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CONJECTURE OF LU, LI AND YANG CONCERNING

DIFFERENTIAL MONOMIALS

TEJUSWINI M., SHILPA N.*, RENUKADEVI S. DYAVANAL. AND NARASIMHA RAO B.

Abstract. This paper aims to prove the uniqueness result for differential

monomial of an entire function and its higher order derivative sharing poly-
nomials under suitable conditions. In this regard, the concepts of normal

families are employed to obtain the result. Examples are provided to reinforce

the sharpness of the conditions considered.

1. Introduction

Throughout this article, the phrase “entire function” means that the function is
analytic everywhere in C. The fundamentals of Nevanlinna theory can be read in
[2, 4, 13]. The notation E = {x : x ∈ R+} represents the finite linear measure. Let
F = {f : f is non−constant entire function in C}. For f, g ∈ F and b ∈ C∪{∞},
if f−b and g−b have the identical zeros including multiplicities then f and g share
b CM (Counting Multiplicities), if the multiplicities are ignored, then f and g share
b IM (Ignoring Multiplicities) and if 1/f and 1/g share 0 CM then, f and g share
∞ CM [16].

Definition 1.1. [3] Let Ek(b; f) denote the set of all b points of f . The multiplicity
m of b is counted m times if m ≤ k and is counted k + 1 times if m > k. If
Ek(b; f) = Ek(b; g) then f, g share b with weight k.

Throughout this article, the notation (b, k) denotes that f, g shares b with weight
k. f, g shares (b, 0)[(b,∞)]⇐⇒ f, g shares b IM[(CM)]. Let q ∈ Z+ then Nq(r,

1
f−b )

denotes the counting function of f whose b-points are counted with the multiplicity
q, the counting function N(q(r,

1
f−b ) of f means those b-points counted with proper

multiplicity whose multiplicities are greater than or equal to q and Nq)(r,
1
f−b )

denotes the counting function of f whose b-points counted with proper multiplicity
where the multiplicities are less than or equal to q. Correspondingly the reduced
counting functions are given by Nq(r,

1
f−b ), N (q(r,

1
f−b ) and Nq)(r,

1
f−b ) where the

multiplicities are ignored [12, 11]. For φ(z) ∈ F , if T (r, φ) = S(r, f) then φ is called
the “small function” of f .
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Definition 1.2. [13] Let f ∈ F . The order ρ(f) is defined as

ρ(f) = lim sup
r→∞

log+T (r, f)

log r
.

In 1920, R. Nevanlinna stated that if two entire functions f and g share five distinct
values IM then the functions are identical or unique and the condition of sharing
five values was inevitable. In this perspective, an entire function and its derivative
sharing two values was first studied by Rubel and Yang in 1977. In fact the result
obtained was as follows:

Theorem 1.1. [9] For f, g ∈ F and a 6= b ∈ C, if f and f ′ share a, b CM then
f ≡ g.

The IM counterpart to the above theorem was given by Mues and Steinmetz in
1979 [8]. Uniqueness result considering the power of an entire function was first
obtained jointly by Yang and Zhang [14]. In 2009 the second author provided the
improvised version by extending the sharing condition to small function as follows:

Theorem 1.2. [15] Let f ∈ F and n, k ∈ Z+. If a(z) is a small function of f and
suppose fn and (fn)(k) share a(z) CM and n ≥ k + 1 then fn ≡ (fn)(k) and f is

of the form f = ce
λ
n z where c is a non zero complex constant and λk = 1.

In 2011, Lu and Yi [5] proved that the conclusion of Theorem 1.2 was valid when
the sharing condition was a polynomial as well but the function necessarily had to
be transcendental.

Question 1. What can be said about the result of Theorem 1.2 when the function
and its derivative share two different polynomials instead of one?

In view of the above question, Majumder in 2015 gave a possible answer as follows:

Theorem 1.3. [6] Let f ∈ F be transcendental, n, k ∈ Z+ and Q1, Q2 be non
vanishing polynomials. Suppose fn−Q1 and (fn)(k)−Q2 share 0 CM and n ≥ k+1

then (fn)(k)Q2

Q1
≡ fn and if Q1 ≡ Q2 then f is of the form f = ce

λ
n z where c is a

non zero complex constant and λk = 1.

Question 2. It is natural to ask what happens to conclusion of Theorem 1.3 when
the product of two functions and their derivatives is considered?

