A STUDY FOR A CLASS OF ENTIRE DIRICHLET SERIES IN n - VARIABLES

LAKSHIKA CHUTANI AND NIRAJ KUMAR

Abstract. Let \(L \) represents a class of entire functions represented by Dirichlet series in \(n \) - variables of the form
\[
 f(s) = \sum_{m=1}^{\infty} a_m e^{\lambda_{nmn} s}
\]
whose coefficients belong to the set of complex numbers \(\mathbb{C} \). \(L \) which becomes a complete Banach space is thereby proved to be a complex FK-space and a Frechet space.

1. Introduction

Let
\[
f(s_1, s_2, \ldots, s_n) = \sum_{m_1=1}^{\infty} \sum_{m_2=1}^{\infty} \cdots \sum_{m_n=1}^{\infty} a_{m_1, m_2, \ldots, m_n} e^{(\lambda_{1m_1} s_1 + \lambda_{2m_2} s_2 + \cdots + \lambda_{nmn} s_n)} \tag{1}
\]
be a \(n \)-tuple Dirichlet series where \(s_j = \sigma_j + it_j, j \in \{1, 2, \ldots, n\} \) and \(a_{m_1, m_2, \ldots, m_n} \in \mathbb{C} \). Also
\[
0 < \lambda_{p_1} < \lambda_{p_2} < \ldots < \lambda_{p_k} \to \infty \text{ as } k \to \infty \text{ for } p = 1, 2, \ldots, n.
\]
To simplify the form of \(n \)-tuple Dirichlet series, we have the following notations
\[
s = (s_1, s_2, \ldots, s_n) \in \mathbb{C}^n, \\
m = (m_1, m_2, \ldots, m_n) \in \mathbb{C}^n \text{ and} \\
\lambda_{nmn} = (\lambda_{1m_1}, \lambda_{2m_2}, \ldots, \lambda_{nmn}) \in \mathbb{R}^n. \\
\lambda_{nmn} s = \lambda_{1m_1} s_1 + \lambda_{2m_2} s_2 + \cdots + \lambda_{nmn} s_n \\
|\lambda_{nmn}| = \lambda_{1m_1} + \lambda_{2m_2} + \cdots + \lambda_{nmn} \\
|m| = m_1 + m_2 + \cdots + m_n.
\]
Thus the series (1) can be written as
\[
f(s) = \sum_{m=1}^{\infty} a_m e^{\lambda_{nmn} s}. \tag{2}
\]
Janusauskas in [4] showed that if there exists a tuple \(p > 0 = (0, 0, \ldots, 0) \) such that
\[
\limsup_{|m| \to \infty} \frac{\sum_{k=1}^{\infty} \log m_k}{p \lambda_{n,m}} = 0,
\]
then the domain of absolute convergence of (2) coincides with its domain of convergence. Sarkar in [1] proved that the necessary and sufficient condition for series (2) satisfying (3) to be entire is that
\[
\lim_{|m| \to \infty} \frac{\log |a_m|}{|\lambda_{n,m}|} = -\infty.
\]
Consider \(L \) as the set of series (2) satisfying (3) and (4) for which
\[
(|\lambda_{n,m}|)^{c_1}|\lambda_{n,m}| e^{c_2|m|(|\lambda_{n,m}|)} |a_m|
\]
is bounded. Then every element of \(L \) represents an entire function. Define the binary operations in \(L \) as
\[
\begin{align*}
 f(s) + h(s) &= \sum_{m=1}^{\infty} (a_m + b_m) e^{\lambda_{n,m} s}, \\
 \xi f(s) &= \sum_{m=1}^{\infty} (\xi a_m) e^{\lambda_{n,m} s}, \\
 f(s) h(s) &= \sum_{m=1}^{\infty} (|\lambda_{n,m}|)^{c_1}|\lambda_{n,m}| e^{c_2|m|(|\lambda_{n,m}|)} a_m b_m e^{\lambda_{n,m} s}.
\end{align*}
\]
The norm in \(L \) is defined as
\[
\|f\| = \sup_{|m| \geq 1} (|\lambda_{n,m}|)^{c_1}|\lambda_{n,m}| e^{c_2|m|(|\lambda_{n,m}|)} |a_m|.
\]

Definition 1 A space \(L \) is called an FK-space if the following conditions are satisfied

1.a) \(L \) is a linear space over the field of complex numbers (or real numbers) and elements of \(L \) are sequences of complex numbers (or real numbers).

