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ASSOCIATION SCHEME WITH PBIB DESIGNS FOR MINIMUM

CO-INDEPENDENT DOMINATING SETS OF CIRCULANT

GRAPHS

B. CHALUVARAJU, V. LOKESHA AND S. A. DIWAKAR

Abstract. A dominating set D ⊆ V is a co-independent dominating (CID)-

set a graph G = (V,E) if ∆(〈V − D〉) = 0. The co-independent domination
number γci(G) is the minimum cardinality of a co-independent dominating

set and γci-set is a minimum co-independent dominating set of G. In this

paper, we obtain the total number of γci-sets in certain class of circulant
graphs apart from strongly regular graphs which are the blocks of Partially

Balanced Incomplete Block (PBIB) designs with m-association schemes for

1 ≤ m ≤ b p
2
c.

1. Introduction

A graph G = (V,E) be a finite, undirected, without loops or multiple edges
and p = |V | and q = |E| are the number of vertices and edges of G respectively.
An open and closed neighborhood of a vertex u of G means that N(u) = {v ∈
V (G) : uv ∈ E(G)} and N [u] = N(u)∪{u}. Any undefined graph theoretical terms
and notations are not presented here can be found in ([9]).

In graph theory, circulants are very well known for a long time and circulant
graphs are belong to families of cayley graphs, whose adjacency matrix is a circulant.
For a given positive integer p, let s1, s2, . . ., st be a sequence of integers where
0 < s1 < s2 < . . . < st <

p+1
2 . Then the circulant graph Cp(s1, s2, . . . , st) for

1 ≤ h ≤ t is the graph on p vertices v1, v2, . . ., vp with vertex vh adjacent to each
vertex vh±sl(mod p). The values of st are called its jump sizes. For more details, we
refer to ([20]).

Circulant graphs having varieties of names such as star polygon graphs, cyclic
graphs, distributed loop networks, chrodal rings, multi fixed step graphs, point-
symmetric graphs and diophantine structures in Russian.

In the field of computer science and discrete mathematics, application of circulant
graphs are very vast, some of them are computer network designs, telecommuni-
cation networking, distributed computation, few real massively parallel processing
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systems, large area communication networks and projects and for more details one
can be seen in ([16]).

Partially Balanced Incomplete Block (PBIB) designs are an important class of
block designs and also, a very important class of incomplete block designs, which
are improved by Bose and Nair ([1]) in 1939, these are having m associate classes
and it include the class of binary, equireplicate and proper designs.

For ν vertices (objects, elements), the following conditions satisfy m classes of
association scheme are given below :
(i) Two vertices are said to be mth associates where 1 ≤ k ≤ m, if the relation
being symmetric.
(ii) Every vertex α has nk k

th associates.
(iii) Two vertices are said to be kth associates of x and y, if the number of vertices
which are ath associates of x and bth associates of y is equal to pkab. Further, kth

associates are independent of x and y. Thus pkab = pkba.
On ν vertices, a PBIB design with its association scheme is defined as follows.
A PBIB design contains of ν vertices and ρ sets (called blocks) of size g, g < ν

such that
(i) ν vertices are contained exactly in r blocks and g distinct vertices contains in
every block.
(ii) If x and y are of kth associates which are exactly in λk blocks, where 1 ≤ k ≤ m.

Applications of PBIB designs are very wide and which deserve to be mentioned.
These are used to investigate the genetic properties and potentials of inbred lines
or particulars in plants and animal breeding trials and one can refer ([12] and [18]).

The first kind parameters are the numbers ν, ρ, r, g, λ1, λ2, . . ., λm, whereas
the second kind parameters are the numbers n1, n2, . . ., nm, pkab (1 ≤ a, b, k ≤ m).
For more details, we refer to ([6]).

A simple graph of order p is said to be strongly regular graph with parameters
(p, l, σ, µ) if the graph is either complete or edgeless and
(i) all the vertices of the graph G are adjacent to l vertices,
(ii) if x and y are two adjacent vertices, then they are adjacent to σ vertices,
(iii) if x and y are two non adjacent vertices, then they are adjacent to µ vertices.