In this direction, Sahoo and Biswas [10] in 2018 considered fnP (f) − Q1 and
(fnP (f))(k) − Q2 sharing 0 CM to obtain the uniqueness result where P (f) =∑
aif

i, i = 0, 1, . . . ,m and f ∈ F . Extending this result, Majumder [7] in 2019,
introduced weighted sharing and used the concepts of normal families to prove
uniqueness result. The author considered P (f) − a1 and (P (f))(k) − a2 sharing
(0, 1) where f ∈ F is transcendental, a1 = P1e

Q, a2 = P2e
Q such that P1, P2, Q

are polynomials. The main intention of this paper is to check whether the result
of [7] holds good when differential monomial is considered in place of P (f). As an
affirmative answer, the following result is obtained.

Theorem 1.4. Let f(z) be a transcendental entire function. Let φi(z) = Ai(z)e
B(z)

such that Ai 6= 0 for i = 1, 2 and B(z) are polynomials. Define
M [f ] = fn0(f ′)n1(f ′′)n2 · · · (f (k))nk where n0, n1, n2, · · ·nk are positive integers.
Suppose B is non-constant and if ρ(f) > 2 max{deg(B), 1 + deg(A2) − deg(A1)},
M [f ] − φ1 and (M [f ])(k) − φ2 share (0,1) and the multiplicities of zeros of M [f ]
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are not less than k + 1 then (M [f ])(k) ≡ φ2
φ1
M [f ]. In addition if φ1 ≡ φ2, then

f = a+Ce(
µz
γ ) where C is a non-zero complex constant, µk = 1 and γ = n0 +n1 +

n2 + · · ·+ nk.

Remark 1.5. Suppose if B(z) is a constant the result of Theorem 1.4 holds and the
condition of ρ(f) > 2 max{deg(B), 1 + deg(A2)− deg(A1)} is not necessary.

We now give some examples to show that the conditions assumed in the theorem
are necessary.

Example 1.6. Let f = z2 and M [f ] = f2f ′. Clearly M [f ] does not have simple
zeros. For A1 = 11z4 + z5 and A2 = 3z5 + z4, M ′ − A2 and M − A1 share 0 CM

but M ′ 6≡ A2

A1
M as f is not transcendental function.

Example 1.7. Let M [f ] = f(f ′)2 where f(z) = ez + 1 and M [f ] does not have
simple zeros. M ′ − A2 and M − A1 shares 0 CM where A1 = e2z and A2 = 2e2z.
In this case B(z) = e2z and deg(B) = 1 which does not satisfy the condition

ρ(f) > 2 max{deg(B), 1 + deg(A2)− deg(A1)} and hence M ′ 6≡ A2

A1
M

Example 1.8. Define M [f ] = f ′ where f(z) = ez + z. It is clear that the zeros
of M [f ] are simple. M ′ − A2 = ez − 1 and M − A1 = ez − 1 share 0 CM where

A1 = 2, A2 = 1 and B(z) is a constant. M ′ = ez 6≡ A2

A1
M as the zeros of M [f ]

cannot be less than k + 1

Example 1.9. Let f(z) = zez
2

+ 2z and M [f ] = f ′. M ′ − (4z3 + 6z) and M −
(2z2+3) share (0,1) CM where A1 = 2z2+3, A2 = 4z3+6z and B(z) is a constant.

M ′ 6≡ A2

A1
M which shows that the condition zeros of M [f ] ≥ k + 1 is sharp.

2. Lemmas

Lemma 2.1. [13] For a finite order entire function g and k ∈ Z+, when r →∞,

m

(
r,
g(k)

g

)
= O(log r).

Lemma 2.2. [4] Let f be a transcendental entire function and 0 < δ < 1
4 . Suppose

that at the point z with |z| = r the inequality |f(z)| > M(r, f)ν(r, f)−
1
4+δ holds,

then there exists a set F ⊂ R+ of finite logarithmic measure,
∫
F

1
t dt < +∞, such

that

f (m)(z) =

(
ν(r, f)

z

)m
(1 + o(1))f(z),

holds for all m ≥ 0 and r 6∈ F

3. Proof of the Theorem

Let
F = M [f ],

F ∗ =
F

φ1
and G∗ =

F (k)

φ2
.
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The case when f is of infinite order can be dealt in a similar manner as in case 2
of [7]. Suppose ρ(f) < ∞. Since φi is a small function of f , ρ(φi) < ρ(f) but also
ρ(φi) = ρ(B) hence

ρ(φi) < ρ(f) = ρ(F ) for i = 1, 2. (3.1)

We see that ρ( Fφ1
) ≤ max{ρ(F ), ρ(φ1)} = ρ(F ). From (3.1), it follows that ρ(F ) =

