EXACT SOLUTIONS AND STABILITY OF SIXTH ORDER DIFFERENCE EQUATIONS

M. B. ALMATRAFI

Abstract. Some natural phenomena are sometimes modeled by using recursive equations. Therefore, extracting exact solutions of such equations plays a significant role in explaining the future pattern of these problems. It is difficult sometimes to establish the exact solutions of some difference equations. Consequently, this work investigates the equilibrium points, local stability, global stability and periodicity of two difference equations. This paper also aims to find the analytic solutions of the respective equations and plots some 2D figures for some obtained results. The used method can be easily applied for other high-order difference equations.

1. Introduction

The investigation of difference equations has become an active topic for some scholars. This can be mainly attributed to the fact that most difference equations are extracted from modeling some natural phenomena (for example, chemical, physical, biological, social, economical and engineering problems) or from discretising some differential equations. Elaydi [1] used difference equations to model various applications such as the trade model, the propagation of annual plants, the transmission of information model, the host–parasitoid systems, the business cycle model, the larval–pupal–adult (LPA) model and the Nicholson-Bailey model. Murray [2] studied a single species population growth in discrete steps. According to [2] difference equations describe wide spectrum of biomedical applications such as cancer growth, ageing, cell proliferation and genetics. Water waves are modeled by partial differential equations from which one can obtain difference equations solved by some specific methods.

Some properties of recursive equations such as equilibria, local stability, global stability, boundedness and periodicity are usually discussed theoretically. More specifically, some scientists studied the qualitative behavior of some difference equations. For example, Almatrafi and Alzubaidi [3] investigated the local and global
attractivity, periodicity and the analytic solutions of the following difference equation:

\[x_{n+1} = c_1 x_{n-3} + \frac{c_2 x_{n-3}}{c_3 x_{n-3} - c_4 x_{n-7}}, \quad n = 0, 1, \ldots \]

Elabbasy et al. [4] studied the qualitative properties of the difference equation

\[x_{n+1} = ax_n - \frac{bx_n}{cx_n - dx_{n-1}}, \quad n = 0, 1, \ldots \]

Alayachi et al. [5] discussed the qualitative behaviors of the difference equation

\[y_{n+1} = A y_{n-1} + \frac{B y_{n-1} y_{n-3}}{C y_{n-3} + D y_{n-5}}, \quad n = 0, 1, \ldots \]

The authors in [6] examined the local stability, global stability, periodicity and the solutions of the difference equation

\[u_{m+1} = a u_{m-1} + \frac{b u_{m-1} u_{m-4}}{c u_{m-4} - d u_{m-6}}, \quad m = 0, 1, \ldots \]

Garić-Demirović et al. [7] studied the stability of the difference equation

\[x_{n+1} = A x_n^2 + B x_{n-1} + C x_{n-1}^2, \quad n = 0, 1, \ldots \]

The study in [8] concentrates on discussing the periodicity and the stability of the equation

\[x_{n+1} = \frac{\alpha + \beta x_n + \gamma x_{n-k}}{B x_n + C x_{n-k}}. \]

More results about difference equations can be found in the refs. [10]-[19].

This work aims to investigate the equilibria, local stability, global attractivity and the exact solutions of the following difference equations

\[u_{n+1} = \alpha u_{n-1} + \frac{\beta u_{n-1} u_{n-5}}{\gamma u_{n-3} - \delta u_{n-5}}, \quad n = 0, 1, \ldots, \tag{1} \]

\[u_{n+1} = \alpha u_{n-1} - \frac{\beta u_{n-1} u_{n-5}}{\gamma u_{n-3} + \delta u_{n-5}}, \quad n = 0, 1, \ldots, \tag{2} \]

where the coefficients \(\alpha, \beta, \gamma, \) and \(\delta \) are positive real numbers and the initial conditions \(u_i \) for all \(i = -5, -4, \ldots, 0 \), are arbitrary non-zero real numbers. We also present the numerical solutions via some 2D graphs.

