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ASYMPTOTIC BEHAVIOR FOR A STRUCTURE WITH
INTERFACIAL SLIP AND ONE DISCONTINUOUS LOCAL
INTERNAL KELVIN-VOIGT DAMPING

OCTAVIO P. VERA VILLAGRAN AND CARLOS A. RAPOSO

ABSTRACT. In the present paper, we study the stabilization of laminated
beams with one discontinuous local internal viscoelastic damping of Kelvin-
Voigt type. First, we prove the strong stability of the system using the
Arendt-Batty Theorem. Finally, we present the polynomial stability by us-
ing Borichev-Tomilov’s result of optimality.

1. INTRODUCTION

In this work we study the stability for a structure with interfacial slip and fric-
tional damping, given by,

prug + k(Y —uy), —kd(x) (ser —u) =0,
p2 (s =)y —b(s =), —k(—us) +B(s— 1) =0, (1.1)
P2 8tt — bSuw + 3k (Y —uy) — 3k [d(x) (spr —ut)]e +4 s =0,

where (z, t) € (0, L) x (0, +00). The coefficients p1, p2, k, b, v and 8 are positive
and denote the density of the beam, the mass moment of inertia, the shear of
stiffness, the flexural rigidity, the effective damping of the rotational angle and the
adhesive damping parameter respectively. The function u = u(x, t) denotes the
transverse displacement, 1) = v(z, t) represents the rotation angle, and s = s(z, t)
is proportional to the amount of slip along the interface at time ¢ and longitudinal
spatial variable x respectively.
We consider the following boundary conditions:

uw(0, L) = u(L, t) = ¢(0, t) = (L, t) = s(0,t) = s(L, t) =0 (1.2)
and initial data

{(u(aa 0), $(z, 0), 5z, 0)) = (uo(x), Yo(x), s0(x)) 13)

) 0 )
(ue(x, 0), Yu(, 0), se(x, 0)) = (ua(x), P1(x), s1(x)).
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We suppose that there exists 0 < o < § < L and a positive constant dy such
that

d(z) = {do if z€lof), (1.4)
0 if 2€(0,a)U(B, L).

The model is closely related with the Timoshenko’s theory. Timoshenko’s
theory started in 1921 [25, [26] and since then, has been extensively studied by
several authors over different points of view. Most of them studied the global well-
posedness, asymptotic behavior among other properties (see [II, [4, O] [T0] [11] and
references therein).

Hansen in 1994 (see [12] 3] for model description) derived from Timoshenko’s
theory the model , that describes a structure of two identical beams of uniform
thickness with an adhesive layer (of negligible thickness and mass) bonding the two
adjoining surfaces in such a way that a slip is allowed while they are continuously
in contact with each other. The model is called laminated beams and has
gained a lot of interest in recent years. We mention for instance [2], 6] [7, 8, [15] [16]
17, 191 201 221 23], 24] and references therein.

In this work, we have obtained the polynomial stability for a structure with
interfacial slip with one discontinuous local internal Kelvin-Voigt damping. In order
to obtain the results we will use the theorem given by Arendt-Batty [3] together
with a result given by Borichev-Tomilov [5]. Indeed, our main results is:

Theorem 1.1. There is a constant C > 0 such that for every Uy € D(A), we have

C
E(t) < < [Wollppy, ¢ >0, (15)

This paper is organized as follows. In Section [2| we recall some auxiliary results.
Section |3 by semigroup theory of linear operators we obtain an existence theorem
of solutions of system (2.7)-(2.9). In Section [4] we show the strong stability by
using Arendt-Batty’s theorem. In Section [5} we present the polynomial stability of
the corresponding semigroup using Borichev-Tomilov’s result of optimality.

2. PRELIMINARY

Throughout this paper, C is a generic constant, not necessarily the same at each
occasion (it will change from line to line) and depends on the indicated quantities.
In the following lemma we prove the dissipative properties of the system in
the sense that its energy is non-decreasing with respect to time, that is,

Lemma 2.1. (Energy of the system) For every solution (u, ¥, s) of the system
(1.1), the total energy £ : RT — RT defined at time t by

1
5(75)25 [3/)1 Hut\|%2(o,L)+3k [l — Ux||2L2(o, IARNL ”515”%2(0,L)+b ||5x||2L2(o,L)

32 (s = W)ellEz(0, 1) 36165 = Wallizo, ] 21)
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satisfies

d L L L
—&(t) = — Sk/ d(z) Szt —ut\Q dm—3ﬁ/ |(s—1/))t|2 dx—45/ |st|2
dt 0 0 0

B L L
:—3kd0/ |80 — we|? da — 36/ I(s — 1)¢|? dm—4(5/ |s¢)% da.
« 0 0

(2.2)
Proof. Let (u, us, 1, 1+, s, $¢) be a regular solution of system (1.1). Multiplying

(1.1)1 by 3u; we have

1d L L L
5%3;)1/ ufdx—k?)k/ (¢—ux)$utdI—3k/ d(x) (St — ug) ug de = 0.
0 0

Using integration by parts and (| it follows that
1d

L
2dt3p1/ uf dr — 3k Y — Ug) Uy dx
L L
— 3k/ d(x) gt ug dx—i—Sk/ d(z)u? dx = 0.
0 0

The second term in the last equation can be written as

1d Lo, L
5d—3p1/ u; dm—3k/ (Y —ug) (uy — Y + ) dx
t 0

L L
- 3k/ d(x) gt Uy dm+3k/ d(x)u? dx = 0.
0 0
Then

1d L
2dt3p1 u? dr+ 3k Y —ug) (Y —ug) do

L L L
- 3k/ (Y — uz) Py dx—Sk/ d() Sut U d:r+3l<:/ d(z)u? dz = 0.
0 0 0

Thus

1d
€ [3p1”ut“L2(O py t3k|v— UxH%Z(O,L)}

L L
—_ J— —_— 2 p—
3k/0 (% — ug) Wy da 3k/0 d(x>s$tutdx+3k/o (@) de = 0. (2.3)

Now, multiplying (1.1)s by s; and integrating over (0, L) yields
1d L L
5%/)2/ sfdx—b/o Sy St dx

L L L
+ 3k/ (Y — uz) ¢ dx—3k/ [d(x) (sxtfut)]xst+45/ |s¢|? dx = 0.
0 0 0

Integrating by parts and using ([1.2)) it follows that
1 d L L
i%pg/ sfda:—l—b/o Sz Sqt dT

L L L
+3k/ () — ug) 8¢ dx+3k/ d(x) (Sgt — Ut) Szt dx+45/ |s¢]% dx = 0.
0 0 0
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Then

