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A STUDY FOR A CLASS OF ENTIRE DIRICHLET SERIES IN

n - VARIABLES

LAKSHIKA CHUTANI AND NIRAJ KUMAR

Abstract. Let L represents a class of entire functions represented by Dirichlet

series in n - variables of the form f(s) =
∞∑

m=1

am eλnmn
s whose coefficients

belong to the set of complex numbers C. L which becomes a complete Banach
space is thereby proved to be a complex FK-space and a Frechet space.

1. Introduction

Let

f(s1, s2, . . . , sn) =
∞∑

m1=1

∞∑
m2=1

. . .
∞∑

mn=1

am1,m2,...,mn e(λ1m1
s1 +λ2m2

s2 + ...+λnmn
sn)

(1)
be a n-tuple Dirichlet series where sj = σj+itj , j ∈ {1, 2, . . . , n} and am1,m2,...,mn ∈
C. Also

0 < λp1 < λp2 < . . . < λpk
→ ∞ as k → ∞ for p = 1, 2, . . . , n.

To simplify the form of n-tuple Dirichlet series, we have the following notations

s = (s1, s2, . . . , sn) ∈ Cn,

m = (m1,m2, . . . ,mn) ∈ Cn and

λnmn
= (λ1m1

, λ2m2
, . . . , λnmn

) ∈ Rn.

λnmn
s = λ1m1

s1 + λ2m2
s2 + . . . + λnmn

sn

|λnmn
| = λ1m1

+ λ2m2
+ . . . + λnmn

|m| = m1 +m2 + . . . +mn.

Thus the series (1) can be written as

f(s) =
∞∑

m=1

am eλnmn
s. (2)
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Janusauskas in [4] showed that if there exists a tuple p > 0̄ = (0, 0, . . . , 0) such
that

lim sup
|m|→∞

∑∞
k=1 logmk

pλnmn

= 0, (3)

then the domain of absolute convergence of (2) coincides with its domain of con-
vergence. Sarkar in [1] proved that the necessary and sufficient condition for series
(2) satisfying (3) to be entire is that

lim
|m|→∞

log |am|
|λnmn

|
= −∞. (4)

Consider L as the set of series (2) satisfying (3) and (4) for which

(|λnmn
|)c1|λnmn

| ec2|m| (|λnmn
|) |am|

is bounded. Then every element of L represents an entire function. Define the
binary operations in L as

f(s) + h(s) =
∞∑

m=1

(am + bm) eλnmn
s,

ξf(s) =
∞∑

m=1

(ξam) eλnmn
s,

f(s).h(s) =

∞∑
m=1

(|λnmn
|)c1|λnmn

| ec2|m| (|λnmn
|) ambm eλnmn

s.

The norm in L is defined as

∥f∥ = sup
|m|≥1

(|λnmn
|)c1|λnmn

| ec2|m| (|λnmn
|) |am|. (5)

Definition 1 A space L is called an FK-space if the following conditions are
satisfied
(1.a) L is a linear space over the field of complex numbers (or real numbers) and
elements of L are sequences of complex numbers (or real numbers).
(1.b) L is a locally convex topological linear space in which the topology is given
by a countable family of semi-norms.
(1.c) L is metrizable and is a complete metric space.
(1.d) If {αm} is a base for L such that for l ∈ L,

l =
∞∑

m=1

θm(l)αm

then θm(l) (|m| ≥ 1) are continuous linear functionals. If the field for L is complex
numbers then L is called a complex FK-space.
During the last two decades a lot of research has been carried out in the field of
Dirichlet series and many important results have been proved where few of them
may be found in [2] - [3]. Kumar and Manocha in [5] considered the condition
(λn)

c1(λn) e{c2n−c1}(λn) ∥an∥ of weighted norm for a Dirichlet series in one vari-
able and established some results on it.Recently in [6] results were established on
Dirichlet series with complex frequencies. Until now a lot work has been done for
the Dirichlet series in one variable. The purpose of this paper is to give a wider
view to the study of Dirichlet series in n-variables. In this section main results
have been proved.For the definitions of terms used refer [7, 8]. Theorem 1 With
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respect to the usual addition and multiplication, a topology is defined such that L
becomes a complex FK-space.
Proof.Let for f(s), h(s) ∈ L define addition of f(s) and g(s) as (f + h)(s) =
f(s) + h(s) and scalar multiplication of f(s) as (τf)(s) = τf(s).
Let us now define the zero element of L defined by 0∗ as the entire function which

is zero that is f = 0∗ implies
∞∑

m=1

am eλnmn
s = 0 which further implies am = 0

for all |m| ≥ 1 and conversely.
Clearly L forms an infinite dimensional linear space over the field of complex num-
bers and hence one gets basis for L namely Schauder basis as

δm1,m2,...,mn = e(λ1m1
s1 +λ2m2

s2 + ...+λnmn
sn)

or
δm = eλnmn

s.

