
Electronic Journal of Mathematical Analysis and Applications

Vol. 10(1) Jan. 2022, pp. 195-199.

ISSN: 2090-729X(online)

http://math-frac.org/Journals/EJMAA/

————————————————————————————————

GEODETIC EVEN DECOMPOSITION OF GRAPHS

E. EBIN RAJA MERLY AND T. IWIN JOEL

Abstract. Let G = (V (G), E(G)) be the graph. For a non empty set S

of V (G) we define I[S] = ∪ I[x, y], for some x, y ∈ S, where I[x, y] is the
closed interval consists of x, y and all vertices lying on some x − y geodesic

of G. If G is a connected graph, then a set S of vertices is a geodetic set if

I[S] = V (G). The cardinality of a geodetic set is called the geodetic number
and is denoted as g(G). The decomposition of a graph G is a collection of edge-

disjoint subgraphs G1, G2, G3, ..., Gn of G such that every edge of G belongs to

exactly one Gi. A decomposition (G2, G4, ..., G2n) of graph G admits Geodetic
even decomposition if g(G2i) = 2i+1, i = 1, 2, ..., n where g(G) is the geodetic

number of a graph G.

1. Introduction

A graph G consist of a pair (V (G), E(G)) where V (G) is a non-empty finite set
whose elements are called vertices and E(G) is a set of unordered pair of distinct
elements of V (G). The elements of E(G) are called the edges of the graph G. In
graph theory the concept of geodetic set was introduced by Gary Chartrand, Frank
Harary and Ping Zhang [3]. If G is a connected graph then the distance d(x, y) is
the length of a shortest x − y path in G, where x and y are any two vertices in
G. An x − y path of length d(x, y) is called an x − y geodesic. For non empty
set S of V (G) we define I[S] = ∪ I[x, y], for some x, y ∈ S, where I[x, y] is the
closed interval consists of x, y and all vertices lying on some x − y geodesic of G.
If G is a connected graph, then a set S of vertices is a geodetic set if I[S] = V (G).
The cardinality of a geodetic set is called the geodetic number and is denoted as
g(G). In [4] we introduced “Geodetic Decomposition of Graphs”. In this paper we
develop a new concept “Geodetic Even Decomposition of Graphs”.

Definition 1.1 [2] The decomposition of a graph G is a collection of edge-disjoint
subgraphs G1, G2, G3, ..., Gn of G such that every edge of G belongs to exactly one
Gi.

Definition 1.2 [2] Caterpillar is a tree in which the removal of pendant vertices
results in a path. Lobster is a tree in which the removal of pendant vertices results
in a caterpillar.
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Definition 1.3 [2] In a lobster L, the vertex with degree atleast 3 is called a
junction of L.

Definition 1.4 [2] An edge e = uv in L such that u is adjacent to a junction and
v is adjacent to another junction is said to be a junction-neighbor.

Definition 1.5 [4] Let G be a any connected graph and (G1, G2, G3, ..., Gn) be the
decomposition of G. The graph G admits Geodetic Decomposition, if the following
conditions are satisfied.

(i) Each Gi is connected
(ii) Each edge of G is in exactly one Gi

(iii) g(Gi) = i + 1 (i ≥ 1), where g(G) is the geodetic number of a graph G.

2. Geodetic Even Decomposition

Definition 2.1 A decomposition (G2, G4, ..., G2n) of a graph G is said to be
geodetic even decomposition if

(i) Each G2i is connected
(ii) Each edge of G is in exactly one G2i

(iii) g(G2i) = 2i + 1, i = 1, 2, ..., n.

Example 2.2 The following figure illustrates geodetic even decomposition of G.
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Figure 1. Geodetic Even Decomposition (G2, G4) of graph G

Here g(G2) = 3 and g(G4) = 5. Then G admits Geodetic Even Decomposition
(G2, G4).

Remark 2.3 Every path does not admits geodetic even decomposition, since the
geodetic number of each path is 2.

Theorem 2.4 A Lobster L admits Geodetic Even Decomposition
(G2, G4, ..., G2n−2) if and only if q = n2 − 1 (n ≥ 2).
Proof. Let L be a Lobster with n2 − 1 edges. To Prove L admits Geodetic Even
Decomposition (G2, G4, ..., G2n−2). We prove this by induction on n.
Let n = 2. Then L has 3 edges and L = S3. Let it be G2. Clearly g(G2) = 3.
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Hence the result is true, when n = 2.
Assume the result is true, when n = k − 1. Then L has (k − 1)2 − 1 edges and L
admits geodetic even decomposition (G2, G4, ..., G2k−6, G2k−4) where G2i = S2i+1,
i = 1, 2, ..., k − 3, k − 2.
Prove the result, when n = k. Let L has k2 − 1 edges. Then L = G2 ∪G4 ∪ ... ∪
G2k−4 ∪G2k−2.
By induction hypothesis G2i = S2i+1, i = 1, 2, ..., k− 3, k− 2 and satisfies g(G2i) =
2i+ 1, i = 1, 2, ..., k−3, k−2. Then clearly G2k−2 = S2k−1 and g(G2k−2) = 2k−1.
Thus the induction is proved and hence the theorem.
Conversely, assume that L admits Geodetic Even Decomposition
(G2, G4, ..., G2n−2). Then Gi = Si+1, i = 2, 4, 6, ..., 2n− 2. Therefore q = n2 − 1.