2. On the Equation \(u_{n+1} = \alpha u_{n-1} + \frac{\beta u_{n-1} u_{n-5}}{\gamma u_{n-3} - \delta u_{n-5}} \)

This section is devoted to study the qualitative behaviors of Eq. (1). The equilibrium point of Eq. (1) is given by

\[\bar{u} = \alpha \bar{u} + \frac{\beta \bar{u}^2}{\gamma \bar{u} - \delta \bar{u}}, \]

which leads to \(\bar{u} = 0 \), if \((\gamma - \delta)(1 - \alpha) \neq \beta \).
3. Local Stability

In this section, we examine the local stability about the equilibrium point of Eq. (1). In order to discuss the stability of Eq. (1), we first define the function \(g : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) by

\[
g(x, y, z) = \alpha x + \frac{\beta xz}{\gamma y - \delta z}.
\]

(3)

Then,

\[
\frac{\partial g(x, y, z)}{\partial x} = \alpha + \frac{\beta z}{\gamma y - \delta z},
\]

(4)

\[
\frac{\partial g(x, y, z)}{\partial y} = -\frac{\beta \gamma xz}{(\gamma y - \delta z)^2},
\]

(5)

\[
\frac{\partial g(x, y, z)}{\partial z} = \frac{\beta \gamma xy}{(\gamma y - \delta z)^2}.
\]

(6)

Now, we evaluate Eqs. (4), (5) and Eq. (6) at \(\bar{u} \).

That is

\[
\frac{\partial g(\bar{u}, \bar{u}, \bar{u})}{\partial x} = \alpha + \frac{\beta \bar{u}}{\gamma \bar{u} - \delta \bar{u}} = \alpha + \frac{\beta}{\gamma - \delta} := -q_1,
\]

\[
\frac{\partial g(\bar{u}, \bar{u}, \bar{u})}{\partial y} = -\frac{\beta \gamma \bar{u}^2}{(\gamma \bar{u} - \delta \bar{u})^2} = -\frac{\beta \gamma}{(\gamma - \delta)^2} := -q_2,
\]

\[
\frac{\partial g(\bar{u}, \bar{u}, \bar{u})}{\partial z} = \frac{\beta \gamma \bar{u}^2}{(\gamma \bar{u} - \delta \bar{u})^2} = \frac{\beta \gamma}{(\gamma - \delta)^2} := -q_3.
\]

Thus, the linearised equation of Eq. (1) about the equilibrium point is given by

\[v_{n+1} + q_1 v_{n-1} + q_2 v_{n-3} + q_3 v_{n-5} = 0. \]

Theorem 1 Assume that

\[|\alpha (\gamma - \delta) + \beta| |\gamma - \delta| < (\gamma - \delta)^2 - 2\beta \gamma. \]

Then, the equilibrium point \(\bar{u} = 0 \) is locally asymptotically stable.

Proof. Theorem A in [20] guarantees that the stability of the equilibrium point occurs if

\[|q_1| + |q_2| + |q_3| < 1. \]

(7)

Plugging \(q_i, \ i = 1, 2, 3 \), into Eq. (7) leads to

\[
\left| -\left(\alpha + \frac{\beta}{\gamma - \delta} \right) \right| + \left| \frac{\beta \gamma}{(\gamma - \delta)^2} \right| + \left| -\frac{\beta \gamma}{(\gamma - \delta)^2} \right| < 1.
\]

Hence,

\[
\left| \alpha + \frac{\beta}{\gamma - \delta} \right| + \frac{2\beta \gamma}{(\gamma - \delta)^2} < 1,
\]

which can be written as

\[|\alpha (\gamma - \delta) + \beta| |\gamma - \delta| < (\gamma - \delta)^2 - 2\beta \gamma. \]
4. Global Stability of the Equilibrium Point

The global stability is investigated in this section. We use Theorem B in [21] to show the stability.

Theorem 2 Assume that $\gamma y > \delta z$, then the equilibrium point of Eq. (1) is a global attractor if $\delta (\alpha - 1) \neq \beta$.

