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EXACT SOLUTIONS AND STABILITY OF SIXTH ORDER

DIFFERENCE EQUATIONS

M. B. ALMATRAFI

Abstract. Some natural phenomena are sometimes modeled by using recur-
sive equations. Therefore, extracting exact solutions of such equations plays a

significant role in explaining the future pattern of these problems. It is difficult

sometimes to establish the exact solutions of some difference equations. Con-
sequently, this work investigates the equilibrium points, local stability, global

stability and periodicity of two difference equations. This paper also aims

to find the analytic solutions of the respective equations and plots some 2D
figures for some obtained results. The used method can be easily applied for

other high-order difference equations.

1. Introduction

The investigation of difference equations has become an active topic for some
scholars. This can be mainly attributed to the fact that most difference equations
are extracted from modeling some natural phenomena (for example, chemical, phys-
ical, biological, social, economical and engineering problems) or from discretising
some differential equations. Elaydi [1] used difference equations to model vari-
ous applications such as the trade model, the propagation of annual plants, the
transmission of information model, the host–parasitoid systems, the business cycle
model, the larval–pupal–adult (LPA) model and the Nicholson-Bailey model. Mur-
ray [2] studied a single species population growth in discrete steps. According to
[2] difference equations describe wide spectrum of biomedical applications such as
cancer growth, ageing, cell proliferation and genetics. Water waves are modeled by
partial differential equations from which one can obtain difference equations solved
by some specific methods.

Some properties of recursive equations such as equilibria, local stability, global
stability, boundedness and periodicity are usually discussed theoretically. More
specifically, some scientists studied the qualitative behavior of some difference equa-
tions. For example, Almatrafi and Alzubaidi [3] investigated the local and global
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attractivity, periodicity and the analytic solutions of the following difference equa-
tion:

xn+1 = c1xn−3 +
c2xn−3

c3xn−3 − c4xn−7
, n = 0, 1, ...

Elabbasy et al. [4] studied the qualitative properties of the difference equation

xn+1 = axn −
bxn

cxn − dxn−1
, n = 0, 1, ...

Alayachi et al. [5] discussed the qualitative behaviors of the difference equation

yn+1 = Ayn−1 +
Byn−1yn−3

Cyn−3 +Dyn−5
, n = 0, 1, ...

The authors in [6] examined the local stability, global stability, periodicity and the
solutions of the difference equation

um+1 = aum−1 +
bum−1um−4

cum−4 − dum−6
, m = 0, 1, ...

Garić-Demirović et al. [7] studied the stability of the difference equation

xn+1 =
Ax2n +Bxnxn−1 + Cx2n−1
ax2n + bxnxn−1 + cx2n−1

, n = 0, 1, ...

The study in [8] concentrates on discussing the periodicity and the stability of the
equation

xn+1 =
α+ βxn + γxn−k
Bxn + Cxn−k

.

More results about difference equations can be found in the refs. [10]-[19].
This work aims to investigate the equilibria, local stability, global attractivity

and the exact solutions of the following difference equations

un+1 = αun−1 +
βun−1un−5

γun−3 − δun−5
, n = 0, 1, ..., (1)

un+1 = αun−1 −
βun−1un−5

γun−3 + δun−5
, n = 0, 1, ..., (2)

where the coefficients α, β, γ, and δ are positive real numbers and the initial con-
ditions ui for all i = −5,−4, ..., 0, are arbitrary non-zero real numbers. We also
present the numerical solutions via some 2D graphs.