Also
Lm1 = (1, 0, 0, . . .)

Lm2 = (0, 1, 0, . . .)

.

.

.

Lmn = (0, 0, . . . , 1, 0, . . .)

where 1 in Lmn is at the mn-th place. It therefore implies that if x(s) ∈ L then

x(s) = (a1(x), a2(x), . . . , am(x), . . .)

where

lim
|m|→∞

log |am|
|λnmn

|
= −∞

and this shows that L satisfies (1.a).
Define H = {Lm1 , Lm2 , . . . , Lmn , . . .}. For each Lmn ∈ H define the norm as

∥f, Lmn∥ = sup
|m|≥1

(|λnmn
|)c1|λnmn

| ec2|m| (|λnmn
|) |am|

where

f(s) =
∞∑

m=1

am eλnmn
s ∈ L

is an entire function. Then as

log |am|−1

|λnmn
|

> v

for v > c2|m| implies

|am| < e−v|λnmn
| for |m| ≥ |m′|,

where m′ = (m′
1,m

′
2, . . . ,m

′
n). Therefore

∥f, Lmn∥ < sup
|m|<|m′|

(|λnmn
|)c1|λnmn

| ec2|m| (|λnmn
|) |am|+ sup

|m|≥|m′|
(|λnmn

|)c1|λnmn
|e(c2|m|−v) (|λnmn

|) |am|

Thus
∥f, Lmn∥ < ∞
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for any fixed Lmn ∈ H. Hence ∥f, Lmn∥ is defined for each Lmn ∈ H . Let Lmn

be fixed, then

∥f, Lmn
∥ = f(s)

⇔ |am| = 0 for |m| ≥ 1

⇔ f(s) = 0 for all |s|
⇔ f = 0∗.

Since

h(s) =
∞∑

m=1

bm eλnmn
s

Then

|am + bm| ≤ |am|+ |bm|

implies

∥f + h,Lmn∥ ≤ ∥f, Lmn∥+ ∥h,Lmn∥.

Again if υ is any complex number then

∥υf, Lmn∥ = |υ|∥f, Lmn∥.

Thus ∥ . . . , Lmn∥ defines a norm for each Lmn ∈ H.
Hence L becomes a locally convex linear topological space as there exists a sequence
{∥ . . . , Lmn∥ : |n| = 1, 2, 3, . . .} of enumerable number of norms on L. Let

∥f∥ = sup
|m|≥1

∥f, Lmn∥
1 + ∥f, Lmn∥

and

e(f, h) = ∥f − h∥

Then e is a metric on L. It can be easily verified that the topology induced by e
on L is the same as induced by the sequence {∥ . . . , Lmn∥}. In fact if Y is open in
the topology induced by the family of norms then Y is also open in the e-metric
topology of L. Now let Y be open in the e-metric topology of L. Then for each
g(s) ∈ Y we have ϵ > 0 such that

K = {g(s) : g ∈ B(f ; ϵ)} ⊂ Y for 0 < ϵ < 1

where B(f ; ϵ) is an open ball centered at f(s) and is of radius ϵ.
We find M such that

sup
|m|≥|M |+1

1

2m
∥k − g, Lmn∥

1 + ∥k − g, Lmn∥
<

ϵ

2
,

where k − g is a vector in the neighbourhood of 0. Let

F = {x(s) : ∥x, L1∥ < ϵ1}
∩

. . .
∩

{x(s) : ∥x, LM∥ < ϵM}

where

ϵm <
ϵ

2
(|m| = 1, 2, . . . , |M |).
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Let k(s) ∈ g(s) + F . Then k(s) = g(s) + x(s) where x(s) ∈ F. Then

e(k, g) = sup
1≤|m|≤|M |

1

2m
∥k − g, Lmn∥

1 + ∥k − g, Lmn∥
+ sup

|m|≥|M |+1

1

2m
∥k − g, Lmn∥

1 + ∥k − g, Lmn∥

< sup
1≤|m|≤|M |

1

2m
ϵm

1 + ϵm
+

ϵ

2

<
ϵ

2
+

ϵ

2
= ϵ.

Therefore e(k, g) < ϵ implies that k(s) ∈ B(g ; ϵ) that is k(s) ∈ K which further
implies k(s) ∈ Y. Thus g(s) + F ⊂ Y which establishes that Y is open in the
topology induced by the family of norms. Hence L is metrizable.
Now we show that L is complete with respect to the metric e. It is known that a
space is complete if and only if every nested sequence of closed balls whose radii
tend to zero has non empty intersection.
Let {fm : m ∈ M} be a cauchy sequence in L. For each m ∈ M , let Wm =
{xk : k ≥ m} be m-th tail of sequence and sm be twice the diameter of Wm. Also
let Bm be a closed ball centered at fm of radius rm = 2sm. Then

Wm ⊆ Bm.