1.b) \(L \) is a locally convex topological linear space in which the topology is given by a countable family of semi-norms.

1.c) \(L \) is metrizable and is a complete metric space.

1.d) If \(\{\alpha_m\} \) is a base for \(L \) such that for \(l \in L \),
\[
l = \sum_{m=1}^{\infty} \theta_m(l) \alpha_m
\]
then \(\theta_m(l) (|m| \geq 1) \) are continuous linear functionals. If the field for \(L \) is complex numbers then \(L \) is called a complex FK-space.

During the last two decades a lot of research has been carried out in the field of Dirichlet series and many important results have been proved where few of them may be found in [2] - [3]. Kumar and Manocha in [5] considered the condition \((\lambda_n)^{c_1}(\lambda_n) e^{c_2 n - c_1} (\lambda_n) \|a_n\| \) of weighted norm for a Dirichlet series in one variable and established some results on it. Recently in [6] results were established on Dirichlet series with complex frequencies. Until now a lot work has been done for the Dirichlet series in one variable. The purpose of this paper is to give a wider view to the study of Dirichlet series in \(n \)-variables. In this section main results have been proved. For the definitions of terms used refer [7, 8].
respect to the usual addition and multiplication, a topology is defined such that \(L \) becomes a complex FK-space.

Proof. Let for \(f(s), h(s) \in L \) define addition of \(f(s) \) and \(g(s) \) as \((f + h)(s) = f(s) + h(s)\) and scalar multiplication of \(f(s) \) as \((\tau f)(s) = \tau f(s)\).

Let us now define the zero element of \(L \) defined by \(0^* \) as the entire function which is zero that is \(f = 0^* \) implies \(\sum_{m=1}^{\infty} a_m e^{\lambda_{nm} s} = 0 \) which further implies \(a_m = 0 \) for all \(|m| \geq 1 \) and conversely.

Clearly \(L \) forms an infinite dimensional linear space over the field of complex numbers and hence one gets basis for \(L \) namely Schauder basis as

\[
\delta_{m_1, m_2, \ldots, m_n} = \sum_{m_1, m_2, \ldots, m_n} a_{m_1} e^{\lambda_{m_1} s_1 + \lambda_{m_2} s_2 + \ldots + \lambda_{m_n} s_n}
\]

or

\[
\delta_m = e^{\lambda_{nm} s}.
\]

Also

\[
L_{m_1} = (1, 0, 0, \ldots)
\]

\[
L_{m_2} = (0, 1, 0, \ldots)
\]

\[
\vdots
\]

\[
L_{m_n} = (0, 0, \ldots, 1, 0, \ldots)
\]

where 1 in \(L_{m_n} \) is at the \(m_n \)-th place. It therefore implies that if \(x(s) \in L \) then

\[
x(s) = (a_1(x), a_2(x), \ldots, a_m(x), \ldots)
\]

where

\[
\lim_{|m| \to \infty} \frac{\log |a_m|}{|\lambda_{nm}|} = -\infty
\]

and this shows that \(L \) satisfies (1.a).

Define \(H = \{L_{m_1}, L_{m_2}, \ldots, L_{m_n}, \ldots\}. \) For each \(L_{m_n} \in H \) define the norm as

\[
\|f, L_{m_n}\| = \sup_{|m| \geq 1} (|\lambda_{nm}|)^c_1 |\lambda_{nm}| e^{c_2 |m|} (|\lambda_{nm}|) |a_m|\]

where

\[
f(s) = \sum_{m=1}^{\infty} a_m e^{\lambda_{nm} s} \in L
\]

is an entire function. Then as

\[
\frac{\log |a_m|^{-1}}{|\lambda_{nm}|} > v
\]

for \(v > c_2|m| \) implies

\[
|a_m| < e^{-v|\lambda_{nm}|} \text{ for } |m| \geq |m'|,
\]

where \(m' = (m'_1, m'_2, \ldots, m'_n) \). Therefore

\[
\|f, L_{m_n}\| < \sup_{|m| < |m'|} (|\lambda_{nm}|)^{c_1} |\lambda_{nm}| e^{c_2 |m|} (|\lambda_{nm}|) |a_m| + \sup_{|m| \geq |m'|} (|\lambda_{nm}|)^{c_1} |\lambda_{nm}| e^{(c_2 |m| - v)} (|\lambda_{nm}|) |a_m|
\]