2. On the Equation un+1 = αun−1 + βun−1un−5

γun−3−δun−5

This section is devoted to study the qualitative behaviors of Eq. (1). The
equilibrium point of Eq. (1) is given by

ū = αū+
βū2

γū− δū
,

which leads to ū = 0, if (γ − δ)(1− α) 6= β.
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3. Local Stability

In this section, we examine the local stability about the equilibrium point of
Eq. (1). In order to discuss the stability of Eq. (1), we first define the function

g : (0,∞)
3 −→ (0,∞) by

g(x, y, z) = αx+
βxz

γy − δz
. (3)

Then,

∂g(x, y, z)

∂x
= α+

βz

γy − δz
, (4)

∂g(x, y, z)

∂y
= − βγxz

(γy − δz)2
, (5)

∂g(x, y, z)

∂z
=

βγxy

(γy − δz)2
. (6)

Now, we evaluate Eqs. (4), (5) and Eq. (6) at ū. That is

∂g(ū, ū, ū)

∂x
= α+

βū

γū− δū
= α+

β

γ − δ
:= −q1,

∂g(ū, ū, ū)

∂y
= − βγū2

(γū− δū)2
= − βγ

(γ − δ)2
:= −q2,

∂g(ū, ū, ū)

∂z
=

βγū2

(γū− δū)2
=

βγ

(γ − δ)2
:= −q3.

Thus, the linearised equation of Eq. (1) about the equilibrium point is given by

vn+1 + q1vn−1 + q2vn−3 + q3vn−5 = 0.

Theorem 1 Assume that

|α(γ − δ) + β| |γ − δ| < (γ − δ)2 − 2βγ.

Then, the equilibrium point ū = 0 is locally asymptotically stable.
Proof. Theorem A in [20] guarantees that the stability of the equilibrium point
occurs if

|q1|+ |q2|+ |q3| < 1. (7)

Plugging qi, i = 1, 2, 3, into Eq. (7) leads to∣∣∣∣−(α+
β

γ − δ

)∣∣∣∣+

∣∣∣∣ βγ

(γ − δ)2

∣∣∣∣+

∣∣∣∣− βγ

(γ − δ)2

∣∣∣∣ < 1.

Hence, ∣∣∣∣α+
β

γ − δ

∣∣∣∣+
2βγ

(γ − δ)2
< 1,

which can be written as

|α(γ − δ) + β| |γ − δ| < (γ − δ)2 − 2βγ.
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4. Global Stability of the Equilibrium Point

The global stability is investigated in this section. We use Theorem B in [21] to
show the stability.
Theorem 2 Assume that γy > δz, then the equilibrium point of Eq. (1) is a global
attractor if δ(α− 1) 6= β.

Proof. Assume that p, q ∈ R and let g : [p, q]
3 −→ [p, q] is a function defined by

Eq. (3). Since γy > δz, the function g is increasing in x and z and decreasing in y.
Let (φ, ψ) be a solution for the following system:

φ = g(φ, ψ, φ), ψ = g(ψ, φ, ψ).

Plugging this into Eq. (1) leads to

φ = g(φ, ψ, φ) = αφ+
βφ2

γψ − δφ
,

ψ = g(ψ, φ, ψ) = αψ +
βψ2

γφ− δψ
,

which can be rewritten as

γφψ − δφ2 = αγφψ − αδφ2 + βφ2, (8)

γφψ − δψ2 = αγφψ − αδψ2 + βψ2. (9)

Subtracting Eq. (9) from Eq. (8) leads to

[δ(1− α) + β](ψ2 − φ2) = 0.

Hence, if δ(α− 1) 6= β, then φ = ψ. Therefore, Theorem B in [21] ensures that the
equilibrium point is a global attractor.
Theorem 3 Let α + βz

γy−δz < 0, then the equilibrium point of Eq. (1) is a global

attractor if δ 6= αγ.
Proof. The proof is omitted.

5. Periodicity of the Solutions

This section is devoted to discuss the prime period two solutions of Eq. (1).
Theorem 4 Equation (1) has no prime period two solutions.
Proof. We will use contradiction to prove this theorem. Suppose that Eq. (1)
has positive prime period two solutions given by

..., U1, U2, U1, U2, ...