1d o
T {P2 Isell72(0, £y + bllszllZ2o, 1 } +3k/ () — uz) st da

L
+ 3k:/ d(z) s2, dz—3k/ d(z) uy Sgu dx—|—46/ |s¢|* dz = 0. (2.4)
0 0 0

Finally, multiplying (L.1)2 by 3 (s — ), and integrating over (0, L) we have

L
3p2/0 (s =), (s — dw—Sb/ )pw (8 =), dx

- 3k/ (¥ —ug) (s — ), da:JrSﬂ/ s — ) [> dx = 0.
0
Integrating by parts and using ([1.2)) it follows that
1d L 1d L

_ — 2 _— - 2
330 | 1= P et g G3b [l =), P e

L L
- 3k/ () — ug) (5 — ), dx+3/3/ (5 — )2 dz = 0.
0 0
Thus
1d 9 9
52 (37215 = ¥)ilEa0, ) + 30115 = ¥)allFeo, 1)
L L
~ 3k/ (W — ) (s — ), dm+36/ (s —¥ul2ds =0.  (25)
0 0
Adding , (2.4) and ([2.5) the Lemmafollows. |

For convenience, from now and on, we introduce a new variable z given by

z==s—1 (the effective rotation angle) <= ¢ = s — z, (2.6)
then (2.5)) becomes
1d

52 [32 a0,y + 38 e o, )

L
- 3k/ (s —2z—uy) 2 da:+3ﬂ/ |2¢|? dx = 0.
0 0
Performing the change of variable (2.6)), system (|1.1)) leads to
prug +k(s—2z—ug), —kd(x) (see —up) =0,

P22t —bzpw —k(s—2—uz)+ P2z =0, (2.7)
P28t —bSpw +3k(s— 2 —uz) —3k[d(x) (Sgr —ut)]a +4ys+45s: =0,

with the boundary conditions
u(0, L) =u(L, t) = 2(0,t) = 2(L, t) = s(0, t) =s(L, t) =0 (2.8)
and initial data
{(u(a 0), 2(z, 0), s(, 0)) = (u
(ue(, 0), ze(x, 0), s¢(x, 0)) =
We present the following definition.

(), 20(2), s0(x))

Up\T 9
(wr(z), 21(x), 51(x)). (29)
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Definition 2.2. [I8] Assume that A is the generator of Cy-semigroup of contrac-
tions (etA)DO on a Hilbert space H. The Cy-semigroup (etA)DO is said to be

a) Strongly stable if
lim |le!Azo)ln =0, Vo€ H. (2.10)

t——+o0

b) Exzponentially (or uniformly) stable if there exists two positive constant M and
€ such that

llet A zoll < Me St ||zolln, YE>0, VYaoeh. (2.11)
¢) Polynomially stable if there exists two positive constant C' and « such that
et A zolly < Ct™ | Azollp, ViE>0, VaxgeD(A). (2.12)

The following results will use some time from now on and are fundamental to
the proof of our theorems of stability.

Theorem 2.3. [3] Assume that A is the generator of a Cy-semigroup of contrac-
tions (etA)tzo on a Hilbert space H. If A has no pure imaginary eigenvalues and
o(A)NiR is countable, where o(A) denote the spectrum of A, then the Cy-semigroup
(e!4)i>0 is strongly stable.

Theorem 2.4. [5] Assume that A is the generator of a strongly continuous semi-
group of contractions (e!);>o on H. If iR C o(H), then for a fized £ > 0 the
following conditions are equivalent

igé H(i)\f — A)_IHL(H) = O(|)‘|E)a

2 C
HetAUO||7.[§t27HU0H2D(A)7 Vt>0, UyeD(A), forsome C >0.

3. SETTING OF THE SEMIGROUP

In this section, we use results of the semigroup theory of linear operators to ob-
tain an existence theorem of solutions of system (2.7)-(2.9) (see [21]). We introduce
the Hilbert space

H = [Hy(0, L) x L*(0, L)},
equipped with the inner product (v = U, ¢ = ¥, s = S with z = s — ¢ and
Z=5-7)
N L L L _
(W, Wy :3p1/UU dx+3p2/ZZ derpg/SS dx
0 0 0

L L L
+ b/ Sg Sz dm+3k/(s—z—uz)(§—3—ﬂi) daz+3b/ 2 2g AT,

0 0 0
(3.1)
WhereW:(u,ut:U;z7zt:Z;s,st:S)EH,W:(H,&ZZ;g,g)and

norm
W13 =3p1 luel 20, 1y + 3p2 126l 720, £y + o2 161720, 1)
+ bllsall72qo, 0y + 3K s = 2 = wallF2(0, 1y + 30 1221720, 1) (3.2)
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Now, we rewrite the system (2.7)) as an abstract problem on the Hilbert space
‘H given by

Twiey = aw), vs
W(O) = W() = (U(), U1, 20, 21, S0, 51), Vit>O0. (34)
The operator
A: DA CH—-H
is given by
U U
U p—ll[—k(s—z—uz)z—&—kd(;v)(Sm—U)]
z Z
A =
VA p—t[bzm%—k(s—z—ux)—ﬂZ]
S S
S p%(bsm—3k(s—z—um)+3k[d(m)(5x—U)]m—455)

(3.5)

with domain

D(A)={W eH: u, z, s€ H*(0, L)NH}(0, L), U, Z, S € Hy(0, L),
[d(x) (sz — u)]. € L*(0, L)} .

To prove that A is the infinitesimal generator of a Cy-contraction semigroup, we
consider the two following lemmas.

Lemma 3.1. The operator A is a dissipative.
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Proof.
(AW, W)y

L
=3p1/ L ks 2 w)s + kd(@) (S, — U)] T da
0
L 1 .
+3p2/ — [bzge +hk(s—2z—u,) — B8Z] Z dx
0o P2

L
+p2/ L e — 3k (s — 2 — ) + 3k [d(x) (S — V)]s — 46 5] 5 da
0 P2

L L L
+3k/ (S—Z—Ux)(g—z—ﬂm)der?,k/ szxdm-b/ S35, dr
0 0 0

L L L
:—Sk/ (s—z—ux)dex—Hﬂk/ d(w)SgEde—Sk/ d(z)|U* d
0 0 0
L L

L L
+3b | 2z Zdr+3k | (s—z—wu,)Z dx— 3 |Z|? da — 46 |S|?
0 0 0 0

L L L
+b/ smgdx—?)k/ (s—z—uz)gdx—i—?)k/ [d(x) (Sz — U)]. S dx
0 0 0

L L L
+b/ Sx§$dx+3k/ (S—Z—Uw)(g—z—ﬂx)dazjt?)b/ Zy % dx.
0 0 0

Using (2.8) and straightforward calculations we have
(AW, W)y

zgk/OL [(S’—Z—Uw)(E—E—Ew)—(S—Z—Uz)(E—E—Ew)} dx

L L
+/ (20 %0 — Zy 24 d:c+b/ [S25: — S;5,] do dx
0 0
L L L
- 5/ |Z|? dx — 45/ |S|? dx — 3/<:/ d(z)|S, — U|? d.
0 0 0
Then

L
<AW,W>H:6ikIm/ (S—Z—-U,)(F—%—1,) da
0
L L
—|—2iIm/ Ly Za d;v—l—QibIm/ Sy S: dx
0 0

L L L
—5/ 1Z]2 dx—46/ ISP da:—3k:/ d(z) ]S, — UP? da.
0 0 0
Taking the real part we obtain
L L L
Re(AW, W)y = —[3/ |Z|? dx —45/ |S|? dx — 3k:/ d(z)|S, — U|?* dx
0 0 0
L L B
= —ﬂ/ |Z|? da — 45/ |S|? dx — 3k do/ IS, — U* dz <0.
0 0 [eY
(3.6)
It follows that A is a dissipative operator. O
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Lemma 3.2. The operator A is Mazimal.