A subset D ⊆ V is a dominating set of a graph G, if every vertex of V −D is
adjacent to at least one vertex in D. The domination number γ(G) is the cardinality
of minimum dominating set of G. The concept of domination theory was started
since a long time, the theory of domination and its related concepts, (see [7], [10]
and [11]). An independent dominating set (ID-set) D is a subset of vertices V of a
graph G if ∆(〈D〉) = 0. An independent domination number γi(G) is the minimum
ID-set of G. Analogously, we initiate the domination parameter as co-independent
dominating set as follows : a co-independent dominating set D is a subset of vertices
V of a graph G, if ∆(〈V −D〉) = 0. Further, co-independent domination number
γci(G) is the minimum CID-set of G. A γci-set is a minimum CID-set D of G with
|D| = γci(G).

In ([19]), Slater introduced the concept of number of dominating sets of G, which
he denoted by HED(G) in honor of Steve Hedetniemi. In this paper, we will use
τci(G) to denote the total number of γci-set of a graph G. From domination and its
related parameters to some certain kinds of graphs, we initiate the PBIB designs
with its association schemes by us in ([2], [3], [4], [5], [14] and [15]). For more
details, we refer to ([8] and [21]).
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2. Preliminary results

In 2006, a domination parameter was introduced by Kulli and Janakiram ([13]),
called a strong split domination. A dominating set D of V is a strong split dominat-
ing set of a graph G, if the induced subgraph 〈V −D〉 is totally disconnected with
at least two vertices. Further, the cardinality of minimum strong split dominating
set of vertices, called strong split domination number γss(G) and there is a relation
between strong split dominating set and co-independent dominating set.

Theorem 2.1. [2] Let a dominating set D be a γss-set of G, then every γss-set is
a γci-set if and only if |V −D| ≥ 2.

Also, in 2015, Nader Jafari Rad and Marcin Krzywkowski ([17]) introduced 2-
outer independent domination number. A subset D of V is a 2-outer independent
dominating set of a graph G, each vertex of 〈V −D〉 has minimum two neighbors in
D and is independent. The cardinality of minimum set of vertices is called 2-outer
independent domination number of G, γ2oi(G) and the relation between them are
given below,

Theorem 2.2. Every 2-outer independent dominating set of a graph G is a co-
independent dominating set, but the converse need not be true.

3. γci(G) and τci(G) for circulant graph

3.1. Circulant graph Cp(1). The jump size of circulant graph is one, known as
cycle Cp with p ≥ 3 vertices. That is, Cp(1) ∼= Cp; p ≥ 3, except when p = 2. The
circulants C4(1) and C5(1) are strongly regular graphs.

Theorem 3.1. For any circulant graph G1 = Cp(1) with p ≥ 2 vertices,

(i) γci(G1) =
⌈p

2

⌉
,

(ii) τci(G1) =

{
2 if p is even,

p if p is odd.

Proof. Let G1 = Cp(1) be a circulant graph with p ≥ 3 vertices.
(i) The proof is due to ([13]).
(ii) Here, the following cases arise,
Case 1. If p = 2n; n ≥ 1 and γci(G1) = n, then the γci-set of G1 is bounded
between n times of K1’s and is fixed by the choice of the first K1. Since there exists
exactly one γci-set G1 containing one neglecting vertex v1, where as in other γi-set
of G1 containing the vertices v2 and vp. Hence τci(G1) = 2.
Case 2. If p = 2n+ 1; n ≥ 1 and γci(G1) = n+ 1, then γci-set of G1 comprises of
only K1’s and is fixed by the placement of the only vertex which is adjacent to bp2c
distinct K1’s in γci-set. Hence τci(G1) = p. �

3.2. Circulant graph Cp(bp2c). The Circulant graph with jump size bp2c with
p ≥ 4 vertices, is Cp(bp2c). The circulant graph Cp(bp2c); p = 2n, n ≥ 1 vertices
contain n times of K2’s and they are disconnected, which are not strongly regular
and connected graph is not considered in this section.

Theorem 3.2. For any circulant graph G2 = Cp(bp2c) with p ≥ 4 vertices,

(i) γci(G2) =
⌈p

2

⌉
,

(ii) τci(G2) = p.
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Proof. Let G2 = Cp(bp2c) be any circulant graph with p ≥ 4 vertices.
(i) Clearly, γci(C4(2)) = 2 and even p 6= 4, any γ-set of Cp(bp2c) is the co-
independent dominating set, so that γci(Cp(bp2c)) ≤ γ(Cp(bp2c)). Immediately,

the other inequality is γci(Cp(bp2c)) = γ(Cp(bp2c)) and hence γci(G2) =
⌈p

2

⌉
.