Then,

U1 = αU1 +
βU2

1

γU1 − δU1
,

U2 = αU2 +
βU2

2

γU2 − δU2
.

Or,

(1− α)U1 =
βU1

γ − δ
,

(1− α)U2 =
βU2

γ − δ
,

which implies that U1 = U2. This contradicts the fact that U1 6= U2.
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6. Exact Solution of Eq. (1) when α = β = γ = δ = 1

In this section, we investigate the exact solutions of the following rational differ-
ence equation

un+1 = un−1 +
un−1un−5
un−3 − un−5

, n = 0, 1, ..., (10)

where the initial conditions are positive real numbers.
Theorem 5 Let {un}∞n=−5 be a solution to Eq. (10) and suppose that u−5 =
a, u−4 = b, u−3 = c, u−2 = d, u−1 = e, u0 = f. Then, for n = 0, 1, 2, ..., the
solutions of Eq. (10) are given by the following formulas:

u8n−5 =
e2ncn

an−1(c− e)n(a− c)n
,

u8n−4 =
f2ndn

bn−1(d− f)n(b− d)n
,

u8n−3 =
cn+1e2n

an(a− c)n(c− e)n
,

u8n−2 =
dn+1f2n

bn(b− d)n(d− f)n
,

u8n−1 =
e2n+1cn

an(a− c)n(c− e)n
,

u8n =
f2n+1dn

bn(b− d)n(d− f)n
,

u8n+1 = − cn+1e2n+1

an(c− e)n(a− c)n+1
,

u8n+2 = − dn+1f2n+1

bn(d− f)n(b− d)n+1
.

Proof. It can be easily observed that the solutions are true for n = 0. We now
assume that n > 0 and that our assumption holds for n− 1. That is,

u8n−13 =
e2n−2cn−1

an−2(c− e)n−1(a− c)n−1
,

u8n−12 =
f2n−2dn−1

bn−2(d− f)n−1(b− d)n−1
,

u8n−11 =
cne2n−2

an−1(a− c)n−1(c− e)n−1
,



214 M. B. ALMATRAFI EJMAA-2022/10(1)

u8n−10 =
dnf2n−2

bn−1(b− d)n−1(d− f)n−1
,

u8n−9 =
e2n−1cn−1

an−1(a− c)n−1(c− e)n−1
,

u8n−8 =
f2n−1dn−1

bn−1(b− d)n−1(d− f)n−1
,

u8n−7 = − cne2n−1

an−1(c− e)n−1(a− c)n
,

u8n−6 = − dnf2n−1

bn−1(d− f)n−1(b− d)n
.

Eq. (10) gives us that

u8n−5 = u8n−7 +
u8n−7u8n−11
u8n−9 − u8n−11

= − cne2n−1

an−1(c− e)n−1(a− c)n
+
− cne2n−1

an−1(c−e)n−1(a−c)n
cne2n−2

an−1(a−c)n−1(c−e)n−1

e2n−1cn−1

an−1(a−c)n−1(c−e)n−1 − cne2n−2

an−1(a−c)n−1(c−e)n−1

= − cne2n−1

an−1(c− e)n−1(a− c)n
− e2n−2cn

an−1(c− e)n−1(a− c)n
(
1
c −

1
e

)
= − cne2n−1

an−1(c− e)n−1(a− c)n
+

e2n−1cn+1

an−1(c− e)n(a− c)n

=
e2ncn

an−1(c− e)n(a− c)n
.

