. Let \((X,d)\) be a \(rd\) or \(ld\) \(b\)-metric space. If \(T : X \to X\) is a contraction. Then \(T\) is \(rd\) \(b\)-continuous.

Theorem 1. Let \((X,d)\) be a complete \(rd\) or \(ld\) \(b\)-metric space. If \(T : X \to X\) is a contraction. Then \(T\) has a unique fixed point.

Theorem 2. Every \(\varphi\)-contraction \(T : X \to X\) where \((X,d)\) is a complete metric space, is a Picard’s operator.

Definition 2.9. A map \(\varphi : \mathbb{R}_+ \to \mathbb{R}_+\) is called comparison function if it satisfies:

1. \(\varphi\) is monotonic increasing;
2. The sequence \(\{\varphi^n(t)\}_{n=0}^{\infty}\) converge to zero for all \(t \in \mathbb{R}_+\) where \(\varphi^n\) stand for \(n\)th iterate of \(\varphi\).
 If \(\varphi\) satisfies:
3. \(\sum_{k=0}^{\infty} \varphi^k(t)\) converge for all \(t \in \mathbb{R}_+\).

Then \(\varphi\) is called \(c\)-comparison function.

Thus every comparison function is \(c\)-comparison function. A prototype example for comparison function is
\[
\varphi(t) = \alpha t \quad t \in \mathbb{R}_+ \quad 0 \leq \alpha < 1.
\]

Some more examples and properties of comparison and \(c\)-comparison function can be found in [2].

3. Main Results

Theorem 1. Let \((X,d)\) be a complete right (left) dislocated \(b\)-metric space and \(T : X \to X\) be a continuous function for \(k \geq 1\) satisfying
\[
d(Tx, Ty) \leq \varphi d(x, y)
\]
for all \(x, y \in X\) where \(\varphi\) is a comparison function. Then \(T\) has a unique fixed point in \(X\).

Proof. Let \(x_0\) be arbitrary in \(X\) we define a sequence \(\{x_n\}\) in \(X\) as following
\[
x_0, x_1 = Tx_0, x_2 = Tx_1, \ldots, x_{n+1} = Tx_n \quad \text{for all} \quad n \in \mathbb{N}.
\]
Now to show that \(\{x_n\}\) is a Cauchy sequence in \(X\) consider
\[
d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n).
\]
Using (2) we have
\[
d(x_n, x_{n+1}) \leq \varphi d(x_{n-1}, x_n).
\]
Similarly one can show that
\[
d(x_{n-1}, x_n) \leq \varphi d(x_{n-2}, x_{n-1}).
\]
Putting (3) in (4) we have
\[
d(x_n, x_{n+1}) \leq \varphi^2 d(x_{n-2}, x_{n-1}).
\]
Proof. Let \(X \) is a unique fixed point in \(T \) and

By the definition of the sequence we get

\[
d(x_n, x_{n+1}) \leq k \cdot d(x_n, x_{n+1}) + k^2 \cdot d(x_{n+1}, x_{n+2}) + k^3 \cdot d(x_{n+2}, x_{n+3}) + \ldots. \tag{5}
\]

Using \((5)\) we have

\[
d(x_n, x_m) \leq k \cdot \varphi^n d(x_0, x_1) + k^2 \cdot \varphi^{n+1} d(x_0, x_1) + k^3 \cdot \varphi^{n+2} d(x_0, x_1) + \ldots.
\]

Since \(\varphi \) is a comparison function so taking \(n, m \to \infty \) we get

\[
\lim_{n, m \to \infty} d(x_n, x_m) = 0.
\]

Which show that \(\{x_n\} \) is a Cauchy sequence in complete right (left) dislocated \(b \)-metric space \(X \). So there exists \(z \in X \) such that \(x_n \to z \) as \(n \to \infty \).

Now to show that \(z \) is the fixed point of \(T \). Since \(x_n \to z \) as \(n \to \infty \) using the continuity of \(T \) we have

\[
\lim_{n \to \infty} T x_n = T z
\]

which implies that

\[
\lim_{n \to \infty} x_{n+1} = T z.
\]

Thus \(T z = z \). So \(z \) is the fixed point of \(T \).

Uniqueness: Suppose that \(T \) has two fixed points \(z \) and \(w \) for \(z \neq w \). Consider

\[
d(z, w) = d(T z, T w).
\]

Using \((2)\) we have

\[
d(z, w) \leq \varphi d(z, w).
\]

Since \(\varphi \) is a comparison function so the above inequality is possible only if \(d(z, w) = 0 \) similarly one can show that \(d(w, z) = 0 \). So by \((d_1)\) \(z = w \). Hence \(T \) has a unique fixed point in \(X \).

Remark. Theorem 1 generalize Banach contraction principle and the result established by Matkowski \([13]\) in right (left) dislocated \(b \)-metric spaces.