Proof. Let F = (f1, f2, f3, fa, [5, f6) € H, we must show that there exists a unique
W = (u, us, 2, 2, s, 5¢)7 € D(A) such that AW = F, that is,

u = f1 in H&(O, L),

—k(s—2—ug)p +kd(@) (55t —ug) = p1 fo in L%0, L),

2= f3in Hg(0, L),

bzpw +hk(s—2z—uy)— Bz =pafs in L20, L),

st =fs in H(0, L),

bsee —3k(s—2—uy) +3k[d(x) (Ser —wi)]e =458, =pafe in L0, L),

with the boundary conditions
u(0, ) = u(L, t) = 2(0, t) = 2(L, t) = s(0, t) = s(L, t) = 0. (3.8)
Replacing (3.7)1 3,5 into (3.7)2, 4,6 respectively we have

*k(S*Z*um)m:plf27kd($)(f5szl) in L2(07 L)a

bzew +hk(s—2z—ug)=pafa+pBfs in L0, L),

bsew — 3k (s —2—uy) +3k[d(x) (fsx — f1)]e =p2fo +45f5 in L0, L).
(3.9)

Let ((I)l, Do, @3) S [H&(O, L)]‘3 Then multlplylng 17273 by 51, 62 and 63
respectively, integrating over (0, L), using (3.8)) and performing straightforward
calculations we obtain

L L L
k;/ (s — 2 — ug) @1y dx:pl/ fo @1 dx—k:/ d(z) (fse — f1) @1 dz,
0 0 0
L L B L L
fb/ ZI(PgdeL"{“k/ (S*Z*Um)q)Qd.’ﬁ:pg/ f4<I>2d:c+ﬂ/ f3®o dz,
0 0 0 0
L L -
—b/ sgg(I)gxdx—Sk‘/ (s —z—u,) P3 dx
0 0

L L L
:P2/ fo @3 d$*3k/ d(@) (fse — f1) Pax d$+45/ f5 @3 dz.
0 0 0

We define
B((u, z, 8), (®1, Da, P3)) = L((D1, P2, P3)) (3.10)
for all (1, ®o, ®3) € [Hi (0, L)]?, where

L
B((u 2 ). (@1, @2, 89) =k [ (52— u,)Bu, do
0
L o L o
— b/ 2y Pog d:v—l—k/ (s —z—uy) Py dx
0 0

L L
— b/ Sz 3y dx—Sk/ (s — 2 —uy) @3 dx
0 0
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and

L o L o
L((®y, Bs, B5)) = / £28y do—k / d(z) (fon — F1)T1 do
0 0
L L L
+ 02/0 f1 P2 d$+5/0 fz3 @q dx + 02/0 fe @3 dx

L L
_3k/0 d(x) (fse — f1) Pax d$+45/0 f5 @3 d.

It is not difficult to see B is a sesquilinear and continuous form on [HJ (0, L)]3 x
[HE(0, L)]? and £ is a linear and continuous form on [HE(0, L)]3. Thereby, B
is a coercive form on [Hg(0, L)]* x [H(0, L)]3. Hence, it follows by the Lax-
Milgram Theorem that admits a unique solution (u, z, s) € [Hg(0, L)]3.
Taking test-functions (@1, ®o, ®3) € [D(0, L)]* we have that holds in the
distributional sense, from which we deduce that (u, z, s) € [H?(0, L) N H(0, L)]3,
while [d(x) (f5z - fl)]m € LQ(O, L) TherebY7 U= (u7 fla 2 f3, S, f5)T € D(A) is
the unique solution of AU = F. Thus A is an isomorphism and since p(.A) is open
set of C (see [I4]: Theorem 6.7, Chapter III), we easily get R(AI — A) = H for a
sufficiently small A > 0. This and using the dissipativity of A, imply that D(A) is
dense in H and that is m-dissipative in H (see [2I]: Theorems 4.5, 4.6), the lemma
is proved.

(]

Proposition 3.3. The operator A is the infinitesimal generator of a Cyo—semigroup
of contractions {Sa(t)}i>o0-

Proof. By the lemma the operator A is a dissipative and from lemma we
have that A is maximal. Then, according the well known Lumer-Phillips Theorem
[21] we have that the operator A generates a Cp—semigroup of contractions et A in
H.

O

Thereby we have the following result, which gives the well-posedness of ([3.3)-
63).

Theorem 3.4. For all Wy € H, the system (3.3)-(3.4) admits a unique weak
solution

W(t) = et AW, € CORY, H). (3.11)

Moreover, if Wy € D(A), then W (t) is the unique strong solution with the following
regqularity

W(t) € C°(RT, D(A))NCHRT, H). (3.12)
4. STRONG STABILITY

In this section, we prove the strong stability (Theorem of the system .
The idea is to use the Theorem due to Arendt-Batty [3]. According to Theorem
we will prove that the operator A has no pure imaginary eigenvalues and
o(A)NiR is countable.

Lemma 4.1. For all X € R, (i \I — A) is injective, that is,
Ker(iAI —A)={0}, VY XeR
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Proof. By the Lemma 0 € o(A). Then we will show the result for A €
R*. For this aim, suppose that there exists a real number A\ # 0 and W =
(u, U, 2, Z, s, S)T € D(A) such that

AW =i AW. (4.1)
In fact, we have
U=1ilu,
—k(s—z—uy)s +kd(x) (S, —U)=iAp U,
Z =1i\z, . (4.2)
bzew +hk(s—2z—uy)—BZ =iAp2 Z,
S=ils,
bSpx —3k(s—2—uyg) +3k[dx) (S —U)], —455 =i)Xpg S.
From (4.1)) we have
(AW, W)y = (AW, W)y = i\ |[W]lz = (AW, W)3,. (4.3)

Taking the real part and using (3.6) we obtain
0=Re[iA[|[W]]

L L B
=— 5/ |Z|? dx—45/ |S|? dx—?)kdo/ 1S, — U dz <0. (4.4)
0 0 a
Thereby we have

Z=0 in (0,L),
S=0 in (0,L), (4.5)
S;—U=0 in (apf).