(ii) For total number of minimum independent dominating sets, we have the fol-
lowing cases,
Case 1. If p = 2n; n ≥ 2 vertices and γci(G2) = n, then γci-set of G2 is bounded
between (n + 1) times of K2’s and they are disjoint unions. Fix exactly K1 from
each three times of K2’s and its induced subgraph becomes totally disconnected,
repeat the process for remaining K2’s. Hence τci(G2) = p.
Case 2. If p = 2n+ 1; n ≥ 2 vertices and γci(G2) = n+ 1, then γci-set of G2 com-
prises (2n+ 1) times of K1’s which is connected. For totally disconnected induced
subgraphs, pick three times of K1’s and repeat the process. Hence τci(G2) = p. �

3.3. Circulant graph Cp(1, bp2c). Here we consider the circulant graph only with
jump sizes 1 and bp2c; p ≥ 5 vertices, that is, Cp(1, bp2c).
Theorem 3.3. For any circulant graph G3 = Cp(1, bp2c) with p = 2n; n ≥ 3
vertices,
(i) γci(G3) = p

2 ,
(ii) τci(G3) = 2.

Proof. Let G3 = Cp(1, bp2c) with p = 2n; n ≥ 3 vertices.
(i) If D is an γci-set of G3, then it dominates all the vertices of V −D and it is also
a dominating set, which implies that |D| = |V −D|. Hence γci(G3) = p

2 follows.
(ii) If γci(G3) = 2n, then γci-set of G3 consists n times of K1’s, which are inde-
pendent and are fixed by the choice of the first K1, then there exists exactly one
γci-set of G3 containing the vertex v1 and there is one γci-set of G3, neglecting
the vertex v1 such as γci-set of G3 contains the vertex v2 and the vertex vp. Thus
τci(G3) = 2. �

3.4. Circulant graph with odd jump sizes. The circulant graph with jump
size 1, 3, . . . , bp2c with p ≥ 6 vertices is known as a complete bipartite graph Kp1,p2

with p1 = p2, that is, Cp(1, 3, . . . ,
⌊
p
2

⌋
) ∼= Kp1,p2

. If the sequence of an odd jump
size from 1 to bp2c, then Cp(1, 3, . . . , bp2c) is strongly regular graph.

Theorem 3.4. For any circulant graph G4 = Cp(1, 3, . . . , bp2c) with p = 4n − 2;
n ≥ 2 vertices,
(i) γci(G4) = p

2 ,
(ii) τci(G4) = 2.

Proof. Let G4 = Cp(1, 3, . . . , bp2c) be any circulant graph with p = 4n − 2; n ≥ 2
vertices.
(i) The proof is due to ([13]).
(ii) If γci(G4) = 2n−1, then γci-set of G4 consists (2n−1) times of K1’s, which are
independent and are fixed by the choice of the first K1, then there exists exactly
one γci-set of G4 containing the vertex v1 and there is one γci-set of G4, neglecting
the vertex v1 such as γci-set of G4 contains the vertex v2 and the vertex vp. Thus
τci(G4) = 2. �

Theorem 3.5. For any circulant graph G5 = Cp(1, 3, . . . , bp2c − 1) with p = 4n;
n ≥ 2 vertices,
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(i) γci(G5) = p
2 ,

(ii) τci(G5) = 2.

Proof. This proof is same as to Theorem 3.4. �

3.5. Circulant graph with even jump sizes. The jump size of circulant graph is
2, 4, . . . , bp2c is a Cp(2, 4, . . . , bp2c) with p ≥ 4 vertices. The circulant graphs C5(2),
C6(2), C8(2, 4), C10(2, 4), C12(2, 4, 6) are some of the examples of strongly regular
graphs.

Theorem 3.6. For any circulant graph G6 = Cp(2, 4, . . . , bp2c) with p ≥ 4 vertices,
(i) γci(G6) = p− 2,
(ii) τci(G6) = p.

Proof. Let G6 = Cp(2, 4, . . . , bp2c) be a circulant graph with p = 4n and 4n + 1
vertices; n ≥ 1.
(i) Since the Circulant graph G6 is a (2n− 1)-regular for p = 4n or 2n-regular for
p = 4n+ 1 vertices, n ≥ 1. Hence the result follows.
(ii) If γci(G6) = p − 2, then there exist a γci-set and are co- independent. Hence
τci(G6) = p. �

Theorem 3.7. For any circulant graph G7 = Cp(2, 4, . . . , bp2c−1) with p = 4n+1;
n ≥ 1vertices,

(i) γci(G7) = p− 2,
(ii) τci(G7) = p.