Proof. Assume that $p, q \in \mathbb{R}$ and let $g : [p, q]^3 \rightarrow [p, q]$ is a function defined by Eq. (3). Since $\gamma y > \delta z$, the function g is increasing in x and z and decreasing in y. Let (ϕ, ψ) be a solution for the following system:

$$
\phi = g(\phi, \psi, \phi), \quad \psi = g(\psi, \phi, \psi).
$$

Plugging this into Eq. (1) leads to

$$
\phi = g(\phi, \psi, \phi) = \alpha\phi + \frac{\beta\phi^2}{\gamma\psi - \delta\phi},
$$

$$
\psi = g(\psi, \phi, \psi) = \alpha\psi + \frac{\beta\psi^2}{\gamma\phi - \delta\psi},
$$

which can be rewritten as

$$
\gamma\phi\psi - \delta\phi^2 = \alpha\gamma\phi\psi - \alpha\delta\phi^2 + \beta\phi^2, \quad (8)
$$

$$
\gamma\phi\psi - \delta\psi^2 = \alpha\gamma\phi\psi - \alpha\delta\psi^2 + \beta\psi^2. \quad (9)
$$

Subtracting Eq. (9) from Eq. (8) leads to

$$
[\delta(1 - \alpha) + \beta](\psi^2 - \phi^2) = 0.
$$

Hence, if $\delta (\alpha - 1) \neq \beta$, then $\phi = \psi$. Therefore, Theorem B in [21] ensures that the equilibrium point is a global attractor.

Theorem 3 Let $\alpha + \frac{\beta z}{\gamma y - \delta z} < 0$, then the equilibrium point of Eq. (1) is a global attractor if $\delta \neq \alpha\gamma$.

Proof. The proof is omitted.

5. Periodicity of the Solutions

This section is devoted to discuss the prime period two solutions of Eq. (1).

Theorem 4 Equation (1) has no prime period two solutions.

Proof. We will use contradiction to prove this theorem. Suppose that Eq. (1) has positive prime period two solutions given by

$$
..., U_1, U_2, U_1, U_2, ...
$$

Then,

$$
U_1 = \alpha U_1 + \frac{\beta U_1^2}{\gamma U_1 - \delta U_1},
$$

$$
U_2 = \alpha U_2 + \frac{\beta U_2^2}{\gamma U_2 - \delta U_2}.
$$

Or,

$$
(1 - \alpha)U_1 = \frac{\beta U_1}{\gamma - \delta},
$$

$$
(1 - \alpha)U_2 = \frac{\beta U_2}{\gamma - \delta},
$$

which implies that $U_1 = U_2$. This contradicts the fact that $U_1 \neq U_2$.
6. Exact Solution of Eq. (10) when \(\alpha = \beta = \gamma = \delta = 1 \)

In this section, we investigate the exact solutions of the following rational difference equation

\[
 u_{n+1} = u_{n-1} + \frac{u_{n-1}u_{n-5}}{u_{n-3} - u_{n-5}}, \quad n = 0, 1, \ldots, \tag{10}
\]

where the initial conditions are positive real numbers.

Theorem 5 Let \(\{u_n\}_{n=-5}^{\infty} \) be a solution to Eq. (10) and suppose that \(u_{-5} = a, \ u_{-4} = b, \ u_{-3} = c, \ u_{-2} = d, \ u_{-1} = e, \ u_0 = f. \) Then, for \(n = 0, 1, 2, \ldots, \) the solutions of Eq. (10) are given by the following formulas:

\[
 \begin{align*}
 u_{8n-5} & = \frac{c^n e^n}{a^n (c-e)^n (a-c)^n}, \\
 u_{8n-4} & = \frac{f^{2n} d^n}{b^n (d-f)^n (b-d)^n}, \\
 u_{8n-3} & = \frac{c^n (a-c)^n (c-e)^n}{e^{n+1} c^{2n}}, \\
 u_{8n-2} & = \frac{b^n (b-d)^n (d-f)^n}{d^{n+1} f^{2n}}, \\
 u_{8n-1} & = \frac{a^n (a-c)^n (c-e)^n}{e^{2n+1} c^{2n}}, \\
 u_{8n} & = \frac{b^n (b-d)^n (d-f)^n}{e^{n+1} c^{2n+1}}, \\
 u_{8n+1} & = \frac{-a^n (c-e)^n (a-c)^{n+1}}{e^{n+1} d^{n+1} f^{2n+1}}, \\
 u_{8n+2} & = \frac{-b^n (d-f)^n (b-d)^{n+1}}{e^{n+1} d^{n+1} f^{2n+1}}.
 \end{align*}
\]