Result 2.5 If L admits Geodetic Even Decomposition (G2, G4, G6, ..., G2n−2), then
diam(L) = 2n− 2.

Theorem 2.6 Let L be a Lobster with diam(L) = 2n−2. Then L admits Geodetic
Even Decomposition (G2, G4, G6, ..., G2n−2) if and only if

(i) L is a caterpillar
(ii) There are (n − 1) non-adjacent junction supports in L whose degrees are

3, 5, 7, ..., 2n− 1 respectively and
(iii) There is no junction-neighbor in L

Proof. Given that L is a Lobster with diam(L) = 2n− 2. Assume that L
admits Geodetic Even Decomposition (G2, G4, G6, ..., G2n−2) where Gi = Si+1, i =
2, 4, 6, ..., 2n − 2. Since diam(L) = 2n − 2, the centre of each Gi

′s are lie in the
longest path P of L. Then L is caterpillar.
Let u3, u5, u7, ..., u2n−1 be the centres of G2, G4, G6, ..., G2n−2 respectively. Then
clearly they are junctions. Also since diam(L) = 2n− 2, all the centres are distinct
and are supports. Hence there are (n − 1) non-adjacent junction supports whose
degrees are 3, 5, 7, ..., 2n− 1 respectively.
Now to prove (iii). Suppose there is one junction-neighbor e1 = a1b1.

ui
a1 b1 uj

Figure 2. Geodetic Even Decomposition of Lobster

From figure 2, their exits junction supports ui, uj such that d(ui, uj) = 3.
Thus E(L)−E(G2∪G4∪G6∪...∪G2n−2) = 1, which is a contradiction to q = n2−1.
Hence there is no junction-neighbor in L.
Conversely, assume (i),(ii),(iii).
Clearly L admits Geodetic Even Decomposition (G2, G4, G6, ..., G2n−2).

Theorem 2.7 Let L be a Lobster with diam(L) = 2n−4 and n−2 distinct supports
with no junction neighbor in the longest path P of L and N2 6= ∅. Then L admits
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Geodetic Even Decomposition (G2, G4, ..., G2n−2) with distinct centres if and only
if

(i) No vertex of exactly one G2n−2 (n ≥ 3) is in the longest path P
(ii) All the vertices of N2 are adjacent to exactly one vertex of N1

Proof. Assume that L admits Geodetic Even Decomposition (G2, G4, ..., G2n−2)
where Gi = Si+1, i = 2, 4, 6, ..., 2n− 2.
To prove (i). Suppose not, atleast one vertex of each G2n−2 (n ≥ 3) is in P . Then
there exist (n − 1) junction supports in L not all them are distinct, which is a
contradiction. Hence no vertex of exactly one G2n−2 (n ≥ 3) is in the longest path
P .
Suppose |N2| = 3. Therefore no vertex of G2 is in P . It is enough to prove all the
vertices of N2 are adjacent to exactly one vertex of N1.
Suppose the vertices of N2 are adjacent to two distinct vertices vi and vi+1 of N1.

vi vi+1

Figure 3. Geodetic Even Decomposition of Lobster

From figure 3, there exist Gi and Gi+1 (i = 3, 4, 5, ..., 2n − 2) such that vi and
vi+1 are the centres of Gi and Gi+1 respectively. Since L admits Geodetic Even
Decomposition (G2, G4, ..., G2n−2), the existence of Gi and Gi+1 are not possible.
Hence our assumption is wrong.
Therefore all the vertices of N2 are adjacent to exactly one vertex of N1.
Continuing in this way, no vertex of G2n−2 is in P and vertices of N2 are adjacent
to exactly one vertex of N1, if |N2| = 2n− 2.
Hence |N2| ≥ 2n− 2, (n ≥ 3) and all the vertices of N2 are adjacent to exactly one
vertex of N1.
Conversely assume (i) and (ii).
To prove L admits Geodetic Even Decomposition. Since diam(L) = 2n − 4 and
N2 = ∅, then there exists atleast one G2n−2 (say) such that the centre of G2n−2 is
not in P . Since there are n−2 distinct junction supports with no junction neighbor
in P , n − 3 subgraphs exist in L. Since q = n2 − 1 and all the vertices of N2 are
adjacent to exactly one vertex of N1, then n− 2 subgraphs exists and satisfies the
condition g(Gi) = i + 1 (i = 2, 4, ..., 2n− 2). Hence the proof.
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