Since the sequence is cauchy therefore lim
m→∞

sm = 0. Now let m ∈ M be arbitrary.

Therefore there exists k > m such that

sk <
1

2
sm.

Suppose g(s) ∈ Bk then

e(g, fm) ≤ e(g, fk) + e(fk, fm)

≤ rk + sm

= 2sk + sm

< 2sm = rm.

Therefore g(s) ∈ Bm and hence Bk ⊆ Bm. In the like manner we construct a
nested sequence of the closed balls {Bm : m ∈ M}. Then from hypothesis nested
sequence of closed balls has a non empty intersection say f . Let {fr1} be a cauchy
sequence in L where

fr1(s) =
∞∑
t=1

a
(r1)
t eλntn

s.

Now

e(fr1 , fr2) < ϵ for all r1, r2 ≥ |M |
implies

sup
|m|≥1

1

2m
∥fr1 − fr2 , Lmn∥

1 + ∥fr1 − fr2 , Lmn∥
< ϵ for r1, r2 ≥ |M |.

Thus

(1− 2mϵ) ∥fr1 − fr2 , Lmn∥ < 2mϵ for r1, r2 ≥ |M | , |m| = 1, 2, . . .

(1−2mϵ) sup
|t|≥1

(|λntn
|)c1|λntn

| ec2|t| (|λntn
|) |a(r1)t −a

(r2)
t | < 2mϵ for r1, r2 ≥ |M | , |m| = 1, 2, . . .

(1−2mϵ) |a(r1)t −a
(r2)
t | < 2mϵ {(|λntn

|)c1|λntn
| ec2|t| (|λntn

|) }−1 for r1, r2 ≥ |M | , |t| ≥ 1 , |m| = 1, 2, . . .
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and

lim
r2→∞

a
(r2)
t = at , |t| = 1, 2, . . .

implies

(1−2mϵ) |a(r1)t −at| < 2mϵ {(|λntn
|)c1|λntn

| ec2|t| (|λntn
|) }−1 for r1 ≥ |M | , |t|, |m| = 1, 2, . . .

If 2mϵ < θ < 1 then

|a(r1)t − at| <
θ

1− θ
{(|λntn

|)c1|λntn
| ec2|t| (|λntn

|) }−1

that is

|at| < |a(r1)t | + θ

1− θ
{(|λntn

|)c1|λntn
| ec2|t| (|λntn

|) }−1

and since

lim
|t|→∞

log |a(r1)t |
|λntn

|
= −∞.

Hence it follows

lim
|t|→∞

log |at|
|λntn

|
= −∞.

Thus

f(s) =
∞∑
t=1

at e
λntn

s

represents an entire function such that

∥fr1 − f, Lmn
∥ < ϵ where r1 ≥ |M | , |m| = 1, 2, . . .

Therefore

∥fr1 − f, Lmn∥ → 0 as r1 → ∞
or

e(fr1 , f) → 0 as r1 → ∞
This proves (1.c) of Definition (??).
Next we need to prove the condition (1.d). Let therefore

β =
∞∑

m=1

θm(β)βm ; β ∈ L

βm ≡ γm and γm = eλnmn
s.

Then we show θm(β) is a continuous linear functional of β in L for each |m| ≥ 1.
Clearly θm is linear and since L is endowed with the topology given by the metric
e and is a topological vector space. Therefore it is sufficient to prove that (θm(β))
is continuous.
Let {µs} ⊂ L and suppose e(µs, 0) < ϵ for |s| ≥ |so| where |s| ≥ 1, then

µs =

∞∑
m=1

θm(µs)βm.

Again if

µ(M)
s =

M∑
m=1

θm(µs)βm
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then e(µ
(M)
s , µs) < ϵ for |M | ≥ |Mo|. Hence

e(µ(M)
s , 0) ≤ e(µ(M)

s , µs) + e(µs, 0)

< 2ϵ for all |M | ≥ |Mo| , |s| ≥ |so|.
Also

∥µ(M)
s , Lmn∥ − ∥µ(M−1)

s , Lmn∥ = (|λnMn
|)c1|λnMn

| ec2|M | (|λnMn
|) |θM (µs)|

where
∥µ(M)

s , Lmn∥ = sup
|m|> 1

(|λnmn
|)c1|λnmn

| ec2|m|(|λnmn
|) |θm(µs)|.

But
∥µ(M)

s , Lmn∥ < ϵ for |M | ≥ |Mo| , |s| ≥ |so|, |m| ≥ 1

Therefore
|θm(µs)| < ϵ for |s| ≥ |so| , |m| ≥ 1.