Using (4.2)3,5 into (4.5)1,2 and then fact that A # 0 we have

z=0 in (0, L),
{s:o in (0, L). (4.6)

Replacing (4.6)2 into (4.5)3 we have

U=0 in (o, B). (4.7
Now, replacing 1’5 into (4.5)3 and using that A # 0 we obtain
Sz—u=0 <= s,=u in (a, f). (4.8)
Therefore from into we obtain
u=0 in (a, f). (4.9)

Thereby W = (0, 0, 0, 0, 0, 0) in (¢, ).

On the other hand, (4.2) can be written in (0, @) U (8, L), that is,
Npru—k(s—z—wuz), =0 in (0,a)U(B, L),
MNpoz+bzy+k(s—2z—u,)=0 in (0,a)U(B, L), (4.10)
AN pas+bsey —3k(s—z—u,)=0 in (0,a)U(B, L).
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Let W = (u, Uy, 2, 2z, 8, 52)° and we define

Wy =By W (4.11)
where differentiating in z-variable, x € (0, o) we have
w 0 1 0 0 0 0 "
Ugy - Lkpl 0 0 -1 0 1 Ue
o 0 0 0 1 0 0 ;
e | 0 k Mpak) g —k 0 %
Sz 0 0 0 0 0 1 s
Sgax 0 _ % _ % 0 - 0\2027{3’@) 0 Sa
We B w
(4.12)
From % and and the regularity (Theorem 3.4, we have W(a) = 0.
From (4.11) we have that the solution is given by
W(z) = B> @D W(a). (4.13)
Thereby, from and using that W(a) = 0, we get
W =0. (4.14)
This way from and using that «(0) = z(0) = s(0) = 0, it follows that
u=0, z2=0, and s=0 in (0, ). (4.15)
Therefore from , 1, 3,5 and the fact that A # 0, we obtain
U=0 in (0, ). (4.16)
From and the regularity of z and s, we obtain
z(a)=0 and s(a)=0, (4.17)
where using and the same idea given above we obtain
u=0, z=0 and s=0 in (a, B). (4.18)
This way, from (4.2))1,5,5 and the fact that A # 0, we obtain
U=0 in (o, B). (4.19)

Now, let W = (U, Uz, 2, Zg, 8, 82)T. From (4.19) and the regularity of u, z and
s we have W(B) = 0 and the system (4.10) in (8, L) implies

W, =B,W in (B, L), (4.20)
where By is defined in (4.12)). This way, we have
W(z) = P =B W(B) = 0. (4.21)

Therefore, (4.2))1,3,5 we conclude
U=0 in (8, L). (4.22)
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Finally, from (4.16)), (4.19) and (4.22) we obtain
U=0 in (0, L) (4.23)

The Lemma (1] follows.
O
Lemma 4.2. For all A € R, we have
R(iAT—A)=H. (4.24)
Proof. By the Lemma, 0 € o(A). We will show the result for A € R*. For this

aim, let F = (f1, fo, f3, f1, f5, fo)T € H,wewant tofind W = (u, U, 2, Z, 5, S)T €
D(A) solution of

(GANI - AW = F, (4.25)
that is
iAu—U = fi,
iAPIU+k(s—z—ug)y —kd(x)(Sy —U) = p1 fa,
iNz—Z = fa,
iAp2Z —bzyy —k(s—2z—uz)+ B Z = pa fu,
1As— S =fs,
iAp2 S —bsyy +3k(s—2—wuy) = 3k[d(x)(Se —U)lx +46p25 = p2 fo,
(4.26)

with the boundary conditions
u(0) = u(L) = 2(0) = z(L) = s(0) = s(L) = 0. (4.27)
From (4.26)1, 3,5 we have

U:i)\u—fl,
Z=i\z— f, (4.28)
S:i)\57f5.
Replacing ([4.28))1, 2,3 into (4.26)2, 4,6 we obtain
- Nu+ pﬁ [(s =2z —ug)e —iAd(2) (85 — u)] = g1(x), (4.29)
1
1
—)\22—p—[bzm—kk(s—z—ux)]—l—i)\ﬁz:gl(x), (4.30)
2
1
— A5 — > [bSze —3k(s—2z—ug) +3iNk[d(z) (sp —u)]s] +4iAds = gs(x),
2
(4.31)
where

gi(@) = fo+iX fr = 2 d(z)[fse — f] € H1(0, L),
g2(2) = fa+ (iA+b) fs € H7'(0, L), (4.32)
gs = f6 +i)\f5 +45f5 - :;’Tf [d(x) (fS:L’ - fl)]z € H_l(()? L)'

On the other hand, for all W = (u, z, )T € H = [HL(0, L)]*, we define the
linear operator

L:H—H =[H0, L)} (4.33)
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£ (s =2 —up)s — i Nd(T) (55 — u)]

P1
e L )
L(W): = o bzea + k(s —2—ug) +iAbz
- p%[bsm —3k(s—z—uy)+3iXk[d(x) (s —u)]z] +4iXds
(4.34)
Claim: L is an isomorphism. In fact, let ¥ = (p; Uy, pa ¥a, po \Ilg)T S ﬁ, then
<E (W) ) ‘1’>ﬁfxﬁ =(k(s—2—ug)s —ikAd(z) (52 —u), \I/1>H—1(O,L)><H3(O7L)
+ (=bzga —k(s—2—ug) +ip2Abz, Va)y-1(0, Lyxmi(0, L)
+ (—bspr +3k(s—2z—uy) —3iNk[d(T) (sx — )]s
+4ipaAds, Vs)g—1(0,L)xH1(0, L)
Then is not difficult to show that

. L B L B
(L (W) W) = —k/o (s — 2 —uy) Ty, dm—ik)\/o d(z) (55 — u) Uy dz
L L B L
+b/zw\112$dx—k/(s—z—uw)\llgdx—l—ipg)\b/zll'gdx
0 0 0
L L B
+b/sxlllgzd:ch?)k/(s—z—ug:)\I/;;dx
0

+32)\k/d z— U \I/3wda:+4z)\p26/s\113dx

defines a continuous sesquilinear form which is coercive on H. Therefore, using the
Lax-Milgram theorem, we deduce that L is an isomorphism from 'H onto 7—[’ On

the other hand, let W = (u, 2, )T and G = (g1, g2, g3)T, then , and
(4.31)) can be transformed into the following form

(I Y E—l) W =L"1g. (4.35)

Using I : H—Hisa compact operator and LN - His an isomorphism,
then the operator I — A2 £~ is Fredholm of index zero. Then, by the Fredholm
alternative, admits a unique solution W € H if and only if T — \? £ s
injective. Let W = (u, z, s)T € # such that