Thus

\[
\|f, L_{m_n}\| < \infty
\]
for any fixed $L_{m, n} \in H$. Hence $\| f, L_{m, n} \|$ is defined for each $L_{m, n} \in H$. Let $L_{m, n}$ be fixed, then

$$\| f, L_{m, n} \| = f(s)$$

$$\Leftrightarrow |a_m| = 0 \text{ for } |m| \geq 1$$

$$\Leftrightarrow f(s) = 0 \text{ for all } |s|$$

$$\Leftrightarrow f = 0^*.$$

Since

$$h(s) = \sum_{m=1}^{\infty} b_m e^{\lambda_m n_s}$$

Then

$$|a_m + b_m| \leq |a_m| + |b_m|$$

implies

$$\| f + h, L_{m, n} \| \leq \| f, L_{m, n} \| + \| h, L_{m, n} \|.$$ Again if ν is any complex number then

$$\| \nu f, L_{m, n} \| = |\nu| \| f, L_{m, n} \|.$$ Thus $\| \ldots, L_{m, n} \|$ defines a norm for each $L_{m, n} \in H$. Hence L becomes a locally convex linear topological space as there exists a sequence $\{\| \ldots, L_{m, n} \| : |n| = 1, 2, 3, \ldots \}$ of enumerable number of norms on L. Let

$$\| f \| = \sup_{|m| \geq 1} \frac{|f, L_{m, n}|}{1 + |f, L_{m, n}|}$$

and

$$e(f, h) = \| f - h \|$$

Then e is a metric on L. It can be easily verified that the topology induced by e on L is the same as induced by the sequence $\{\| \ldots, L_{m, n} \|\}$. In fact if Y is open in the topology induced by the family of norms then Y is also open in the e-metric topology of L. Now let Y be open in the e-metric topology of L. Then for each $g(s) \in Y$ we have $\epsilon > 0$ such that

$$K = \{ g(s) : g \in B(f; \epsilon) \} \subset Y \text{ for } 0 < \epsilon < 1$$

where $B(f; \epsilon)$ is an open ball centered at $f(s)$ and is of radius ϵ. We find M such that

$$\sup_{|m| \geq |M| + 1} \frac{1}{2^m} \frac{1}{1 + \| k - g, L_{m, n} \|} < \frac{\epsilon}{2},$$

where $k - g$ is a vector in the neighbourhood of 0. Let

$$F = \{ x(s) : \| x, L_1 \| \leq \epsilon_1 \} \cap \ldots \cap \{ x(s) : \| x, L_M \| \leq \epsilon_M \}$$

where

$$\epsilon_m < \frac{\epsilon}{2} (|m| = 1, 2, \ldots, |M|).$$
Let \(k(s) \in g(s) + F \). Then \(k(s) = g(s) + x(s) \) where \(x(s) \in F \). Then

\[
e(k, g) = \sup_{1 \leq |m| \leq |M|} \left(1 + 2m \right) \frac{1}{2^m} \left(\| k - g, L_{m_n} \| + \sup_{|m| \geq |M| + 1} \frac{1}{2^m} \| k - g, L_{m_n} \| \right)
\]

\[
< \frac{1}{\epsilon} \sup_{1 \leq |m| \leq |M|} \left(1 + 2m \right) \left(1 + \epsilon_m \right) + \epsilon
\]

\[
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

Therefore \(e(k, g) < \epsilon \) implies that \(k(s) \in B(g; \epsilon) \) that is \(k(s) \in K \) which further implies \(k(s) \in Y \). Thus \(g(s) + F \subset Y \) which establishes that \(Y \) is open in the topology induced by the family of norms. Hence \(L \) is metrizable.

Now we show that \(L \) is complete with respect to the metric \(e \). It is known that a space is complete if and only if every nested sequence of closed balls whose radii tend to zero has non empty intersection.