Moreover, it can be seen from Eq. (10) that

u8n−4 = u8n−6 +
u8n−6u8n−10
u8n−8 − u8n−10

= − dnf2n−1

bn−1(d− f)n−1(b− d)n
+
− dnf2n−1

bn−1(d−f)n−1(b−d)n
dnf2n−2

bn−1(b−d)n−1(d−f)n−1

f2n−1dn−1

bn−1(b−d)n−1(d−f)n−1 − dnf2n−2

bn−1(b−d)n−1(d−f)n−1

= − dnf2n−1

bn−1(d− f)n−1(b− d)n
− dnf2n−2

bn−1(d− f)n−1(b− d)n
(

1
d −

1
f

)
= − dnf2n−1

bn−1(d− f)n−1(b− d)n
+

dn+1f2n−1

bn−1(d− f)n(b− d)n

=
f2ndn

bn−1(d− f)n(b− d)n
.
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Furthermore, Eq. (10) gives us

u8n−3 = u8n−5 +
u8n−5u8n−9
u8n−7 − u8n−9

=
e2ncn

an−1(c− e)n(a− c)n
+

e2ncn

an−1(c−e)n(a−c)n
e2n−1cn−1

an−1(a−c)n−1(c−e)n−1

− cne2n−1

an−1(c−e)n−1(a−c)n −
e2n−1cn−1

an−1(a−c)n−1(c−e)n−1

=
e2ncn

an−1(c− e)n(a− c)n
− e2ncn

an(c− e)n(a− c)n−1

=
e2ncn

(c− e)n(a− c)n

(
a

an
− a− c

an

)
=

e2ncn+1

an(c− e)n(a− c)n
.

Also, Eq. (10) leads to

u8n−2 = u8n−4 +
u8n−4u8n−8
u8n−6 − u8n−8

=
f2ndn

bn−1(d− f)n(b− d)n
+

f2ndn

bn−1(d−f)n(b−d)n
f2n−1dn−1

bn−1(b−d)n−1(d−f)n−1

− dnf2n−1

bn−1(d−f)n−1(b−d)n −
f2n−1dn−1

bn−1(b−d)n−1(d−f)n−1

=
f2ndn

bn−1(d− f)n(b− d)n
− f2ndn

bn(d− f)n(b− d)n−1

=
f2ndn

bn(d− f)n(b− d)n

(
b− 1

(b− d)−1

)
=

f2ndn+1

bn(d− f)n(b− d)n
.

Moreover, Eq. (10) gives

u8n−1 = u8n−3 +
u8n−3u8n−7
u8n−5 − u8n−7

=
cn+1e2n

an(a− c)n(c− e)n
+

cn+1e2n

an(a−c)n(c−e)n

(
− cne2n−1

an−1(c−e)n−1(a−c)n

)
e2ncn

an−1(c−e)n(a−c)n + cne2n−1

an−1(c−e)n−1(a−c)n

=
cn+1e2n

an(a− c)n(c− e)n
− cne2n

an(c− e)n−1(a− c)n
(
1 + c−e

c

)
=

cn+1e2n

an(a− c)n(c− e)n
− cne2n

an(c− e)n−1(a− c)n

=
cne2n+1

an(a− c)n(c− e)n
.

Finally, Eq. (10) gives
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u8n = u8n−2 +
u8n−2u8n−6
u8n−4 − u8n−6

=
dn+1f2n

bn(b− d)n(d− f)n
+

dn+1f2n

bn(b−d)n(d−f)n

(
− dnf2n−1

bn−1(d−f)n−1(b−d)n

)
f2ndn

bn−1(d−f)n(b−d)n + dnf2n−1

bn−1(d−f)n−1(b−d)n

=
dn+1f2n

bn(b− d)n(d− f)n
− dnf2n

bn(b− d)n(d− f)n−1

=
dnf2n+1

bn(b− d)n(d− f)n
.

Other solutions can be similarly proved.

7. Numerical Examples

The above-mentioned theoretical results are plotted in this section. The values
of the parameters are selected according to the above conditions.
Example 1. The local stability in the neighborhood of the equilibrium point is
plotted in Figure 1 under the assumptions α = β = 0.5, γ = 1, δ = 3, u−5 =
−0.2, u−4 = 0.2, u−3 = −0.1, u−2 = 0.01, u−1 = 0.1, u0 = −0.1.