W-NLTW=0< XW-LW=0. (4.36)
Equivalently, we have
k
— Nau+ o (s —2z—uy)y —iAd(x) (s —u)] =0, (4.37)
1
1
f)\szp—[bszrk(sfzfux)]Jri)\bz:O, (4.38)
2

LY = i[b.sm73l’<:(.sfzfugﬁ)JrSi)\lc[d(:z:) (8z —u)]z] +4iAds=0.
P2
(4.39)
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It is not difficult to show that if W = (u, z, s)T if a solution of (4.37)-(4.39),
then W = (u, i u, z,i)z, 8,iAs)T € D(A) and satisfies: i \W — AW = 0.
Thereby, using Lemma we obtain W = 0 and we conclude that 7 — A\2 £~ is
injective. Since to Fredholm’s alternative, admits a unique solution WeH
and

u, z, s € H*(0, L), 3kd(x)[iXsy — fso — (iAu— fi)le € L*(0, L).

Finally, setting U = i Au — f1, Z =iAz— f3, and S = i As — f5 we have that
W € D(A) is a unique solution of (4.25). The Lemma 4.2| follows.
]

Now we will prove the main theorem of this section:

Theorem 4.3. The Cy-semigroup of contraction (e“‘)
that is, for all Wy € H, the solution of (3.3) satisfies

o s strongly stable in H,

t

. tA
i 4l =0
Proof. We have that the operator A has no pure imaginary, that is, o,(A)NiR =0
(Lemma [4.1).On the pther hand, using the closed graph theorem of Banach and
Lemma We have o(A) NiR = (. Now using Theorem [2.3| due to Arendt-Batty
[B], we get that the Cy-semigroup (etA)
follows.

+>o 18 strongly stable. The main theorem

O

5. POLYNOMIAL STABILITY

In this section, we will prove the polynomial stability of the system (1.1]). Since
iR C p(A) (Section three), from Theorem to prove the main theorem, we still
need to prove the following condition

iléEH(z'AI—A)*Hﬁ(H) =o (). (5.1)

We will prove condition (5.1)) by a contradiction argument. For this purpose, we
suppose that (5.1)) is false, then there exists

T
n>1

with

T
IA™| 0o and HW(n) = (u<n>, g, L) 7 ), 5<n>)

H

such that

14
() (A0 1= A) W = PO (5 g, 0, 7 1 g5 .
(5.3)
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Here for simplicity, we omit the index n. Thereby from (5.3)) we have

IAu—U=XA"f &= U=i u—-1"f,

IApLU +k(s—2—uy)y —kd(®) (Se —U) = p1 A\7¢ fo,

iNe—Z=XN""f3 &= Z=ilz—\""fa,

iANp2 Z —b2gy — k(s —2—up)+BZ=pa X" fu,

iNs—S=X"tfs «—= S=ils—\""Ffs,

iAp2 S —bSgr +3k(s—2—ug) —3k[d(x)(Se —U)|s +45p2S = p2 \7¢ fo.
(5.4)

Replacing (5.4)1, 3,5 into (5.4))2, 4,6 respectively and performing straightforward
calculations we obtain

Npiu—Fk(s—z—ug)y +kdx) (S, —U)=—m AN fa—ipt N f, 0 (5.5)

MNprz4bzee +k(s—2—u,)— 7= —pa Ny —ipa AT ) (5.6)
Ny s+b8p, —3k(s—2—ug)+3k[d(x) (S, —U)ls +468
=—p A fo—ipa AT S5 (5.7)

Here we will check the condition (5.1)) by finding a contradiction with (5.2)) by
proving that |W|j4 = O(1). From (5.4), and the fact that £ = 2,

[Wlx =1 and [[Flly=O(1), (5.8)
we have that
lul= 0 (A7), lel=0 (A7) and s~ 0 (A7),

[taell = O (A zzall = O(Al) - and - |sqe|| = O (JA]) (5.9)
[d(z) (Se = U)o = O (]A]) -

Moreover, from Poincaré inequality and the fact | F|| = O(1) it follows that

1Al S izl = O0Q), (fsll Slfzell = O(1) and || fs]| S [ f5:]l = O(1).
(5.10)

Claim 5.1. Let ¢ = 2. The solution W = (u, U, z, Z, s, S)T € D(A) of (5.4)
satisfies

J21s, P de <GB, IS, — U2 S 4B, IS, - U < S

)

S 150 —ul? dov S G4,
(5.11)
J2 18 de S O(1),

B o1
J2 1,2 da < G

Proof. Taking the inner product of (5.3)) with W we have
— Re(AW, W)y = A~ Re(F, W) < X1 Fll [[W 3.
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Then taking the real part and using (3.6) we obtain

L L B
5/ 122 dx+46/ IS dx+3/~cdo/ 1Sy — U2 dz < A= [ Fll Wil .
0 0 @ S—— Y——

so@) =1
(5.12)
From ([5.8) we obtain
L L B 0(1)
5/ 1Z]2 dx+46/ ISP dm+3kd0/ S.-UP < AP (513)
0 0 [eY

From ([5.13)) we have that (5.11)); follows. Differentiating (5.4))5 in a-variable we

have
XSy — Sy = A" fop. (5.14)
Subtracting (5.4); with (5.14) we obtain
iX(sz =) = (8o —U) + A" (f5x — fo).
Then using (a + b)? < 2a? + 2b% we have
B ) 9 B ) ) B )
/a |sz — ul dxgp/a |S: — U| d:L’er/a | f5: — f1|° dz
2 (P 4 [P 4 (P
Sp/a |5z*UI2dfﬂ+m/a |f5z\2d$+m/a |f1l? dz
2 (f 4 4
< p/a |Sr—U|2d$+m ||f5z\\2+m||f1||2~

Now using (5.10]) together with we obtain

o 2 O(1) 4 4 1
/Q|5m—u|2dxzﬁ VT +WO(1)+WO(1) §WO(1)7 (5.15)

then (5.11))2 follows. On the other hand, using ((5.13])
B B
/ 1,2 da :/ Sy — U+ UP2da
B B
< 2/ S, —U|2dx+2/ |U|? da
[e% «

B
< £0(1)+2/ |U|? dz. (5.16)

>/‘[\3

Using that U is uniformly bounded in L?(0, L), we get (5.11))3. Differentiating
(5.4)5 we have

iNSy =Sy 4+ A" fra
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Elevating square the above expression, integrating over («, ) and using (a +

b)? < 2a? + 2b? together with (5.11))3 and (5.10) we obtain

B ) ) B ) 2 B )
/ ‘Sm| dxgp/ |ng‘ d$+7>\2€+2/ |f5z| dx

2
5 F O(l) + A2 0+2 0(1)

2 2 4 C
< ()\2 + v) 0(1) S 13 0(1) = 15 0(1), (5.17)

then we have (5.11)4. The Claim follows.