ρ(Fφ1

φ1
) ≤ max{ρ( Fφ1

), ρ(φ1)} = ρ( Fφ1
) = ρ(F ∗) < ∞. Arguing in the same lines,

since F is a monomial, ρ(F ) = ρ(F (k)) <∞ and hence ρ(G∗) <∞. The following
two cases follow.
Case 1: Suppose B(z) is a constant, clearly F ∗ and G∗ share (1,1) except for the
zeros of φi(z) for i = 1, 2. Therefore N(r, 1;F ∗) = N(r, 1;G∗) +O(log r). Define

ψ =
F ∗′(F ∗ −G∗)
F ∗(F ∗ − 1)

=
F ∗′

F ∗ − 1

(
1− A1F

(k)

A2F

)
. (3.2)

The following two cases arise.
Case 1.1: Suppose ψ 6≡ 0, it is evident from (3.2) that F ∗ 6= G∗. From lemma
(2.1), we see that m(r,∞, ψ) = O(log r). Let α be a zero of F ∗ of multiplic-

ity
(
s
(∑k

j=0 nj

)
−
∑k
j=1 jnj

)
, s ≥ k + 1 such that φi(α) 6= 0 for i = 1, 2.

Now α is the zero of F with the same multiplicity and the zero of F (k) with

the multiplicity
(
s(
∑k
j=0 nj)−

∑k
j=1 jnj

)
− k. From (3.2), we see that ψ(z) =

O (z − α)
s(
∑k
j=0 nj)−(

∑k
j=1 jnj+k+1) and ψ(z) is analytic at z = α. Let F ∗ − 1 and

G∗ − 1 have common zero say α1 and φi(α1) 6= 0, i = 1, 2. Now let α1 be a zero
of F ∗ − 1 of multiplicity s1. Since F ∗ and G∗ share (1,1) except for the zeros of
φi, i = 1, 2, it is clear that α1 is a zero of G∗ − 1 of multiplicity t1. Using Taylor’s
series expansion in the neighborhood of α1 for F ∗ and G∗, we get

F ∗(z)− 1 = as1(z − α1)s1 + as1+1(z − α1)s1+1 + . . . , as1 6= 0,

G∗(z)− 1 = bt1(z − α1)t1 + bt1+1(z − α1)t1+1 + . . . , bt1 6= 0,

F ∗′(z) = s1as1(z − α1)s1−1 + (s1 + 1)as1+1(z − α1)s1 + . . . .

F ∗(z)−G∗(z) =


as1(z − α1)s1 + . . . if s1 < t1

−bt1(z − α1)t1 − . . . if s1 > t1

(as1 − bt1)(z − α1)s1 + . . . if s1 = t1.

(3.3)

Substituting the values of (3.3) in (3.2), we get

ψ(z) = O((z − α1)m−1), (3.4)

where m ≥ min{s1, t1}. Clearly (3.4) shows that ψ(z) is analytic at α1. Also by the
assumption of F ∗ and G∗, we see that ψ has no poles. Therefore T (r, ψ) = O(log r)
and hence ψ is a rational function. From (3.4), s1 ≥ 2 and since F ∗ and G∗ share
(1, 1) except for the zeros of φi(z), i = 1, 2, it follows that t1 ≥ 2. Therefore

N (2(r, 1;F ∗) ≤ N(r, 0;ψ),

≤ T (r, ψ) +O(1),

= O(log r) as r →∞.

By the hypothesis of sharing condition, we get N (2(r,G∗) = O(log r) as r → ∞.
Hence F ∗ − 1 and G∗ − 1 have multiple zeros which are finite. It follows that
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N (2(r, φ1;F ) = N (2(r, φ2;F (k)) = O(log r) as r → ∞. Now the multiple zeros of

F − φ1 and F (k) − φ2 are finite. In addition, F − φ1 and F (k) − φ2 share (0,1),

∴
F (k) − φ2
F − φ1

= ξeη, (3.5)

where ξ 6= 0 is a rational function and η is a polynomial. From (3.5) we see that

η = (log ξ)

F (k)

F
− φ2
F

1− φ1
F

. From lemma 2.2, we have

F (k)(zr)

F (zr)
=

(
ν(r, F )

zr

)k
(1 + o(1)), (3.6)

possibly outside a set of finite logarithmic measure E, where m(r, F ) = |F (zr)|.

Since ρ(H) < ∞, log ν(r, F ) = O(log r). Also F is transcendental,
φi
F
zr → 0 as

r → ∞, i = 1, 2. Now |η(zr)| = (log 1
ξ )

F (k)

F
− φ2
F

1− φ1
F

= O(log r), for |zr| = r ∈ E.