0 10 20 30 40 50 60 70

n

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

u(
n)

Local stability

Figure 1. Local stability about the equilibrium.

Example 2. Figure 2 illustrates the global stability of the equilibrium point under
the values α = β = 0.5, γ = 0.1, δ = 3, u−5 = 5, u−4 = −5, u−3 = 4, u−2 =
−3, u−1 = 2.5, u0 = −2.5.
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Global stability

Figure 2. Global stability about the equilibrium.

Example 3. In Figure 3, we plot the analytical solution of Eq. (10) under the
values α = β = γ = δ = 1, u−5 = −0.752, u−4 = −1.3, u−3 = 5, u−2 =
−0.5, u−1 = 0.1, u0 = 1.3.
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n

-6

-4
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0
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4

6

u(
n)

Special case equation

Figure 3. The behaviour of Eq.(10) at u−5 = −0.752, u−4 =
−1.3, u−3 = 5, u−2 = −0.5, u−1 = 0.1, u0 = 1.3.

8. On the Equation un+1 = αun−1 − βun−1un−5

γun−3+δun−5

The equilibrium point of Eq. (2) is given by

ū = αū− βū2

γū+ δū
.

Hence, ū = 0, if (γ + δ)(α− 1) 6= β.
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9. Local Stability

This section presents the local stability about the fixed point. In order to in-
vestigate the stability of Eq. (2), we define the function h : (0,∞)

3 −→ (0,∞)
by

h(x, y, z) = αx− βxz

γy + δz
. (11)

Then,

∂h(x, y, z)

∂x
= α− βz

γy + δz
, (12)

∂h(x, y, z)

∂y
=

βγxz

(γy + δz)2
, (13)

∂h(x, y, z)

∂z
= − βγxy

(γy + δz)2
. (14)

Calculating Eqs. (12), (13) and Eq. (14) at ū yields

∂h(ū, ū, ū)

∂x
= α− βū

γū+ δū
= α− β

γ + δ
:= −p1,

∂h(ū, ū, ū)

∂y
=

βγū2

(γū+ δū)2
=

βγ

(γ + δ)2
:= −p2,

∂h(ū, ū, ū)

∂z
= − βγū2

(γū+ δū)2
= − βγ

(γ + δ)2
:= −p3.

Consequently, the linearised equation of Eq. (2) about the equilibrium point is
given by

vn+1 + p1vn−1 + p2vn−3 + p3vn−5 = 0.

Theorem 6 Assume that β < α(γ+δ). Then, the equilibrium point ū = 0 is locally
asymptotically stable if

β(γ − δ) ≤ (1− α)(γ + δ)2.

Proof. Theorem A in [20] guarantees that the stability of the equilibrium point
occurs if

|p1|+ |p2|+ |p3| < 1. (15)

Substituting pi, i = 1, 2, 3, into Eq. (15) gives∣∣∣∣−(α− β

γ + δ

)∣∣∣∣+

∣∣∣∣− βγ

(γ + δ)2

∣∣∣∣+

∣∣∣∣ βγ

(γ + δ)2

∣∣∣∣ < 1.

Assume that β < α(γ + δ), then

(α(γ + δ)− β)(γ + δ) + 2βγ < (γ + δ)2.

Hence,

β(γ − δ) ≤ (1− α)(γ + δ)2.
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10. Global Stability of the Equilibrium Point

The global stability is analyzed in this section. Theorem B in [21] is applied to
obtain the condition under which the equilibrium point is a global stable.
Theorem 7 The equilibrium point of Eq. (2) is a global attractor if α 6= 1.

Proof. Assume that p, q ∈ R and let h : [p, q]
3 −→ [p, q] is a function defined

by Eq. (11). If α > βz
γy+δz , then from Eqs. (12), (13) and Eq. (14), we observe

that h is increasing in x and y and decreasing in z. Let (φ, ψ) be a solution for the
following system:

φ = g(φ, φ, ψ), ψ = g(ψ,ψ, φ).