Forall 0 < e < & foa), we fix the following cut-off functions:

X; € C>([0, L]), € {1, ..., 4} such that 0 < x; <1, for all z € [0, L] and

oy Uit welatje B-jel,
x5 () {0 if z€0,a+(—-1)euU[B+(1—7)e, L. (5.18)

Claim 5.2. Let { = 2. The solution W = (u, U, z, Z, 5, S)" € D(A) of (5.4)
satisfies the following estimates

[P0 1812 de = O(1),

(5.19)
P s de = O(1).

Proof. Multiplying (5.4) by —i A~! x1(z) S and integrating over (c, 3) we have

? ib [? . 3ik [P _
pz/ Xl(x)IS\de=—7 X1(#) saa Sdz+ == [ xa(2) (s — 2~ ua) Sdu
3ik [P _
- 55 [ @@ (S, - V). Sda
4i6py [P ip p _
: 2/@ Xl(x)|S|2dx—V+21/a (@) fs Sdz. (5.20)

Using the Cauchy-Schwarz inequality and the fact that S is uniformly bounded
in L2(0, L) together with (5.10) and x1(a) = x1(8) = 0 we have

g ib [P _ 3ik [P _
Pz/ x1(z) S| dx = 7/ Xl(x)SmSzd:r—FT x1(z) (s —z —uy) Sdx
3ik [P _ O(1
_ 2 x1(z) [d(z) (Se — U)]x Sdl‘—l-i( ) (5.21)

by 2\e+1°

[e%

Moreover, using the fact that (s — z — u,) and S are uniformly bounded in
L2(0, L), together with Claim [5.1] we get
3ik (7

B
P2 / x1(2) |S)? dr ~ — " x1(2) [d(z) (Sp — U)]. Sdx +O(1). (5.22)

I
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Integrating by parts, using the definition of d(x) and the fact that yi(a) =
x1(8) = 0 it follows that

. 8 ; B
I = % Xiz(2) d(z) (S; — U) S da: + % x1(x) d(z) (Sz = U) S de
3ikdo

7 i 2 _
= / X1a;(x)(5w—U)§dx+3 f?\do/ X1(z) (Sy —U) Sy dz. (5.23)

From Claim and the fact that S is uniformly bounded in L?(0, L) we obtain

o)
L~ (5.24)
Replacing ([5.24)) into ([5.22)) we obtain
B
pQ/ (@) S]2 dz ~ O(1). (5.25)

From (5.25]) and the definition (5.19), we have (5.18]);. On the other hand, from
(5.4)5 and using that (P + Q)? < 2 P?2 +2Q? we have

IXs]? = [ids|? =[S+ A7 52 < 2081 + 21071 f5* = 2[SP + 207 21| f5 ],

Then

B—e B—e B—e
/ IAs|?dx < 2/ |S|2dm+2x”/ | f5]? da

+e a+te a+e
20(1)+2X720(1)
2 O(1). (5.26)

N

From 1 we have the first estimate in the right-hand side and for the second
term we use the fact that ||f5|| & O(1). Then we obtain (5.19)2. The Claim
follows.

O

Claim 5.3. Let ¢ = 2. The solution W = (u, U, z, Z, s, S)T € D(A) of (5.4)

satisfies the following estimates

P ug | dx = O(),

(5.27)

P Nl dz = O(1).
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Proof. Multiplying (5.4)¢ by x2(x) u, integrating over (a+¢, §—¢) and and using
the fact that u, is uniformly bounded in L2(0, L) and || fs|| &~ O(1) we have

B—e B—e
i\ o / () STy da— 3k / Yo(@) [d(x) (Sa — U)]a Ty da
a+te a+e

J1 Ja2

B—e B—e
- 3k/ xo () [ug]? dx—|—3k/ x2(z) (s — 2)u, dx
a+te ate
B—e

B—e
— b/ X2(T) Spp Us dx+45p2/ x2(x) ST, dx
ate a+te
B—e 1
= p2 /\4/ X2(7) fo Uz dz S CA™F O(1) = o)
a+te

AT

(5.28)

Using the fact that u, is uniformly bounded in L?(0, L), and from (5.9), ||z|| ~
O(IA|=1) and ||s]| = O(|]A|= 1) we get

L 0o(@) (s = 2) T dr = O(1),

a+te X2
f;; X2(Z) Szo Ty dz = O(1), (5.29)
U xel2) ST, dr = O(1).
Then
—e B—e
—Mm/ Yo(2) ST, dx—|—3k/ Yo(@) [d(z) (Sa — U)]a Ty da
a+e a+e
J1 J2

B—e
+ 3k/ Xo () [ug|? de~ O(1). (5.30)
a+e

On the other hand, using integration by parts, the definition of ys, the Claim

((5.19)1), and the fact that [|u] = O(J]A|~*) we obtain

B—e B—e
Jy = —i/\pz/ x2(z) Sy u dm—Mpa/ X2z () ST dx
a+e a+te
B—e
~ _mpg/ Xo(2) S, da + C O(N~1) O(1)
a+te
B—e
< *i)\pg/ X2(z) Sz dz + O(1). (5.31)
a+te
Moreover
B—e B—e
—i/\pg/ Xg(x)Szﬂdx:—i/\pg/ xz2(z) (S; —U +U)udx
ate a+e

B—e

B—e
:—z')\pg/ x2(z) (S’I—U)ﬂdx—i)\pg/ x2(z)Uudx. (5.32)
a+e a+e
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From Claim [5.1] (see (5.11]);) and the fact that |Ju]| ~ O(|A\|~!) we have

B—e B—e
—i)\pg/ x2() Swﬂdx:—i)\pg/ x2(z) Utde + O(N~Y?).  (5.33)
a+te a+te
Replacing (5.4)1, that is, U =i Au — A~* f; into (5.33]) we have
B—e B—e
— i/\pg/ x2(z) Sy udx = —i)\pg/ x2(z) (i Au— A0 f)ude + O(|AY?)
a+te a-+e
B—e B—e
:)\pg/ xa(2) (Aul?de 4 i A7 pg/ x2(x) fradx + O(N~?).
a+te a+e
Now, using |Ju|| = O(|A|71) and || f1]| = O(1) we obtain
B—e B—e
—i)\pg/ X2(z) Sy udr = )\[)2/ x2(x) [Aul? dz + O(N~Y3).  (5.34)
ate a+te
Replacing ([5.34)) into (5.31)) we obtain
B—e
S~ )\pg/ Yol) Dl dz + O(1). (5.35)
ate

On the other hand, using integration by parts and the definition of y2(x) we
have

B—e
Jo=—-3k x2(z) [d(z) (Sy — U)]z U, dx
a+te
B—e B—e
:3d0k/ X2z (2) do (Sz — U) Uy dx—i—?)dok/ X2(z) (Se — U) Uyy da.
a+te a+te

From Claim and the fact that wu, is uniformly bounded in L?(0, L), ||tz || =~
O(|A]) (see (5.9)) we obtain

Jo = O(N|74?). (5.36)
Replacing ([5.35) and (|5.36)) into ({5.30))
B—e

B—e
/ xa () [ug|? dz = O(1) and / xo(x) [Aul? de = O(1).  (5.37)
a+e a+e

Finally, from the above estimation and the definition of y2(x), we obtain (5.30).
The Claim [(£.3] follows.

d

Claim 5.4. Let { = 2. The solution W = (u, U, z, Z, 5, S)" € D(A) of (5.4)
satisfies the following estimates

I |zl de = O(1),
(5.38)

NP de = O(1).