Proof. It can be easily observed that the solutions are true for \(n = 0. \) We now assume that \(n > 0 \) and that our assumption holds for \(n - 1. \) That is,

\[
 \begin{align*}
 u_{8n-13} & = \frac{e^{2n-2} c^{n-1}}{a^{n-2} (c-e)^{n-1} (a-c)^{n-1}}, \\
 u_{8n-12} & = \frac{f^{2n-2} d^{n-1}}{b^{n-2} (d-f)^{n-1} (b-d)^{n-1}}, \\
 u_{8n-11} & = \frac{c^{n} e^{2n-2}}{a^{n-1} (a-c)^{n-1} (c-e)^{n-1}}.
 \end{align*}
\]
Eq. \((10)\) gives us that

\[
\begin{align*}
\frac{d^n f^{2n-2}}{b^{n-1} (b-d)^{n-1} (d-f)^{n-1}}, \\
\frac{d^n f^{2n-2}}{a^{n-1} (a-c)^{n-1} (c-e)^{n-1}}, \\
\frac{d^n f^{2n-2}}{b^{n-1} (b-d)^{n-1} (d-f)^{n-1}}, \\
\frac{d^n f^{2n-2}}{c^n e^{2n-1}}, \\
\frac{d^n f^{2n-2}}{d^n f^{2n-1}}, \\
\frac{d^n f^{2n-2}}{d^n f^{2n-2}}.
\end{align*}
\]

Moreover, it can be seen from Eq. \((10)\) that

\[
\begin{align*}
\frac{u_{8n-10}}{u_{8n-9} - u_{8n-11}} &= \frac{d^n f^{2n-2}}{b^{n-1} (b-d)^{n-1} (d-f)^{n-1}}, \\
\frac{u_{8n-9}}{u_{8n-8} - u_{8n-10}} &= \frac{a^{n-1} (a-c)^{n-1} (c-e)^{n-1}}, \\
\frac{u_{8n-8}}{u_{8n-7} - u_{8n-9}} &= \frac{b^{n-1} (b-d)^{n-1} (d-f)^{n-1}}, \\
\frac{u_{8n-7}}{u_{8n-6} - u_{8n-8}} &= \frac{c^n e^{2n-1}}, \\
\frac{u_{8n-6}}{u_{8n-5} - u_{8n-7}} &= \frac{d^n f^{2n-1}}{d^n f^{2n-1}}.
\end{align*}
\]
Furthermore, Eq. (10) gives

\[
u_{8n-3} = u_{8n-5} + \frac{u_{8n-5}u_{8n-9}}{u_{8n-7} - u_{8n-9}}
\]

\[
= \frac{e^{2n}c^n}{a^{n-1}(c-e)^n(a-c)^n} + \frac{a^{n-1}(c-e)^n(a-c)^n}{e^{2n}c^n} - \frac{e^{2n-1}c^{n-1}}{a^{n-1}(c-e)^{n-1}(a-c)^{n-1}}
\]

\[
= \frac{a^{n-1}(c-e)^n(a-c)^n}{e^{2n}c^n} - \frac{a^{n-1}(c-e)^n(a-c)^n}{e^{2n}c^n} - \frac{e^{2n-1}c^{n-1}}{a^{n-1}(c-e)^{n-1}(a-c)^{n-1}}
\]

\[
= \frac{a^{n-1}(c-e)^n(a-c)^n}{e^{2n}c^n}.
\]

Also, Eq. (10) leads to

\[
u_{8n-2} = u_{8n-4} + \frac{u_{8n-4}u_{8n-8}}{u_{8n-6} - u_{8n-8}}
\]

\[
= \frac{f^{2n}d^n}{b^{n-1}(d-f)^n(b-d)^n} + \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n} - \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n} - \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n}
\]

\[
= \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n} - \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n} - \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n}
\]

\[
= \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n} - \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n} - \frac{b^{n-1}(d-f)^n(b-d)^n}{f^{2n}d^n}
\]

Moreover, Eq. (10) gives

\[
u_{8n-1} = u_{8n-3} + \frac{u_{8n-3}u_{8n-7}}{u_{8n-5} - u_{8n-7}}
\]

\[
= \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n} + \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n} - \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n} + \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n}
\]

\[
= \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n} - \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n} + \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n}
\]

\[
= \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n} - \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n} + \frac{c^{n+1}e^{2n}}{a^n(a-e)^n(c-e)^n}
\]

Finally, Eq. (10) gives
Other solutions can be similarly proved.