Hence the theorem.

Linear Functionals: In this section continuous linear functionals on the space L
have been characterized when L is endowed with the topology given by the norms
{∥ . . . , Lmn∥ : n = 1, 2, . . .}. Theorem 2 Every continuous linear functional θ on
the normed linear space
(L, ∥ . . . , Lmn∥ ; |n| = 1, 2, . . .) is of the form

θ(f) =

∞∑
m=1

amµm ; f(s) =

∞∑
m=1

am eλnmn
s

where
{|µm|/(|λnmn

|)c1|λnmn
| ec2|m| (|λnmn

|)}
is bounded.
Proof.Let θ be a continuous linear functional on the normed linear space (L, ∥ . . . , Lmn∥ ; |n| =
1, 2, . . .) and so there exists a positive constant G such that

|θ(f)| ≤ G∥f, Lmn∥ for all f(s) ∈ L.

Let

fM (s) =

M∑
m=1

am eλnmn
s

then
∥f − fM , Lmn∥ = sup

|m|≥|M |+1

(|λnmn
|)c1|λnmn

| ec2|m| (|λnmn
|)|am|.

The above expression can be made as small as we want by making M large enough,
one gets

∥f − fM , Lmn
∥ → 0 as |M | → ∞.

Thus

θ(f) = lim
M→∞

θ(fM ) = lim
M→∞

(
M∑

m=1

amµm

)
where µm = θ(eλnmn

s). Now

|µm| = |θ(eλnmn
s)| ≤ G∥eλnmn

s, Lmn∥
that is

|µm| ≤ G(|λnmn
|)c1|λnmn

| ec2|m| (|λnmn
|)
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Therefore
|µm|

(|λnmn
|)c1|λnmn

| ec2|m| (|λnmn
|) ≤ G. (6)

Hence

θ(f) =

∞∑
m=1

amµm (7)

is convergent where µm is given by (6). This completes the proof of the theorem.
Theorem 3 If {γm} forms a base for L that is for γ ∈ L,

γ =
∞∑

m=1

θm(γ)γm.

Let us define a metric ζ(γ, γ
′
) as follows

ζ(γ, γ
′
) = sup ∥(θ1(γ)− θ1(γ

′
))γ1 + . . .+ (θm(γ)− θm(γ

′
))γm∥.

Then L is complete with respect to the metric ζ.
Proof. Let {λr} be a sequence of entire functions in L such that ζ(λr, λs) < ϵ
for |r|, |s| ≥ |ro|. That is {λr} is a ζ - cauchy sequence in L. Hence for each given
ϵ > 0 there exists |ro| = |ro(ϵ)| such that

sup ∥
|m|∑
i=1

(ϕi(λr)− ϕi(λs))γi∥ < ϵ for |r|, |s| ≥ |ro|.

This implies ∥(ϕi(λr)− ϕi(λs))γi∥ < ϵ for |r|, |s| ≥ |ro|, |i| ≥ 1.
Since γi ̸= 0 for |i| ≥ 1,

∥ϕi(λr)− ϕi(λs)∥ < ϵ for |r|, |s| ≥ |ro|.

Therefore {ϕi(λr)} being a cauchy sequence in the usual topology of the complex
plane tends to ϕi as |r| → ∞.

∥
|m|∑
i=1

(ϕi(λr)− ϕi)γi∥ < ϵ for |r| ≥ |ro|.

Now for |r| = |ro| and γ = λro ,

∥
|m|∑
i=1

ϕi(λro)γi −
|n|∑
i=1

ϕi(λro)γi∥ < ϵ for |n|, |m| ≥ |no|.

Therefore

∥
|m|∑
i=1

ϕiγi −
|n|∑
i=1

ϕiγi∥ ≤ ∥
|m|∑
i=1

(ϕi − ϕi(λro))γi∥+

∥
|n|∑
i=1

(ϕi − ϕi(λro))γi∥+ ∥
|m|∑
i=1

ϕi(λro)γi −
|n|∑
i=1

ϕi(λro)γi∥

This implies

∥
|m|∑
i=1

ϕiγi −
|n|∑
i=1

ϕiγi∥ < 3ϵ for |n|, |m| ≥ |no|.
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Hence {
|m|∑
i=1

ϕiγi} converges to λ as L is complete with respect to the metric e. Thus

ϕi = ϕi(λ). Therefore ζ(λr, λ) < ϵ , |r| ≥ |ro|. Hence {λr} converges to λ where
λ ∈ L which proves the theorem. Theorem 4 The space Le is a Frechet space
where e is the metric defined on L.
Proof. Le is a normed linear metric space. In above theorem it has been proved
that Le is complete with respect to the metric e. Thus Le is a Frechet space.
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