Proof. Multiplying (5.5) by p;* x3(2)Z., integrating over (o + 2¢, 8 — 2¢) and
using the definition of d(x) together with the fact that zz, is uniformly bounded
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in L*(0, L), [Ifill = O(1) and || f2]| & O(1) we have

B—2¢ k B—2¢
)\Qpl/ Xg(m)uzwdx——/ X3(2) (8 — 2 — Uy )z Zo dx

+2¢ f1 +2¢
kdy [P~%¢
+ == X3(2) (Se — U) Zp d = O(|A| ™)
P1 a+2e
or
B—2¢ k B—2¢
A2 pl/ x3(x) uz, de — —/ X3(x) 8z Z dx
a+t2e P1 Ja+2e
k B—2¢ k B—2¢
x3(x) |Za:|2 doe + — X3(T) Uzy Zo dx
Pl Ja+2e Pl Ja+2e
kdo ﬁ—2£ 1
— x3(x) (Sz — U) Zp dx = O(|A\[ 7).
P1 at2e
Then
k B—2¢ B—2¢ k B—2¢
x3(z) |z$|2dx < - )\2/ X3(z) uzZ, dx + —/ X3(2) 8z Zp dx
P1 Ja+2e a+t2e P1 Jat2e
k B—2¢ kd B—2¢
- = X3 (2) Ugg Zp dw — —2 x3(@) (Sy — U) Zp dz + O~ 1).
P1 a+2e P1 a+2e
(5.39)

3) and the fact that z, is uniformly bounded in

From Claim [5.1] (5.18) (j

L*(0, L), it follows that (¢ = 2)

f£+22.: X3( ) Sg 2z AT = O(].)

P1

(5.40)
B—2¢ _ _ _
o e X3(x) (S — U) Zp da = O(IN[~1) = O(JA[7 ).
Replacing ([5.40) into ([5.39)
k B—2¢ B—2e
x3(x) |ze |2 dz < — )\2/ x3(z) uz, dx (5.41)
P1 Ja+2e at2e
k B—2¢
- — X3 () Ugy Zo dz + O(1). (5.42)
P1 Ja+2e
On the other hand, from (5.6) and applying conjugate we have (¢ = 2)
N poZ 4 bZ +h(F—Z—Ty) —BZ=—p2 A 2 fy+ip A1 fs (5.43)

Multiplying (5.43) by p; ' x5 us, integrating over (a4 2¢, 8 — 2¢) we obtain

B—2¢ b B—2¢
)‘2/ X3(x) Zu, de + — X3(%) Zgo Uy dx
a+2¢ P2 Ja+2e
k B—2¢ B—2¢
+ — x3(z) (5 —Z —Ty) uxdaj— — x) Zug dx = O(JA ).
P2 Jat2e a+t2e
(5.44)
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Integrating the first two terms and the fourth term in (5.44)) we obtain

p—2e b B—2¢
_ )\2/ x3(x)uz, de — */ X3(%) Uzs Zo d
at2e P2 a+2e

B—2¢
/ r)uZ,dx
at2e

B—2¢ b B—2¢
< a2 / xaa(2) uZdz + > / 20 () o B
at2e P2 Ja+2e

B—2¢ o k B—2¢
/ X3z () u Z de + — x3(x) ug (53— Z —Ty)dz + O(A1).

a+2e P2 Ja+2e
(5.45)

From Claim using the fact that z,, Z and (§—Z—1,,) are uniformly bounded
in L2(0, L) together with ||z|| ~ O(|A|= 1), we get

)\2 a+25 X31( )ufdx ~ 0(1)’
B—2e _
o2 Jat2e X3x( )ux Zp dx = 0(1)7 (546)

2 — —_— J—
P2 f+2:X3( Yug (5 —Z —1y)dx = O(1).
Inserting ([5.46)) into (5.45)) we get

B—2¢ b B—2¢
— )\2/ X3(z) uZy do — — / X3 () Ugy Zo dz = O(1). (5.47)
a+2¢e P2 Ja+2e
Replacing (5.47) into (5.42)) and using the definition of 3, we obtain 1. On
the other hand, multiplying (5.43) by x4(x) 2, integrating by parts over (a+3¢, S~
3¢), using the definition of x4 and the fact ||z]| = O(1) together with || f3|| = O(1)
and || f4]] = O(1) we get

B—3¢ B—3¢ B—3¢
,02/ xa(z) |\ 22 dx,fb/ xa() |Z2)* dx + Xa(z) Z z dx
(o7

+3¢ a+3e a+3e
B—3¢
— k/ xa(x) (53— Z = Tp) zdx + O(|A7?)
a+3¢
or
B—3e¢ B—3¢
o[ @ PaPdrse [ ) el ds
a+3e a+3e

B—3¢
_ k/ a(@) 2 (5 — % — W) do + O(A[2).  (5.48)
a+3e
From ([5.48)), the first estimation in (5.38)) and using the fact that (s —z —u,) is
uniformly bounded in L?(0, L) together with ||z|| &~ O(J]A\|~!) we obtain

B—3¢

/ i) |22 dz ~ O(1). (5.49)

a+3e

Thereby, from (5.49)) and the definition of x4 (), we obtain the second estimative.
O
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Claim 5.5. Let { = 2. Let [ € C1([0, L]) such that [ (0) = F (L) = 0. The solution
W= (u,U, z, Z, s, S)T € D(A) of (5.4) satisfies the following estimates

L
| lon Va4 b ? 4 pa Al + b
0
+ p2|As]* +3k|d(z) (S, — U)|*] dz = O(1). (5.50)

Proof. First, we multiply (5.5 by 2 F @, integrating over (0, L). Later we use the
Claim and then we use the fact that w, is uniformly bounded in L?(0, L)
together with [|ull & O(IA|™Y), [LAll = O(1), [l = O(1).