Hence,

φ = g(φ, φ, ψ) = αφ− βφψ

γφ+ δψ
,

ψ = g(ψ,ψ, φ) = αψ − βψφ

γψ + δφ
,

which can be rewritten as

γφ2 + δφψ = αγφ2 + αδφψ − βφψ, (16)

γψ2 + δφψ = αγψ2 + αδφψ − βψφ. (17)

Subtracting Eq. (17) from Eq. (16) leads to

γ(1− α)(φ2 − ψ2) = 0.

If α 6= 1, then φ = ψ. Therefore, Theorem B in [21] guarantees that the equilibrium
point is a global attractor.
Theorem 8 Assume that α < βz

γy+δz . Then, the equilibrium point of Eq. (2) is a

global attractor if γ + αδ 6= β.
Proof. The proof is omitted.

11. Exact Solution of Eq. (2) when α = β = γ = δ = 1

This section shows the exact solutions of the following equation:

un+1 = un−1 −
un−1un−5
un−3 + un−5

, n = 0, 1, ..., (18)

where the initial conditions are selected to be positive real numbers.
Theorem 9 Let {un}∞n=−5 be a solution to Eq. (18) and suppose that u−5 =
a, u−4 = b, u−3 = c, u−2 = d, u−1 = e, u0 = f. Then, for n = 0, 1, 2, ..., the
solutions of Eq. (18) are given by the following formulas:
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u8n−5 =
e2nc2n−1∏2n−1

i=1 (ie+ c)(ic+ a)
,

u8n−4 =
f2nd2n−1∏2n−1

i=1 (if + d)(id+ b)
,

u8n−3 =
c2ne2n∏2n

i=1(ic+ a)
∏2n−1
i=1 (ie+ c)

,

u8n−2 =
d2nf2n∏2n

i=1(id+ b)
∏2n−1
i=1 (if + d)

,

u8n−1 =
e2n+1c2n∏2n

i=1(ie+ c)(ic+ a)
,

u8n =
f2n+1d2n∏2n

i=1(if + d)(id+ b)
,

u8n+1 =
c2n+1e2n+1∏2n+1

i=1 (ic+ a)
∏2n
i=1(ie+ c)

,

u8n+2 =
d2n+1f2n+1∏2n+1

i=1 (id+ b)
∏2n
i=1(if + d)

.

Proof. It can be easily seen that the solutions are true for n = 0. We suppose
that n > 0 and assume that our assumption holds for n− 1. That is,

u8n−13 =
e2n−2c2n−3∏2n−3

i=1 (ie+ c)(ic+ a)
,

u8n−12 =
f2n−2d2n−3∏2n−3

i=1 (if + d)(id+ b)
,

u8n−11 =
c2n−2e2n−2∏2n−2

i=1 (ic+ a)
∏2n−3
i=1 (ie+ c)

,

u8n−10 =
d2n−2f2n−2∏2n−2

i=1 (id+ b)
∏2n−3
i=1 (if + d)

,

u8n−9 =
e2n−1c2n−2∏2n−2

i=1 (ie+ c)(ic+ a)
,

u8n−8 =
f2n−1d2n−2∏2n−2

i=1 (if + d)(id+ b)
,

u8n−7 =
c2n−1e2n−1∏2n−1

i=1 (ic+ a)
∏2n−2
i=1 (ie+ c)

,

u8n−6 =
d2n−1f2n−1∏2n−1

i=1 (id+ b)
∏2n−2
i=1 (if + d)

.
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From Eq. (18), one can have

u8n−5 = u8n−7 −
u8n−7u8n−11
u8n−9 + u8n−11

=
c2n−1e2n−1∏2n−1

i=1 (ic+ a)
∏2n−2
i=1 (ie+ c)