7. Numerical Examples

The above-mentioned theoretical results are plotted in this section. The values of the parameters are selected according to the above conditions.

Example 1. The local stability in the neighborhood of the equilibrium point is plotted in Figure 1 under the assumptions \(\alpha = \beta = 0.5, \gamma = 1, \delta = 3, u_{-5} = -0.2, u_{-4} = 0.2, u_{-3} = -0.1, u_{-2} = 0.01, u_{-1} = 0.1, u_{0} = -0.1 \).

![Figure 1. Local stability about the equilibrium.](image)

Example 2. Figure 2 illustrates the global stability of the equilibrium point under the values \(\alpha = \beta = 0.5, \gamma = 0.1, \delta = 3, u_{-5} = 5, u_{-4} = -5, u_{-3} = 4, u_{-2} = -3, u_{-1} = 2.5, u_{0} = -2.5 \).
Example 3. In Figure 3 we plot the analytical solution of Eq. (10) under the values $\alpha = \beta = \gamma = \delta = 1$, $u_{-5} = -0.752$, $u_{-4} = -1.3$, $u_{-3} = 5$, $u_{-2} = -0.5$, $u_{-1} = 0.1$, $u_0 = 1.3$.

8. On the equation $u_{n+1} = \alpha u_{n-1} - \frac{\beta u_{n-1} u_{n-5}}{\gamma u_{n-3} + \delta u_{n-5}}$

The equilibrium point of Eq. (2) is given by

$$\bar{u} = \alpha \bar{u} - \frac{\beta \bar{u}^2}{\gamma \bar{u} + \delta \bar{u}}$$

Hence, $\bar{u} = 0$, if $(\gamma + \delta)(\alpha - 1) \neq \beta$.
9. Local Stability

This section presents the local stability about the fixed point. In order to investigate the stability of Eq. (2), we define the function $h : (0, \infty)^3 \rightarrow (0, \infty)$ by

$$h(x, y, z) = \alpha x - \frac{\beta x z}{\gamma y + \delta z}. \quad (11)$$

Then,

$$\frac{\partial h(x, y, z)}{\partial x} = \alpha - \frac{\beta z}{\gamma y + \delta z}, \quad (12)$$

$$\frac{\partial h(x, y, z)}{\partial y} = \frac{\beta \gamma x z}{(\gamma y + \delta z)^2}, \quad (13)$$

$$\frac{\partial h(x, y, z)}{\partial z} = -\frac{\beta \gamma x y}{(\gamma y + \delta z)^2}. \quad (14)$$

Calculating Eqs. (12), (13) and Eq. (14) at \bar{u} yields

$$\frac{\partial h(\bar{u}, \bar{u}, \bar{u})}{\partial x} = \alpha - \frac{\beta \bar{u}}{\gamma \bar{u} + \delta \bar{u}} = \alpha - \frac{\beta}{\gamma + \delta} = -p_1,$$

$$\frac{\partial h(\bar{u}, \bar{u}, \bar{u})}{\partial y} = \frac{\beta \gamma \bar{u}^2}{(\gamma \bar{u} + \delta \bar{u})^2} = \frac{\beta \gamma}{(\gamma + \delta)^2} = -p_2,$$

$$\frac{\partial h(\bar{u}, \bar{u}, \bar{u})}{\partial z} = -\frac{\beta \gamma \bar{u}^2}{(\gamma \bar{u} + \delta \bar{u})^2} = -\frac{\beta \gamma}{(\gamma + \delta)^2} = -p_3.$$