L L
)\2p1/ 2Fuﬂggd:v—k:/ 2F (s — 2z —uUyg)z Uy dx
0 0

L
+ k/ 2F d(z) (Sy — U) Ty dz = O(A| =),
0

Now we take the real part, that is,

L L
Re{)\Qpl/ 2Fuuxdac}+Re{k/ 2Fumuxdac}
0 0
L L
+Re{k/ 2F zzumdx}—Re{k/ 2F szumdaz}
0 0

+ Re {k/L 2F d(z) (S, — U) T, dx} < O(NHY). (5.51)
0

Using that 2 Re(h h,) = (|h|?). we have

L L
/ F(p1|/\u2+k|uw|2)mdm+Re{2k/ szul.da:}
0 0

L L
_ Re{Zk/ Fsmuida:} +Re{2kd0/ F (S, — U)uzda:} < O(|)\|—e+1).
0 0

= O(|AI7¢/2)

(5.52)

Multiplying (5.6) by 2 F Z, and we integrate over (0, L). Later we use the fact
that 2, is uniformly bounded in L2(0, L) together with ||z] ~ O(|A|7), ||s]| =~
O(AI™Y), [Ifsll = O(1) and || ]| = O(1), 2 Re(h hy) = (|h|*)s we have

L

o(1)
L
/ F(p2 | 2]* + b)) dx—Re{Qk Fuwzwdx}
0 0
L
{ / F( s—z)zzdx}gouﬁ—f). (5.53)
0

~=O(1)

On the other hand, let M = d(z) (S; — U). From Claim the definition of
d(z) and the fact that s, is uniformly in L?(0, L), we get M is uniformly bounded
in L2(0, L). Multiplying (5.7) by 2F M and we integrate over (0, L). Taking the
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real part and using the fact that ||z]| = O(|A\71), ||S|| = O(X™Y), |f5] = O(1)
and || fs]| = O(1) we obtain

L L
Re{2)\2p2/ Fs./\/ldx} +Re{26/ Fsdex}
0 0
L E—
+Re{6k/ F(szux)/\/ldx}
0

L L
+Re{6k/ FMm/\/ldz}JrRe{Sé/ FSde}
0 0

L
:Re{—2/ F(szlfa—ipz/\ﬂlf&a)}-

0

~ O(JA]=41)
Using that 2 Re(hh,) = (|h|?). we have

L L
Re{2A2p2/ Fstx}—i—Re{Qb/ Fsmj\/lda:}
0 0
L o L o
+Re{6k/ Fuszx}—Re{Gk/ F(s—z)/\/ld:r}
0 0

= O(1)

L L
— Bk/ F (M), dx+Re{85/ FSde}
0 0

L
Re{?/ F(pe A" fo—ipo X~ OH fs)Mdos}. (5.54)
0

= O(|A[=4+)

On the other hand, using de definition of M = d(x) (S; — U) and d(z), Claim
and the fact that u, is uniformly bounded in L?(0, L), ||s|| = O(]A|~!) we have

L L
Re{Q)\ng/ Fstx} :Re{2)\2p2do/ Fs(S.—0) dac} (5.55)
0 0

&~ O(|A[=¢/21)

L L
Re{Gk/ Ful./\/ldx} = Re{deo/ F g (S, —U) dx}. (5.56)
0 0

~ O(IAI-1/2)
Replacing (5.55) and (5.56) into (5.54)) and using the fact £ = 2 we obtain

and

3k/OL F (M), dz < O(1). (5.57)

Adding (5.52)), (5.53)) and (5.57)) together with the fact that £ = 2 we obtain the
Claim (.5
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d

Let q1, g2 € C([0, L]) such that 0 < ¢1(z) < 1 and 0 < go(x) < 1, for all
x € [0, L] and

1, if =z €]0, 1],
qi(x) = ) 0, 7] (5.58)
0, if zé€ [y, L],
and
0, if xe]l0,v],
@2(x) = . 0, 7] (5.59)
1, if z €[y, L],
where 0 < o <y <72 < < L.
‘We consider
x, if « € [07 71]7
[ = +(z—L — 5.60
T0(@) + (@~ Do) {(x ~ L), if z€ |y L. (5.60)

Claim 5.6. We take ¢ = 2. Let f € C'([0, L]) such that F (0) = F (L) = 0. The
solution W = (u, U, z, Z, s, S)T € D(A) of (5.4) satisfies the following estimates
YT(a+4e, f—4e)=O(1) if (=2 (5.61)

where

Y1
Ton12) = [ (or A ksl + pa AP b 2l + o sf?) do
0

L
+ / (p1 Nul® + k|ua|* 4+ p2 A 2[* + b 22> 4+ p2 [As]) dz (5.62)
2

2

forall0<a<y <y <p<L.

Proof. Taking F =z ¢q1(z) + (x — L) g2() in Claim and using the definition of
d(z) with the fact that 0 < a < 91 < 72 < 8 < L we obtain

Y1
| (oWl ka2 32 4 Blaaf? + s NP do
0

L
[ (o INGP 4 Rl + g2 A5 4 bl + o Al da
v

2

Y2
= —/ (g1 + 2 q1z) (o1 N ul® + K |ua|® + p2 [N 22+ bl2e|® + p2 | As|* + do Sy — U?) da
8

1

Y2
—/ (a2 + (z = L) g2) (p1 [ uf® + K [us]* + p2 [N 2 +b]2a|* + p2 [A 5]
v

1

2 B
+do |8y — U|?)dz + do/ q|Sy — U*dx + do/ q2 |, — UJ? dx. (5.63)
e 1

Taking 71 = a+4¢ and v2 = f — 4¢ into (5.63)), using Claim to £ =2

we obtain (5.61)).
(]

Now we are in position to present the result of polynomial stability.
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Theorem 5.7. There is a constant C > 0 such that for every Uy € D(A), we have
C
E@t) < -+ [Wolpeay, t>0. (5.64)

Proof. From Claim for £ = 2 we have
[ 502 de = OA2) = O(1), [P 218)Pde = O(1), [P 27 |u, 2 de = O(1),

a+e a+2e
—2e —3e —4e
P2 P de = O(1), [P P de = O), 215Nz dr = O(1).
Thus, from (5.61) the above expression and the fact that 0 < ¢ < @ we

conclude that ||[W||3 =~ O(1) in L?(0, L), which we have a contradiction with (5.1]).
This implies that

sup s -7

=0 (N\?). 5.65
e = O ) (5.65)
Using Borichev and Tomilov [5] the theorem follows.

O

Conclusion: We have studied the stabilization for a laminated beam with interfa-
cial slip with one discontinuous local internal viscoelastic damping of Kelvin-Voigt
type acting on the axial force under certain boundary conditions. We prove the
strong stability of the system by using Arendt-Batty criteria. We prove that the
total energy of the system decays polynomially.
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