−
c2n−1e2n−1∏2n−1

i=1 (ic+a)
∏2n−2

i=1 (ie+c)
c2n−2e2n−2∏2n−2

i=1 (ic+a)
∏2n−3

i=1 (ie+c)

e2n−1c2n−2∏2n−2
i=1 (ie+c)(ic+a)

+ c2n−2e2n−2∏2n−2
i=1 (ic+a)

∏2n−3
i=1 (ie+c)

=
c2n−1e2n−1∏2n−1

i=1 (ic+ a)
∏2n−2
i=1 (ie+ c)

− c2n−1e2n−2∏2n−1
i=1 (ic+a)

∏2n−2
i=1 (ie+c)

∏2n−3
i=1 (ie+c)

(
1∏2n−2

i=1
(ie+c)

+ 1

e
∏2n−3

i=1
(ie+c)

)

=
c2n−1e2n−1∏2n−1

i=1 (ic+ a)
∏2n−2
i=1 (ie+ c)

− c2n−1e2n−2∏2n−1
i=1 (ic+ a)

∏2n−2
i=1 (ie+ c)

(
1

(2n−2)e+c + 1
e

)
=

c2n−1e2n−1∏2n−1
i=1 (ic+ a)

∏2n−2
i=1 (ie+ c)

1− 1

e
(

1
(2n−2)e+c + 1

e

)


=
c2n−1e2n−1∏2n−1

i=1 (ic+ a)
∏2n−2
i=1 (ie+ c)

(
e

(2n− 1)e+ c

)
=

e2nc2n−1∏2n−1
i=1 (ie+ c)(ic+ a)

.

Moreover, Eq. (18) gives us that

u8n−4 = u8n−6 −
u8n−6u8n−10
u8n−8 + u8n−10

=
d2n−1f2n−1∏2n−1

i=1 (id+ b)
∏2n−2
i=1 (if + d)

−
d2n−1f2n−1∏2n−1

i=1 (id+b)
∏2n−2

i=1 (if+d)

d2n−2f2n−2∏2n−2
i=1 (id+b)

∏2n−3
i=1 (if+d)

f2n−1d2n−2∏2n−2
i=1 (if+d)(id+b)

+ d2n−2f2n−2∏2n−2
i=1 (id+b)

∏2n−3
i=1 (if+d)

=
d2n−1f2n−1∏2n−1

i=1 (id+ b)
∏2n−2
i=1 (if + d)

− d2n−1f2n−2∏2n−1
i=1 (id+b)

∏2n−2
i=1 (if+d)

∏2n−3
i=1 (if+d)

(
1∏2n−2

i=1
(if+d)

+ 1

f
∏2n−3

i=1
(if+d)

)

=
d2n−1f2n−1∏2n−1

i=1 (id+ b)
∏2n−2
i=1 (if + d)

− d2n−1f2n−2∏2n−1
i=1 (id+ b)

∏2n−2
i=1 (if + d)

(
1

(2n−2)f+d + 1
f

)
=

d2n−1f2n−1∏2n−1
i=1 (id+ b)

∏2n−2
i=1 (if + d)

− d2n−1f2n−1((2n− 2)f + d)∏2n−1
i=1 (id+ b)

∏2n−2
i=1 (if + d) ((2n− 1)f + d)

=
d2n−1f2n−1∏2n−1

i=1 (id+ b)
∏2n−2
i=1 (if + d)

(
1− (2n− 2)f + d

(2n− 1)f + d

)
=

d2n−1f2n∏2n−1
i=1 (id+ b)

∏2n−2
i=1 (if + d)((2n− 1)f + d)

=
f2nd2n−1∏2n−1

i=1 (if + d)(id+ b)
.
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In addition, Eq. (18) leads to

u8n−3 = u8n−5 −
u8n−5u8n−9
u8n−7 + u8n−9

=
e2nc2n−1∏2n−1

i=1 (ie+ c)(ic+ a)
−

e2nc2n−1∏2n−1
i=1 (ie+c)(ic+a)

e2n−1c2n−2∏2n−2
i=1 (ie+c)(ic+a)

c2n−1e2n−1∏2n−1
i=1 (ic+a)