Consequently, the linearised equation of Eq. (2) about the equilibrium point is given by

$$v_{n+1} + p_1 v_{n-1} + p_2 v_{n-3} + p_3 v_{n-5} = 0.$$

Theorem 6 Assume that $\beta < \alpha (\gamma + \delta)$. Then, the equilibrium point $\bar{u} = 0$ is locally asymptotically stable if

$$\beta (\gamma - \delta) \leq (1 - \alpha) (\gamma + \delta)^2.$$

Proof. Theorem A in [20] guarantees that the stability of the equilibrium point occurs if

$$|p_1| + |p_2| + |p_3| < 1. \quad (15)$$

Substituting p_i, $i = 1, 2, 3$, into Eq. (15) gives

$$\left| -\left(\alpha - \frac{\beta}{\gamma + \delta} \right) \right| + \left| -\frac{\beta \gamma}{(\gamma + \delta)^2} \right| + \left| -\frac{\beta \gamma}{(\gamma + \delta)^2} \right| < 1.$$

Assume that $\beta < \alpha (\gamma + \delta)$, then

$$\alpha (\gamma + \delta) - \beta (\gamma + \delta) + 2 \beta \gamma < (\gamma + \delta)^2.$$

Hence,

$$\beta (\gamma - \delta) \leq (1 - \alpha) (\gamma + \delta)^2.$$
10. Global Stability of the Equilibrium Point

The global stability is analyzed in this section. Theorem B in [21] is applied to obtain the condition under which the equilibrium point is a global stable.

Theorem 7 The equilibrium point of Eq. (2) is a global attractor if \(\alpha \neq 1 \).

Proof. Assume that \(p, q \in \mathbb{R} \) and let \(h : [p, q]^3 \rightarrow [p, q] \) is a function defined by Eq. (11). If \(\alpha > \beta \frac{z}{\gamma y + \delta z} \), then from Eqs. (12), (13) and Eq. (14), we observe that \(h \) is increasing in \(x \) and \(y \) and decreasing in \(z \). Let \((\phi, \psi)\) be a solution for the following system:

\[
\phi = g(\phi, \phi, \psi), \quad \psi = g(\psi, \psi, \phi).
\]

Hence,

\[
\begin{align*}
\phi &= g(\phi, \phi, \psi) = \alpha \phi - \frac{\beta \phi \psi}{\gamma \phi + \delta \psi}, \\
\psi &= g(\psi, \psi, \phi) = \alpha \psi - \frac{\beta \psi \phi}{\gamma \psi + \delta \phi},
\end{align*}
\]

which can be rewritten as

\[
\begin{align*}
\gamma \phi^2 + \delta \phi \psi &= \alpha \gamma \phi^2 + \alpha \delta \phi \psi - \beta \phi \psi, \quad (16) \\
\gamma \psi^2 + \delta \phi \psi &= \alpha \gamma \psi^2 + \alpha \delta \phi \psi - \beta \psi \phi. \quad (17)
\end{align*}
\]

Subtracting Eq. (17) from Eq. (16) leads to

\[
\gamma (1 - \alpha) (\phi^2 - \psi^2) = 0.
\]

If \(\alpha \neq 1 \), then \(\phi = \psi \). Therefore, Theorem B in [21] guarantees that the equilibrium point is a global attractor.

Theorem 8 Assume that \(\alpha < \beta \frac{z}{\gamma y + \delta z} \). Then, the equilibrium point of Eq. (2) is a global attractor if \(\gamma + \alpha \delta \neq \beta \).

Proof. The proof is omitted.

11. Exact Solution of Eq. (2) when \(\alpha = \beta = \gamma = \delta = 1 \)

This section shows the exact solutions of the following equation:

\[
u_{n+1} = \frac{u_{n-1} u_{n-5}}{u_{n-3} + u_{n-5}}, \quad n = 0, 1, \ldots, \]

where the initial conditions are selected to be positive real numbers.

Theorem 9 Let \(\{u_n\}_{n=-5}^{\infty} \) be a solution to Eq. (18) and suppose that \(u_{-5} = a, \ u_{-4} = b, \ u_{-3} = c, \ u_{-2} = d, \ u_{-1} = e, \ u_0 = f \). Then, for \(n = 0, 1, 2, \ldots \), the solutions of Eq. (18) are given by the following formulas:
Proof. It can be easily seen that the solutions are true for $n = 0$. We suppose that $n > 0$ and assume that our assumption holds for $n - 1$. That is,