Proof. This proof is same as to Theorem 3.6. �

3.6. Circulant graph without jump size 1. The circulant graph with jump size
of 2, 3, . . . , bp2c is a Cp(2, 3, . . . , bp2c) with p ≥ 4 vertices. The circulant graphs of
C4(2) and C5(2) are the only strongly regular graphs without jump size 1.

Theorem 3.8. For any circulant graph G8 = Cp(2, 3, . . . , bp2c) with p ≥ 4 vertices,
(i) γci(G8) = p− 2,
(ii) τci(G8) = p.

Proof. Let G = G8 be a circulant graph with p ≥ 4 vertices.
(i) Since the Circulant graph G8 is a (n + 1)-regular with p = 2n + 3 or 2n + 4
vertices, n ≥ 1. Hence the result follows.
(ii) If γci(G8) = n+ 1, then there exist γci-set of G8 comprises of only K1’s and is
fixed by assigning the only vertex which is adjacent to two distinct K1’s in γci-set
of G8. Hence τci(G8) = p. �

3.7. Circulant graph Cp(1, 2, . . . , bp2c). The jump size of circulant graph is 1, 2,

. . . , bp2c, known as complete graphKp with p ≥ 3 vertices, that is, Cp

(
1, 2, . . . ,

⌊
p
2

⌋) ∼=
Kp. The complete graph Kp is strongly regular for all p ≥ 3. The status of the
trivial singleton graph K1 is unclear. Opinions differ on K2 is a strongly regular
graph, since it has no well-defined µ parameter, it is preferable to consider as not
to be a strongly regular.

Theorem 3.9. For any circulant graph G9 = Cp(1, 2, 3, . . . , bp2c) with p ≥ 3 ver-
tices,
(i) γci(G9) = p− 1,
(ii) τci(G9) = p.
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Proof. Let G9 = Cp(1, 2, 3, . . . , bp2c) with p ≥ 3 vertices. We have
(i) Since the Circulant graph G9 is a (p− 1)-regular with p ≥ 3 vertices. Hence the
result follows.
(ii) By (i), we have γci(G9) = p − 1 and there exist a γci-set of G9 comprises of
(p− 1) times of K1’s which is adjacent to (p− 1)-regular vertices in γci-set of G9.
Thus τci(G9) = p. �

4. Matrix representation of circulant graphs via Association
schemes

Using the definition of association scheme with m classes and by above theorems,
we construct association schemes for the graphs G1 and G2 as Type 2 and 3; G3,
G4 and G5 as Type 2; G6, G7 and G8 as Type 3; G9 as Type 1 respectively.

The following three cases of tables can be constructed and they are,
Type 1. Matrix representation of circulant graph Cp(s1, s2, . . . , st) with the asso-
ciation scheme are as follows,

Association scheme

Elements First Second · · · k · · · p−1
2

p
2

v1 vp, v2 vp−1, v3 · · · v(p−(k−1))(mod p),
v(1+k)(mod p)

· · · v1+ p−1
2
, v1+ p−1

2 +1 v1+ p
2

v2 v1, v3 vp, v4 · · · v(p−(k−2))(mod p),
v(2+k)(mod p)

· · · v2+ p−1
2
, v2+ p−1

2 +1 v2+ p
2

v3 v2, v4 v1, v5 · · · v(p−(k−3))(mod p),
v(3+k)(mod p)

· · · v3+ p−1
2
, v3+ p−1

2 +1 v3+ p
2

...
...

...
...

...
...

...
...

va
v(a−1)(mod p),
v(a+1)(mod p)

v(a−2)(mod p),
v(a+2)(mod p)

· · · v(p−(k−a))(mod p),
v(a+k)(mod p)

· · ·
v(a+ p−1

2 )(mod p),

v(a+ p−1
2 +1)(mod p)

v(a+ p
2 )(mod p)

...
...

...
...

...
...

...
...

vp vp−1, v1 vp−2, v2 · · · vp−k, vk · · · v p−1
2
, v p−1

2 +1 v p
2

Table 1. Association schemes of Cp(s1, s2, . . . , st).

With the association scheme for the Table 1, the second kind parameters are
given by na = 2 for 1 ≤ a ≤ p−1

2 or 1 ≤ a ≤ p
2 − 1 and n p

2
= 1.