Let \(\{ f_m : m \in M \} \) be a cauchy sequence in \(L \). For each \(m \in M \), let \(W_m = \{ x_k : k \geq m \} \) be \(m \)-th tail of sequence and \(s_m \) be twice the diameter of \(W_m \). Also let \(B_m \) be a closed ball centered at \(f_m \) of radius \(r_m = 2s_m \). Then

\[
W_m \subseteq B_m.
\]

Since the sequence is cauchy therefore \(\lim_{m \to \infty} s_m = 0 \). Now let \(m \in M \) be arbitrary. Therefore there exists \(k > m \) such that

\[
s_k < \frac{1}{2}s_m.
\]

Suppose \(g(s) \in B_k \) then

\[
e(g, f_m) \leq e(g, f_k) + e(f_k, f_m)
\]

\[
\leq r_k + s_m
\]

\[
= 2s_k + s_m
\]

\[
< 2s_m = r_m.
\]

Therefore \(g(s) \in B_m \) and hence \(B_k \subseteq B_m \). In the like manner we construct a nested sequence of the closed balls \(\{ B_m : m \in M \} \). Then from hypothesis nested sequence of closed balls has a non empty intersection say \(f \). Let \(\{ f_{r_1} \} \) be a cauchy sequence in \(L \) where

\[
f_{r_1}(s) = \sum_{i=1}^{\infty} a_i^{(r_1)} e^{\lambda_{nt_n}s}.
\]

Now

\[
e(f_{r_1}, f_{r_2}) < \epsilon \text{ for all } r_1, r_2 \geq |M|
\]

implies

\[
\sup_{|m| \geq 1} \frac{1}{2^m} \left(1 + \frac{1}{2^m} \right) \left(1 + 2m \right) \left(1 + \epsilon_m \right) + \epsilon < \epsilon \text{ for } r_1, r_2 \geq |M|.
\]

Thus

\[
(1 - 2^m \epsilon) \| f_{r_1} - f_{r_2}, L_{m_n} \| < 2^m \epsilon \text{ for } r_1, r_2 \geq |M|, |m| = 1, 2, \ldots
\]

\[
(1 - 2^m \epsilon) \sup_{|t| \geq 1} \| \lambda_{n_{t_n}} \| e^{t|\lambda_{n_{t_n}}|} e^{r_1|\lambda_{n_{t_n}}|} - e^{r_2|\lambda_{n_{t_n}}|} < 2^m \epsilon \text{ for } r_1, r_2 \geq |M|, |m| = 1, 2, \ldots
\]

\[
(1 - 2^m \epsilon) |a_t^{(r_1)} - a_t^{(r_2)}| < 2^m \epsilon \text{ for } r_1, r_2 \geq |M|, |t| \geq 1, |m| = 1, 2, \ldots
\]
and
\[\lim_{r_2 \to \infty} a_t^{(r_2)} = a_t, \quad |t| = 1, 2, \ldots \]
implies
\[(1 - 2^m \epsilon) |a_t^{(r_1)} - a_t| < 2^m \epsilon \left\{ \left(|\lambda_{n_1}| \right)^{c_1 |\lambda_{n_1}|} e^{c_2 |t| (|\lambda_{n_1}|)} \right\}^{-1} \]
for \(r_1 \geq |M|, |t|, |m| = 1, 2, \ldots \)
If \(2^m \epsilon < \theta < 1 \) then
\[|a_t^{(r_1)} - a_t| < \frac{\theta}{1 - \theta} \left\{ \left(|\lambda_{n_1}| \right)^{c_1 |\lambda_{n_1}|} e^{c_2 |t| (|\lambda_{n_1}|)} \right\}^{-1} \]
that is
\[|a_t| < |a_t^{(r_1)}| + \frac{\theta}{1 - \theta} \left\{ \left(|\lambda_{n_1}| \right)^{c_1 |\lambda_{n_1}|} e^{c_2 |t| (|\lambda_{n_1}|)} \right\}^{-1} \]
and since
\[\lim_{|t| \to \infty} \frac{\log |a_t^{(r_1)}|}{|\lambda_{n_1}|} = -\infty. \]
Hence it follows
\[\lim_{|t| \to \infty} \frac{\log |a_t|}{|\lambda_{n_1}|} = -\infty. \]
Thus
\[f(s) = \sum_{t=1}^{\infty} a_t e^{\lambda_{n_1} s} \]
represents an entire function such that
\[\| f_{r_1} - f, L_{m_n} \| < \epsilon \quad \text{where} \quad r_1 \geq |M|, |m| = 1, 2, \ldots \]
Therefore
\[\| f_{r_1} - f, L_{m_n} \| \to 0 \text{ as } r_1 \to \infty \]
or
\[e(f_{r_1}, f) \to 0 \text{ as } r_1 \to \infty \]
This proves (1.c) of Definition (??).
Next we need to prove the condition (1.d). Let therefore
\[\beta = \sum_{m=1}^{\infty} \theta_m(\beta) \beta_m \quad ; \beta \in L \]
\[\beta_m \equiv \gamma_m \text{ and } \gamma_m = e^{\lambda_{m_n} s}. \]
Then we show \(\theta_m(\beta) \) is a continuous linear functional of \(\beta \) in \(L \) for each \(|m| \geq 1 \). Clearly \(\theta_m \) is linear and since \(L \) is endowed with the topology given by the metric \(e \) and is a topological vector space. Therefore it is sufficient to prove that \((\theta_m(\beta)) \) is continuous.
Let \(\{\mu_s\} \subset L \) and suppose \(e(\mu_s, 0) < \epsilon \) for \(|s| \geq |s_0| \) where \(|s| \geq 1 \), then
\[\mu_s = \sum_{m=1}^{\infty} \theta_m(\mu_s) \beta_m. \]
Again if
\[\mu_s^{(M)} = \sum_{m=1}^{M} \theta_m(\mu_s) \beta_m. \]
then \(e(\mu^M_s, \mu_s) < \epsilon \) for \(|M| \geq |M_o|\). Hence
\[
e(\mu^M_s, 0) < e(\mu^M_s, \mu_s) + e(\mu_s, 0) \leq 2\epsilon \quad \text{for all} \ |M| \geq |M_o|, \ |s| \geq |s_o|.
\]