\[u_{8n-5} = \frac{e^{2n-1}c^{2n-1}}{\prod_{i=1}^{2n-1}(ie + c)(ic + a)}, \]
\[u_{8n-4} = \frac{f^{2n}d^{2n-1}}{\prod_{i=1}^{2n-1}(if + d)(id + b)}, \]
\[u_{8n-3} = \frac{d^{2n}f^{2n}}{\prod_{i=1}^{2n}(ic + a)\prod_{i=1}^{2n-1}(ic + c)}, \]
\[u_{8n-2} = \frac{c^{2n+1}e^{2n}}{\prod_{i=1}^{2n}(id + b)\prod_{i=1}^{2n-1}(if + d)}, \]
\[u_{8n-1} = \frac{e^{2n+1}d^{2n}}{\prod_{i=1}^{2n+1}(ic + a)\prod_{i=1}^{2n}(ic + c)}, \]
\[u_{8n} = \frac{f^{2n+1}d^{2n}}{\prod_{i=1}^{2n+1}(id + b)\prod_{i=1}^{2n}(if + d)}, \]
\[u_{8n+1} = \frac{d^{2n+1}f^{2n+1}}{\prod_{i=1}^{2n+1}(ic + a)\prod_{i=1}^{2n+1}(ic + c)}, \]
\[u_{8n+2} = \frac{e^{2n+1}c^{2n+1}}{\prod_{i=1}^{2n+1}(id + b)\prod_{i=1}^{2n+1}(if + d)}. \]
From Eq. (18), one can have

\[
\begin{align*}
\frac{u_{8n-5}}{u_{8n-7}} & = \frac{u_{8n-7} - u_{8n-11}}{u_{8n-9} + u_{8n-11}} \\
& = \frac{\prod_{i=1}^{2n-1} (ic + \alpha) \prod_{i=1}^{2n-2} (id + e)}{\prod_{i=1}^{2n-1}(ie + c)} \\
& = \frac{\prod_{i=1}^{2n-1} (ic + \alpha) \prod_{i=1}^{2n-2} (id + e)}{\prod_{i=1}^{2n-1}(ie + c)} \frac{\prod_{i=1}^{2n-1} (ic + \alpha) \prod_{i=1}^{2n-2} (id + e)}{\prod_{i=1}^{2n-1}(ie + c)} \\
& = \frac{\prod_{i=1}^{2n-1} (ic + \alpha) \prod_{i=1}^{2n-2} (id + e)}{\prod_{i=1}^{2n-1}(ie + c)} \frac{\prod_{i=1}^{2n-1} (ic + \alpha) \prod_{i=1}^{2n-2} (id + e)}{\prod_{i=1}^{2n-1}(ie + c)} \\
& = \frac{\prod_{i=1}^{2n-1} (ic + \alpha) \prod_{i=1}^{2n-2} (id + e)}{\prod_{i=1}^{2n-1}(ie + c)} \frac{\prod_{i=1}^{2n-1} (ic + \alpha) \prod_{i=1}^{2n-2} (id + e)}{\prod_{i=1}^{2n-1}(ie + c)} \\
& = \prod_{i=1}^{2n-1} (ic + \alpha) (id + e). \\
\end{align*}
\]

Moreover, Eq. (18) gives us that

\[
\begin{align*}
\frac{u_{8n-4}}{u_{8n-6}} & = \frac{u_{8n-6} - u_{8n-10}}{u_{8n-8} + u_{8n-10}} \\
& = \frac{\prod_{i=1}^{2n-1} (id + b) \prod_{i=1}^{2n-2} (if + d)}{\prod_{i=1}^{2n-1}(if + d)} \\
& = \frac{\prod_{i=1}^{2n-1} (id + b) \prod_{i=1}^{2n-2} (if + d)}{\prod_{i=1}^{2n-1}(if + d)} \frac{\prod_{i=1}^{2n-1} (id + b) \prod_{i=1}^{2n-2} (if + d)}{\prod_{i=1}^{2n-1}(if + d)} \\
& = \frac{\prod_{i=1}^{2n-1} (id + b) \prod_{i=1}^{2n-2} (if + d)}{\prod_{i=1}^{2n-1}(if + d)} \frac{\prod_{i=1}^{2n-1} (id + b) \prod_{i=1}^{2n-2} (if + d)}{\prod_{i=1}^{2n-1}(if + d)} \\
& = \prod_{i=1}^{2n-1} (id + b) (if + d). \\
\end{align*}
\]
In addition, Eq. (18) leads to