The matrices and the possible values of k are given below,

P k =


pk11 pk12 . . . pk

1 p−1
2

pk21 pk22 . . . pk
2 p−1

2

...
...

...
...

pk
( p−1

2 )1
pk
( p−1

2 )2
. . . pk

( p−1
2 ) ( p−1

2 )

 and

P k =


pk11 pk12 . . . pk1 p

2

pk21 pk22 . . . pk2 p
2

...
...

...
...

pkp
2 1

pkp
2 2

. . . pkp
2

p
2


The possible values of k are:
For k = 1,
p1ab = 1 for 1 ≤ a ≤ p−1

2 − 1 and 1 ≤ a ≤ p
2 − 1, b = a+ 1
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p1ab = 1 for 1 ≤ b ≤ p−1
2 − 1 and 1 ≤ b ≤ p

2 − 1, a = 1 + b

p1ab = 1 for a = p−1
2 , b = p−1

2

For 2 ≤ k ≤ p−3
2 and 2 ≤ k ≤ p

2 − 1,

pkab = 1 for 1 ≤ a ≤ p−3
2 and 1 ≤ a ≤ p

2 − 1, a+ b = k, b = k + a and a+ b = p− k
pkab = 1 for 1 ≤ b ≤ p−3

2 and 1 ≤ b ≤ p
2 − 1, a− b = k and a+ b = p− k

For k = p−1
2 and k = p

2 ,

pkab = 1, for 1 ≤ a ≤ p−3
2 , a+ b = p−1

2

pkab = 1, for 1 ≤ a ≤ p−1
2 , a+ b = p+1

2 and

pkab = 2 for 1 ≤ a ≤ p
2 − 1, a+ b = k and the other entries are all zero.

Type 2. Matrix representation of circulant graph Cp(s1, s2, . . . , st); p (≥ 4) is
even, with the association scheme are as follows,

Association scheme
Elements First Second · · · k · · · p

2

v1 vp, v2 vp−1, v3 · · · v(p−(k−1))(mod p),
v(1+k)(mod p)

· · · v1+ p
2

v2 v1, v3 vp, v4 · · · v(p−(k−2))(mod p),
v(2+k)(mod p)

· · · v2+ p
2

v3 v2, v4 v1, v5 · · · v(p−(k−3))(mod p),
v(3+k)(mod p)

· · · v3+ p
2

...
...

...
...

...
...

...

va
v(a−1)(mod p),
v(a+1)(mod p)

v(a−2)(mod p),
v(a+2)(mod p)

· · · v(p−(k−a))(mod p),
v(a+k)(mod p)

· · · v(a+ p
2 )(mod p)

...
...

...
...

...
...

...
vp vp−1, v1 vp−2, v2 · · · vp−k, vk · · · v p

2

Table 2. Association schemes of Cp(s1, s2, . . . , st); p is even.

With the association scheme for the Table 2, the second kind parameters are
given by na = 2 for 1 ≤ a ≤ p

2 − 1 and n p
2

= 1.
The matrix and the possible values of k are given below,

P k =


pk11 pk12 . . . pk1 p

2

pk21 pk22 . . . pk2 p
2

...
...

...
...

pkp
2 1

pkp
2 2

. . . pkp
2

p
2


The possible values of k are:
For k = 1,
p1ab = 1 for 1 ≤ a ≤ p

2 − 1, b = a+ 1

p1ab = 1 for a = 1 + b, 1 ≤ b ≤ p
2 − 1

For 2 ≤ k ≤ p
2 − 1,

pkab = 1 for 1 ≤ b ≤ p
2 − 1, a+ b = k, b− a = k and a+ b = p− k

pkab = 1 for 1 ≤ b ≤ p
2 − 1, a− b = k and a+ b = p− k

For k = p
2 ,

pkab = 2 for 1 ≤ a ≤ p
2 − 1 and a+ b = k and the other entries are all zero.



