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ON GENERALIZED EULER-MASCHERONI CONSTANTS

G. ABE-I-KPENG, M. M. IDDRISU AND K. NANTOMAH

ABSTRACT. In this study, we establish two new representations of the Euler-Mascheroni
constant and provide an elementary proof for the classical Euler-Mascheroni con-
stant related to the Riemann zeta function. New representations for the Euler-
Mascheroni constant are also derived.

1. INTRODUCTION

[8] introduced a generalized gamma function T'y(z) for k € Ny which relates to
the constant -, as I'(z) does to . The generalized Euler-Mascheroni constant is
defined by
1 k+1 n 1 k :

SN R k=0,1,2, (1.1)

=1 7

=t | =G

and are coefficients of the Laurent expansion of the Riemann zeta function ((s)
about s = 1:
1

s—1

C(s) = + ) A(s — 1)¥, Re(s) > 0,
k=0

where A4, = (_kl!)kyk.

The constant, A, was first defined by Stielties in 1885 and has been studied
extensively by other authors. It is worth noting that vo = + is the Euler-Mascheroni
constant.

[3] observed that the limit for evaluating (1.1) using Euler-Maclaurin summation is
when k& = 35 and thus established an integral representation to compute the first
2000 Euler-Mascheroni constants. A seris expansion for -, was derived in [8] as
follows:

1 3 = 1 (175204 1,5) copaqs
=———— " 2 )+ (—1)kR! . 12 RH=0) (2p4-1
T T (2)+( )k;4”(2n+1) Z i ° (2n+1),

Jj=1

(1.2)
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where k£ € N.

[7] studied the distribution of a family {~v(P)} of generalized Euler-Mascheroni con-
stant for finite set of primes P and established a connection between the distribu-
tion of v(P,.) —exp(—y) and the Riemann hypothesis where P, is the set of the first
r primes.

In [10], sharp upper and lower bounds for the generalized Euler-Mascheroni con-
stant were established as well as improvements for previous bounds of the clas-
sical Euler-Mascheroni constant. A one parameter generalization of the Euler-
mascheroni constant was examined in [11] and various representations for v de-
rived. [13] presented a generalized Euler-Mascheroni constant function ~(z), ex-
tented two Euler’s zeta function series involving ~ to polylogarithm series for v(z)
and further generalized Somo’s quadratic recurrence constant.

2. MATERIALS AND METHODS

The Riemann zeta is defined by

1
:;77 (2.1)

=[] Re(s) > 1 (2.2)

where p is a prime number.
The derivatives of the Riemann zeta function is given by

o k
)= (P 23)

n=1

The digamma function is given by the logarithmic derivative of the gamma function:

’

dinT'(z) T7(z)

Y(z) = P () (2.4)
The digamma function is defined by
= (1 1
z/;(z+1)+’y";<nn+z>,z€(c, (2.5)
where ~ is the Euler-Mascheroni constant.
For |z| < 1,
InT(z+1) = —yz+ Z (2.6)
-1 &
—In(l1+2)—(y—-1) Z+Z 2", (2.7)

To expand InT'(z + 1) in a power series about z = 0, stirling numbers are utilized.
The stirling numbers of the first kind,s(m, j), is defined by the generating function
as

Ind (1 n %) - i 7%s(m,j) (%)m (2.8)
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where |z| < 1.
Alternatively, stirling numbers of the first kind are also defined as

o0

%lnj(l +1) = P s(n,j)g, (2.9)
or
In/(1—t) = f: (_1)ns(n )" (2.10)
B n! " ’

From the above, we see that s(n,1) = (—=1)""(n — 1)!, s(n,n) = 1,
s(n,2) = (=1)"(n—1)!>2""/ + and

j=173

" 2
s(n,3) = S0 (H2L, - B,

where H,_; is the (n — 1)th harmonic number and Hfi)l is @ harmonic number of
order 2.

[2] established a generalized gamma function and some identities as follows:
Definition 2.1. For z € C\ Z~U{0} and k € Ny,

H?Zl exp (%‘Fl In~*? (1 + %) )
Fk(z) = im k+1 n 1 k+1
"% exp (%ﬂ In"* z) [, exp (TH In (1 + f))
and a functional equation
1 .
I'k(z+1) =exp (kz—&—l In*+? z) T(2). (2.12)

The identity was established as

1 1 o 1 z —2
— kE Ink+1 S Y I s k).
Th(2) e exp<k+1 n z>jl:[1exp<k+1 n Jrj exp ; nj

(2.11)

(2.13)
where ~; is the generalized Euler-Mascheroni constant.
We also find the following identities:
1
TL(2)Th(1 — 2) = 2.14
k(2)TK(1 = 2) e (2.14)
and
1
00 k+1 22
[T;Z; exp (k%_lln * (1 - F))
where
tr(z) = exp b Inf+t 2 ﬁ exp L I+ (1 - 2—2 (2.16)
F k+1 o k+1 i2)) '
and established the identity
ITy(z +1) = —yz — (~1Fk Y 2 S(L”)'dm*n) (m)  (2.17)
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for -1 < z<1.