From this we see that η is constant. Without loss of generality, we write that

F (k) − φ2 ≡ ξ(F − φ1) or F (k) ≡ ξF + φ2 − φ1ξ (3.7)

Case 1.1.1: Suppose F has infinitely many zeros. Let {zn}∞n=1 be the zeros of F

except for the zeros of φi, i = 1, 2. Substituting in (3.7), we get ξ(zn) =
φ2(zn)

φ1(zn)
which implies F ∗ ≡ G∗ which is a contradiction.
Case 1.1.2: Suppose F has finitely many zeros then F can be written in the
form F = fn, ξ = φ2

φ1
and ρ(F ) < ∞. Therefore F (z) = A3(z)eA4(z) where A3

is a non-zero polynomial and A4 is a non constant polynomial. Now F (k)(z) =(
A3(z)A

(k)
4 (z) +A5(z)

)
eA4(z), where A5 = A

(k−1)
4 A′3 + A(A′′3 , A

′
4) and A(A′′3 , A

′
4)

is a differential polynomial in A′′3 and A′4. Substituting these functions in (3.7), we
get A3(z)eA4(z) = ξ(z)A3(z)eA4(z) +φ2(z)− ξ(z)φ1(z). Comparing the coefficients,

we have A3A
(k)
4 +A5 = ξA3 and φ2 − ξφ1 ≡ 0 or in other words ξ =

φ2
φ1

which is a

contradiction.
Case 1.2: Suppose ψ ≡ 0 then F ∗′ 6≡ 0 as F (z) is a transcendental entire function.

Hence, F ∗ = G∗ or (M [f ])
(k) ≡ φ2

φ1
M [f ]. In particular if A1 ≡ A2 then

(M [f ])
(k) ≡M [f ] (3.8)

Let n11, n12, . . . , n1n0
each with multiplicity l11, l12, . . . , l1n0

respectively be the ze-
ros of f such that l11 + l12 + . . .+ l1n0

= n0. Let n21, n22, . . . , n2n1
be the zeros of f

coming from f ′ each with multiplicity l21, l22, . . . , l2n1
such that l21+l22+. . .+l2n1

=
n1. Proceeding in the same way, let nk1, nk2, . . . , nknk be the zeros of f coming
from f (k) each with multiplicity lk1, lk2, . . . , lknk such that lk1+lk2+. . .+lknk = nk.
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Substituting these conditions in (3.8) becomes

[(f − n11)(f − n12) . . . (f − n1n0)] [(f − n21)(f − n22) . . . (f − n2n1)]

. . . [(f − nk1)(f − nk2) . . . (f − nknk)] =

([(f − n11)(f − n12) . . . (f − n1n0
)] [(f − n21)(f − n22) . . . (f − n2n1

)]

. . . [(f − nk1)(f − nk2) . . . (f − nknk)])
(k)
.

(3.9)

Since f is an entire function, it has only one Picard exceptional value say ′a′.
Therefore (3.9) can be written as

(f − a)n0(f − a)n1 . . . (f − a)nk = ((f − a)n0(f − a)n1 . . . (f − a)nk)
(k)
,

(f − a)n0+n1+...+nk =
(
(f − a)n0+n1+...+nk

)(k)
,

(f − a)γ = ((f − a)γ)
(k)
,

(3.10)

where γ = n0 + n1 + . . .+ nk. Since (M [f ])(k) exists, left hand side of (3.10) does
not vanish i.e.,(f − a)γ 6≡ 0. Therefore

f = a+ Ce(
µz
γ ),

where C is a non-zero complex constant and µk = 1.
Case 2: SupposeB(z) is a polynomial whose degree≥ 1. Let r1 = 2 max{deg(B), 1+
deg(A2)− deg(A1)} ≥ 2 and r2 = r1−2

2 . Since deg(B) ≤ ρ(f) <∞, it can be writ-

ten as 2 ≤ r1 < ρ(f) hence 0 ≤ r2 < ρ(f)−2
2 . For a small positive quantity ε, it can

be said that 0 ≤ r2 < r = r2 + ε < ρ(f)−2
2 . Replacing F,H by F ∗, F respectively

in (3.10) of [7] and proceeding likewise, when the multiplicities of zeros of M [f ] are
not less than k + 1, there is a contradiction which proves the theorem.

Open question 1. Can the sharing condition (0, 1) considered be relaxed to (0, 0)?

Open question 2. Keeping the sharing condition intact, can the result of Theorem
1.4 be obtained for a differential polynomial using the concepts of normal families?
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