\[
\frac{u_{8n-3}}{u_{8n}} - \frac{u_{8n-5}u_{8n-9}}{u_{8n-7} + u_{8n-9}} = \frac{e^{2n}c^{2n-1}}{\prod_{i=1}^{2n-1} (ie + c)(ic + a)} - \frac{\prod_{i=1}^{2n-1} (ie + c)(ic + a)}{\prod_{i=1}^{2n-1} c^{2n} + \prod_{i=1}^{2n-1} (ic + a)} + \frac{\prod_{i=1}^{2n-1} (ie + c)(ic + a)}{\prod_{i=1}^{2n-1} (ic + a)}
\]

Similarly, one can prove other solutions.

12. Numerical Examples

This section is assigned to present some 2D figures for the above results.

Example 4. This example illustrates the local stability in the neighborhood of the equilibrium point under the values \(\alpha = 0.5\), \(\beta = \gamma = 1\), \(\delta = 2\), \(u_{-5} = 0.05\), \(u_{-4} = -0.04\), \(u_{-3} = 0.01\), \(u_{-2} = 0.08\), \(u_{-1} = -0.1\), \(u_{0} = 0.1\). See Figure 4.
Example 5. In Figure 5, we present the behavior of the solution of Eq. (2) about the equilibrium point under the selected values $\alpha = 0.8$, $\beta = 0.1$, $\gamma = 2$, $\delta = 10$, $u_{-5} = 2$, $u_{-4} = -4$, $u_{-3} = 1$, $u_{-2} = 5$, $u_{-1} = -6$, $u_0 = 6$. The solution is stable about the equilibrium point.

![Global stability](image1)

Figure 5. Global stability about the equilibrium.

Example 6. The analytic solutions of Eq. (18) are plotted in Figure 6 when we consider the values $u_{-5} = -0.3$, $u_{-4} = 0.5$, $u_{-3} = -0.4$, $u_{-2} = 0.3$, $u_{-1} = -0.2$, $u_0 = 0.2$.

![Special Case Equation](image2)

Figure 6. The behavior of Eq. (18) at $u_{-5} = -0.3$, $u_{-4} = 0.5$, $u_{-3} = -0.4$, $u_{-2} = 0.3$, $u_{-1} = -0.2$, $u_0 = 0.2$.
13. Conclusion

This work has investigated the local and global stability and periodicity of the solution of Eqs. (1) and (2). The exact solutions of Eqs. (10) and (18) have been also obtained. Theorem (1) shows a simple condition under which the equilibrium point of Eq. (1) is locally asymptotically stable while Theorem (2) illustrates that the equilibrium point is a global attractor if \(\delta(\alpha - 1) \neq \beta \). Moreover, we have proved that Eq. (1) has no prime period two solutions. Theorems (6) and (7) give simple conditions for the local and global stability of Eq. (2). The exact solutions of Eqs. (10) and (18) exist and have been obtained in various difference relations. Finally, Section 12 has presented some 2D figures to confirm the theoretical results given in this work. For example, Figures (1) and (2) show the local and global stability around the equilibrium point while Figure (3) illustrates the solutions of Eq. (10).

References

[8] M. Saleh, N. Alkoumi and Aseel Farhat, On the Dynamic of a Rational Difference Equation \(x_{n+1} = \alpha + \beta x_n + \gamma x_{n-k}/(A + Bx_n + Cx_{n-k}) \), Chaos, Solitons and Fractals, 96, 76–84, 2017.

[18] K. Liu, P. Li, F. Han and W. Zhong, Global Dynamics of Nonlinear Difference Equation
\[x_{n+1} = A + x_n/x_{n-1}x_{n-2}, \]

\[x_{n+1} = (ax_n^2 + bx_{n-1}x_{n-2})/(cx_n^2 + dx_{n-1}x_{n-2}), \]

M. B. Almatrafi
Department of Mathematics, Faculty of Science, Taibah University, Saudi Arabia
Email address: mmutrafi@taibahu.edu.sa