Also
\[
\|\mu^M_s, L_m\| - \|\mu^{(M-1)}_s, L_m\| = (|\lambda_n M_n|)^c_1|\lambda_n M_n| e^{c_2|M|(|\lambda_n M_n|)} \|\theta M(\mu_s)\|
\]
where
\[
\|\mu^M_s, L_m\| = \sup_{|m| \geq 1} (|\lambda_n M_n|)^c_1|\lambda_n M_n| e^{c_2|m|(|\lambda_n M_n|)} \|\theta M(\mu_s)\|.
\]

But
\[
\|\mu^M_s, L_m\| < \epsilon \quad \text{for} \ |M| \geq |M_o|, \ |s| \geq |s_o|, \ |m| \geq 1
\]

Therefore
\[
|\theta M(\mu_s)| < \epsilon \quad \text{for} \ |s| \geq |s_o|, \ |m| \geq 1.
\]

Hence the theorem.

Linear Functionals: In this section continuous linear functionals on the space \(L \) have been characterized when \(L \) is endowed with the topology given by the norms \(\{L, \ldots, L_m\} : n = 1, 2, \ldots \) \textbf{Theorem 2} Every continuous linear functional \(\theta \) on the normed linear space \((L, \ldots, L_m) : n = 1, 2, \ldots \) is of the form
\[
\theta(f) = \sum_{m=1}^\infty a_m \mu_m : f(s) = \sum_{m=1}^\infty a_m e^{\lambda n m \ s}
\]
where
\[
\{\|\mu_m|/(|\lambda_n M_n|)^c_1|\lambda_n M_n| e^{c_2|m|(|\lambda_n M_n|)}\}
\]
is bounded.

\textbf{Proof.} Let \(\theta \) be a continuous linear functional on the normed linear space \((L, \ldots, L_m) : n = 1, 2, \ldots \) and so there exists a positive constant \(G \) such that
\[
|\theta(f)| \leq G\|f, L_m\| \quad \text{for all} \ f(s) \in L.
\]

Let
\[
f M(s) = \sum_{m=1}^M a_m e^{\lambda n m \ s}
\]
then
\[
\|f - f M, L_m\| = \sup_{|m| \geq |M| + 1} (|\lambda_n M_n|)^c_1|\lambda_n M_n| e^{c_2|m|(|\lambda_n M_n|)}|a_m|.
\]
The above expression can be made as small as we want by making \(M \) large enough, one gets
\[
\|f - f M, L_m\| \to 0 \quad \text{as} \ |M| \to \infty.
\]

Thus
\[
\theta(f) = \lim_{M \to \infty} \theta(f M) = \lim_{M \to \infty} \left(\sum_{m=1}^M a_m \mu_m\right)
\]
where \(\mu_m = \theta(e^{\lambda n m \ s}) \). Now
\[
|\mu_m| = |\theta(e^{\lambda n m \ s})| \leq G\|e^{\lambda n m \ s}, L_m\|
\]
that is
\[
|\mu_m| \leq G(|\lambda_n M_n|)^c_1|\lambda_n M_n| e^{c_2|m|(|\lambda_n M_n|)}
\]
Therefore
\[
\frac{|\mu_m|}{(|\lambda_{n,n}|)^{c_1|\lambda_{n,n}|} e^{c_2 |\lambda_{n,n}|}} \leq G. \tag{6}
\]
Hence
\[
\theta(f) = \sum_{m=1}^{\infty} a_m \mu_m \tag{7}
\]
is convergent where \(\mu_m\) is given by (6). This completes the proof of the theorem.