Theorem 2. Let \((X, d)\) be a complete right or (left) dislocated \(b \)-metric space and \(T : X \to X \) is a continuous self-mapping satisfying

\[
d(T x, T y) \leq \alpha \cdot d(x, y) + \beta \cdot d(x, T x) + \gamma \cdot d(y, T y) \tag{6}
\]

for all \(x, y \in X \) and \(\alpha, \beta, \gamma \geq 0 \) with \(k \alpha + k \beta + \gamma < 1 \) where \(k \geq 1 \). Then \(T \) has a unique fixed point in \(X \).

Proof. Let \(x_0 \) be arbitrary in \(X \) we define a sequence \(\{x_n\} \) in \(X \) as following

\[
x_0, x_1 = T x_0, x_2 = T x_1, \ldots, x_{n+1} = T x_n.
\]

Now to show that \(\{x_n\} \) is a Cauchy sequence consider

\[
d(x_n, x_{n+1}) = d(T x_{n-1}, T x_n).
\]

Using \((6)\) we have

\[
d(x_n, x_{n+1}) = d(T x_{n-1}, T x_n) \leq \alpha \cdot d(x_{n-1}, x_n) + \beta \cdot d(x_{n-1}, T x_{n-1}) + \gamma \cdot d(x_n, T x_n).
\]

By the definition of the sequence we get

\[
d(x_n, x_{n+1}) \leq \alpha \cdot d(x_{n-1}, x_n) + \beta \cdot d(x_{n-1}, x_n) + \gamma \cdot d(x_n, x_{n+1}).
\]
Simplification yields
\[d(x_n, x_{n+1}) \leq \frac{\alpha + \beta}{1 - \gamma} \cdot d(x_{n-1}, x_n). \]

Let
\[h = \frac{\alpha + \beta}{1 - \gamma} < \frac{1}{k}. \]

So the above inequality become
\[d(x_n, x_{n+1}) \leq h \cdot d(x_{n-1}, x_n). \]

Also
\[d(x_{n-1}, x_n) \leq h \cdot d(x_{n-2}, x_{n-1}). \]

Thus
\[d(x_n, x_{n+1}) \leq h^2 \cdot d(x_{n-2}, x_{n-1}). \]

Similarly proceeding we get
\[d(x_n, x_{n+1}) \leq h^n \cdot d(x_0, x_1). \]

Since \(h < \frac{1}{k} \). Taking limit \(n \to \infty \), so \(h^n \to 0 \) and
\[\lim_{n \to \infty} d(x_n, x_{n+1}) = 0. \]

So by Lemma 3 \(\{x_n\} \) is a Cauchy sequence in complete right or (left) dislocated \(b \)-metric space so there must exist \(u \in X \) such that
\[\lim_{n \to \infty} (x_n, u) = 0. \]

Now to show that \(u \) is the fixed point of \(T \). Since \(x_n \to u \) as \(n \to \infty \) using the continuity of \(T \) we have
\[\lim_{n \to \infty} T x_n = T u \]
which implies that
\[\lim_{n \to \infty} x_{n+1} = T u. \]

Thus \(Tu = u \). So \(u \) is the fixed point of \(T \).

Uniqueness: Let \(T \) have two fixed points i.e \(u, v \) with \(u \neq v \) then we have
\[d(u, v) = d(T u, T v) \leq \alpha \cdot d(u, v) + \beta \cdot d(u, T u) + \gamma \cdot d(v, T v) \]
\[d(u, v) = d(T u, T v) \leq \alpha \cdot d(u, v) + \beta \cdot d(u, u) + \gamma \cdot d(v, v). \]

Putting \(u = v \) in (6) one can easily show that \(d(u, u) = d(v, v) = 0 \). Thus the above equation become
\[d(u, v) \leq \alpha \cdot d(u, v). \]

The above inequality is possible only if \(d(u, v) = 0 \) similarly one can show that \(d(v, u) = 0 \). So by \((d_1) \) we get that \(u = v \). Thus fixed point of \(T \) is unique.

Corollary. Let \((X, d)\) be a complete right or (left) dislocated \(b \)-metric space and \(T : X \to X \) is a continuous self-mapping satisfying
\[d(T x, T y) \leq \alpha \cdot d(x, y) + \beta \cdot d(x, T x) \]
for all \(x, y \in X \) and \(\alpha, \beta \geq 0 \) with \(k\alpha + k\beta < 1 \) where \(k \geq 1 \). Then \(T \) has a unique fixed point in \(X \).
Corollary. Let (X,d) be a complete right or (left) dislocated b-metric space and $T : X \to X$ is a continuous self-mapping satisfying

$$d(Tx, Ty) \leq \alpha \cdot d(x, y)$$

for all $x, y \in X$ and $\alpha \geq 0$ with $0 \leq k\alpha < 1$ where $k \geq 1$. Then T has a unique fixed point in X.

Remarks. Theorem 2 generalize Reich type contraction and extend Banach contraction principle and convex type contraction in complete right or (left) dislocated b-metric spaces.

Acknowledgement. The author is grateful to the editor in chief and anonymous referees for their valuable comments and suggestions which improve this article.

References

Mujeeb Ur Rahman
Department of Mathematics, Government PG Jahanzeb College, Saidu Sharif, Swat, Khyber Pakhtun Khwa, Pakistan.
E-mail address: mujeeb@uom.edu.au