EJMAA-2022/10(1) ASSOCIATION SCHEME WITH PBIB DESIGNS FOR MINIMUM 151

Type 3. Matrix representation of circulant graph Cp(s1, s2, . . . , st); p (≥ 3) is
odd, with the association scheme are as follows,

Association scheme

Elements First Second · · · k · · · p−1
2

v1 vp, v2 vp−1, v3 · · · v(p−(k−1))(mod p),
v(1+k)(mod p)

· · · v1+ p−1
2

, v1+ p−1
2 +1

v2 v1, v3 vp, v4 · · · v(p−(k−2))(mod p),
v(2+k)(mod p)

· · · v2+ p−1
2

, v2+ p−1
2 +1

v3 v2, v4 v1, v5 · · · v(p−(k−3))(mod p),
v(3+k)(mod p)

· · · v3+ p−1
2

, v3+ p−1
2 +1

...
...

...
...

...
...

...

va
v(a−1)(mod p),
v(a+1)(mod p)

v(a−2)(mod p),
v(a+2)(mod p)

· · · v(p−(k−a))(mod p),
v(a+k)(mod p)

· · ·
v(a+ p−1

2 )(mod p),

v(a+ p−1
2 +1)(mod p)

...
...

...
...

...
...

...
vp vp−1, v1 vp−2, v2 · · · vp−k, vk · · · v p−1

2
, v p−1

2 +1

Table 3. Association schemes of Cp(s1, s2, . . . , st); p is odd.

With the association scheme for the Table 3, the second kind parameters are
given by na = 2 for 1 ≤ a ≤ p−1

2 and n p
2

= 1.
The matrix and the possible values of k are given below,

P k =


pk11 pk12 . . . pk

1 p−1
2

pk21 pk22 . . . pk
2 p−1

2

...
...

...
...

pk
( p−1

2 )1
pk
( p−1

2 )2
. . . pk

( p−1
2 ) ( p−1

2 )


The possible values of k are:
For k = 1,
p1ab = 1 for 1 ≤ a ≤ p−1

2 − 1, b = a+ 1

p1ab = 1 for 1 ≤ b ≤ p−1
2 − 1, a = 1 + b

p1ab = 1 for a = p−1
2 , b = p−1

2

For 2 ≤ k ≤ p−3
2 ,

pkab = 1 for 1 ≤ a ≤ p−3
2 , a+ b = k, b− a = k and a+ b = p− k

pkab = 1 for 1 ≤ b ≤ p−3
2 , a− b = k and a+ b = p− k

For k = p−1
2 ,

pkab = 1, for 1 ≤ a ≤ p−3
2 , a+ b = p−1

2

pkab = 1, for 1 ≤ a ≤ p−1
2 , a+ b = p+1

2 and the other entries are all zero.

5. PBIB designs and its parameters

By considering above Theorems, Tables and the possible values of k, the param-
eters of PBIB designs in the following Table:
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Circulant Graph
Parameters of PBIB designs

ν ρ r g λm

G1

p = 2n;
p 2 1 2

0; 1;
n ≥ 1 if m = 1 if 2 ≤ m ≤ bp2c

p = 2n+ 1;
p p dp2e dp2e

 1+

√
1+8

⌊m
2

⌋
2

 ; dp2e −
m
2 ;

n ≥ 1 if m is odd if m is even

G2

p = 2n;
p

p bp2c bp2c

bp2c −m;
n ≥ 1 1 ≤ m ≤ bp2c

p = 2n+ 1;
p

bp2c −m;
n ≥ 1 1 ≤ m ≤ bp2c
G3 p 2 p

2 1
0; 1;

G4 p 2 p
2 1

G5 p 2 p
2 1 if m is odd if m is even

G6 p p p− 2 p− 2
4n− 3; 4n− 4;

if m = 1 and n = 1 2 ≤ m ≤ bp2c

G7 p p p− 2 p− 2
4n− 2; 4n− 3;

if m = 1 and n = 1 2 ≤ m ≤ bp2c

G8

p = 2n+ 3;
p

p p− 2 p− 2

2p+ 2; 2p+ 1;
n ≥ 1 if m = 1 and n = 1 2 ≤ m ≤ bp2c

p = 2n+ 4;
p

2p+ 1; 2p;
n ≥ 1 if m = 1 and n = 1 2 ≤ m ≤ bp2c

G9 p p p− 1 p− 1
bp2c;

1 ≤ m ≤ bp2c

Table 4. PBIB-designs and its parameters.

6. Conclusion

In this paper, we determine the total number of γci-set, the partially balanced
incomplete block (PBIB) designs and association schemes arising from the γci-sets
in some classes of circulant graph. Surprisingly, we obtain the total number of γci-
sets in certain class of circulant graphs apart from strongly regular graphs which
are the blocks of PBIB design with at most bp2c-association schemes.
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