∏2n−2
i=1 (ie+c)

+ e2n−1c2n−2∏2n−2
i=1 (ie+c)(ic+a)

=
e2nc2n−1∏2n−1

i=1 (ie+ c)(ic+ a)
− c2n−2e2n∏2n−1

i=1 (ie+ c)(ic+ a)
∏2n−2
i=1 (ic+ a)

(
1∏2n−1

i=1 (ic+a)
+ 1

c
∏2n−2

i=1 (ic+a)

)
=

e2nc2n−1∏2n−1
i=1 (ie+ c)(ic+ a)

− c2n−2e2n∏2n−1
i=1 (ie+ c)(ic+ a)

(
1

(2n−1)c+a + 1
c

)
=

e2nc2n−1∏2n−1
i=1 (ie+ c)(ic+ a)

− c2n−1e2n((2n− 1)c+ a)∏2n−1
i=1 (ie+ c)(ic+ a) ((2n)c+ a)

=
e2nc2n−1∏2n−1

i=1 (ie+ c)(ic+ a)

(
1− (2n− 1)c+ a

(2n)c+ a

)
=

e2nc2n∏2n−1
i=1 (ie+ c)(ic+ a)((2n)c+ a)

=
c2ne2n∏2n

i=1(ic+ a)
∏2n−1
i=1 (ie+ c)

.

Similarly, one can prove other solutions.

12. Numerical Examples

This section is assigned to present some 2D figures for the above results.
Example 4. This example illustrates the local stability in the neighborhood of the
equilibrium point under the values α = 0.5, β = γ = 1, δ = 2, u−5 = 0.05, u−4 =
−0.04, u−3 = 0.01, u−2 = 0.08, u−1 = −0.1, u0 = 0.1. See Figure 4.
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Figure 4. Local stability about the equilibrium.
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Example 5. In Figure 5, we present the behavior of the solution of Eq. (2)
about the equilibrium point under the selected values α = 0.8, β = 0.1, γ = 2, δ =
10, u−5 = 2, u−4 = −4, u−3 = 1, u−2 = 5, u−1 = −6, u0 = 6. The solution is
stable about the equilibrium point.

0 10 20 30 40 50 60 70

n

-6

-4
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0

2

4

6

u(
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Global stability

Figure 5. Global stability about the equilibrium.

Example 6. The analytic solutions of Eq. (18) are plotted in Figure 6 when
we consider the values u−5 = −0.3, u−4 = 0.5, u−3 = −0.4, u−2 = 0.3, u−1 =
−0.2, u0 = 0.2.
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Special Case Equation

Figure 6. The behavior of Eq. (18) at u−5 = −0.3, u−4 =
0.5, u−3 = −0.4, u−2 = 0.3, u−1 = −0.2, u0 = 0.2.
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13. Conclusion

This work has investigated the local and global stability and periodicity of the
solution of Eqs. (1) and (2). The exact solutions of Eqs. (10) and (18) have been
also obtained. Theorem (1) shows a simple condition under which the equilibrium
point of Eq. (1) is locally asymptotically stable while Theorem (2) illustrates that
the equilibrium point is a global attractor if δ(α−1) 6= β. Moreover, we have proved
that Eq. (1) has no prime period two solutions. Theorems (6) and (7) give simple
conditions for the local and global stability of Eq. (2). The exact solutions of Eqs.
(10) and (18) exist and have been obtained in various difference relations. Finally,
Section 12 has presented some 2D figures to confirm the theoretical results given
in this work. For example, Figures (1) and (2) show the local and global stability
around the equilibrium point while Figure (3) illustrates the solutions of Eq. (10).
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