Theorem 3 If \(\{\gamma_m\}\) forms a base for \(L\) that is for \(\gamma \in L\),
\[
\gamma = \sum_{m=1}^{\infty} \theta_m(\gamma) \gamma_m.
\]

Let us define a metric \(\zeta(\gamma, \gamma')\) as follows
\[
\zeta(\gamma, \gamma') = \sup \| (\theta_1(\gamma) - \theta_1(\gamma')) \gamma_1 + \ldots + (\theta_m(\gamma) - \theta_m(\gamma')) \gamma_m \|.
\]
Then \(L\) is complete with respect to the metric \(\zeta\).

Proof. Let \(\{\lambda_r\}\) be a sequence of entire functions in \(L\) such that \(\zeta(\lambda_r, \lambda_s) < \epsilon\) for \(|r|, |s| \geq |r_0|\). That is \(\{\lambda_r\}\) is a \(\zeta\) - cauchy sequence in \(L\). Hence for each given \(\epsilon > 0\) there exists \(r_o = \epsilon(\epsilon)\) such that
\[
\sup \| \sum_{i=1}^{m} (\phi_i(\lambda_r) - \phi_i(\lambda_s)) \gamma_{i} \| \leq \epsilon \text{ for } |r|, |s| \geq |r_o|. \]

This implies \(\| (\phi_i(\lambda_r) - \phi_i(\lambda_s)) \gamma_{i} \| < \epsilon \) for \(|r|, |s| \geq |r_o|, |i| \geq 1.\)

Since \(\gamma_i \neq 0\) for \(|i| \geq 1,\)
\[
\| \phi_i(\lambda_r) - \phi_i(\lambda_s) \| < \epsilon \text{ for } |r|, |s| \geq |r_o|. \]

Therefore \(\{\phi_i(\lambda_r)\}\) being a cauchy sequence in the usual topology of the complex plane tends to \(\phi_i\) as \(|r| \to \infty.\)
\[
\| \sum_{i=1}^{m} (\phi_i(\lambda_r) - \phi_i) \gamma_{i} \| \leq \epsilon \text{ for } |r| \geq |r_o|. \]

Now for \(|r| = |r_o|\) and \(\gamma = \lambda_{r_o},\)
\[
\| \sum_{i=1}^{m} \phi_i(\lambda_{r_o}) \gamma_{i} - \sum_{i=1}^{n} \phi_i(\lambda_{r_o}) \gamma_{i} \| < \epsilon \text{ for } |n|, |m| \geq |n_o|. \]

Therefore
\[
\| \sum_{i=1}^{m} \phi_i \gamma_{i} - \sum_{i=1}^{n} \phi_i \gamma_{i} \| \leq \| \sum_{i=1}^{m} (\phi_i - \phi_i(\lambda_{r_o})) \gamma_{i} \| + \| \sum_{i=1}^{n} (\phi_i - \phi_i(\lambda_{r_o})) \gamma_{i} \| + \| \sum_{i=1}^{n} \phi_i(\lambda_{r_o}) \gamma_{i} - \sum_{i=1}^{n} \phi_i(\lambda_{r_o}) \gamma_{i} \|
\]
This implies
\[
\| \sum_{i=1}^{m} \phi_i \gamma_{i} - \sum_{i=1}^{n} \phi_i \gamma_{i} \| < 3 \epsilon \text{ for } |n|, |m| \geq |n_o|. \]
Hence $\{ \sum_{i=1}^{m} \phi_i \gamma_i \}$ converges to λ as L is complete with respect to the metric e. Thus $\phi_i = \phi_i(\lambda)$. Therefore $\zeta(\lambda, r, \lambda) < \epsilon$, $|r| \geq |r_0|$. Hence $\{ \lambda_r \}$ converges to λ where $\lambda \in L$ which proves the theorem. **Theorem 4** The space L_e is a Frechet space where e is the metric defined on L.

Proof. L_e is a normed linear metric space. In above theorem it has been proved that L_e is complete with respect to the metric e. Thus L_e is a Frechet space.

References