If £, is a sequence in a measurable function space L™, by the monotone conver-
gence theorem we have (see [9])

[ m=S 0 [ 2.18)

By Ramanujan ([4]), we have

= 2k +1)
= Z (2.19)
—( )2k +1)
Also in [12] we have
L C(2k+1)
= R A 2.2
y=1In2- 2k + 1% (2.20)

k=1

Euler discovered a formula for calculating ((2k) as

(=1)*(2m)** By

= 2.21
where k£ € N.
[1] also established that
7 (71)17k(27r)2k+1
<(2k’ + ].) = 2(2k‘ T 1)' ) B2k+1(t) COt(’/Tt)dt, (222)
where k € N.
The generalized Clausen function is defined by
cos(nt)
Claps1(t) = Z a1 Claksa (1) (2.23)
n=1
or
Clax(t (2.24)
[6] established a formular for ((2k + 1) involving the Clausen function as
4k+1 T
In [2], we have
, N1 & (k1) .
k+1 k+1 - k+1—mn
In""(j+1) —In (k+1)ln j+mz:2< ) m!ylzz:li(k+1_n)!s(m,n)ln Js
(2.26)

for |z| < 1.
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3. RESULTS AND DISCUSSION

We begin this section by establishing a lemma which will be useful in proving
one of the theorems.

Lemma 3.1. Letz= 1. Then

3 1 el 1
— = —_— — —1 . — . -1
InT, (2) k+1ln 5 nty 5 (3.1)
Proof. Applying logarithm on (2.12), we get
1
InTy(z4+1) = Pl " 2 4 InTy(2), (3.2)
and substituting z = 3 into it yields
3 1 .l 1
)= —mW"t - 4 InTy (= ). .
lan(2> P 2+n k(2> (3.3)
Also, by substituting z = 3 into (3.17), we obtain
BY_ Lol (1Y g (2
InTy <2> = k+1ln 5 Inty (2 InTy 5 ) (3.4)
By making InT';; (%) the subject from (3.3) and substituting into (3.4), we obtain
e 1
InT <2) = k+1ln 5 In ¢y, 5 ) (3.5)
which completes the proof. O

Theorem 3.2. Letk =0,1,2,... Then

L D D Y v e OIS (3.6)

Proof. Taking logarithm on both sides of (2.13), we obtain

1 k1 =1 kil z 2 k.
=—InT . —— _In** 14+ - -1 . (3.7
Viz nly(z) = g ;k+1n +3 +;jny (3.7)

Taking again logarithm on both sides of (2.11), we obtain
— =z k+1 1 1 k+1 — 1 k+1 z
InT = —1 1+-]—-—1 — —1 14+-].
nli(2) ;k+1n (+j> S j;kJrln t3

Substituting (3.8) into (3.7) yields

I 1 2 (k+1 o= /I\" 1T & (B+ R Y
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Simplifying, we obtain

By (2.3), the proof is complete. O
Remark 3.1. For k =0, (3. 6) becomes

=y By, (3.10)

which is a known result due to Euler.
Remark 3.2. If k = 1in (3.6), we obtain

1 . s(myn .
—<Z_2m!§<§_ni<@ ><m>)
=—<§:$(“?”(mw+“ﬁ”QmQ>

:Z“”CWPVZEH. @3.11)

g
)
3
)
=
C.O
w
=
Pl
I
[\D
’cB
R
s
1)
«Q
D
@

Y2 = mzzz %Cll(m) + QmZZZ (_T;Ll)mHm,1< +77n22 ( m—1 " m 1)
(3.12)

where + is the Euler-Mascheroni constant, H,,_; is the (n — 1)th harmonic number
and H2_, is a harmonic number of order 2.

Theorem 3.3. Letk =0,1,2,... Then

]. k+1 k | i 1 Ui 2m+1 n) (k-l—l—n)
W= 2 k'z4m(2m+1 z:: k+1—n)< (2m +1).
(3.13)
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'y (1 I'n(1l—2) = A
k(1 +2)k(1—2) ) (3.15)
Applying logarithm to (3.15), we get
1 .
InTp(1+2)+InT(l—2) = mln"“z —Intg(2),
(3.16)
which further gives
InTp(1+2) = Llnk‘Hz —Intg(z) —InTk(1 — 2). (3.17)
k+1
substituting (3.14) into (3.17) yields
- - k+1 _ _ s k | - ﬁ G (k4+1—n)
InTy(z+1) k+1ln z—Inty(z) — iz kaZQm'; k—|—1—n ¢ (m).
(3.18)
Adding (2.17) and (3.18) yields
1 =2 SN s(myn)
_ k+1 _ = _ 1k ~ o\ ) (k+1—n)
InTy(z+1) 51 In""" z 2lntk(z) vz — (—1) ka:2 il 2 Tt 1= n) 1e (m).
(3.19)
Thus,
1 s s(2m +1,n)
) = qpktr ) oy — (—1)F ! (k+1—n) )
InTy(z+1) ) Itz — S Inte(z) — gz — (—1)°k m;(?m“)' T ¢ (2m +1)
(3 20)
Substituting z = 3 into (3.20) gives
Sy _ b el L1
InT', (2> = T 1 )ln 5 lnt;{2
1 . 1 s(2m+1,n) 4.
A = DL (k+H1=m)(9m +1).  (3.21
5 )k;22m+1(2m+1' hrin)® (2m+1). (3.21)
By Lemma 3.1 we have
_ =2 el 1 k+11 | ~ S(2m 4+ 1,m) i
W Eer T k2222m+12m—|—1 g k1 n) 1< (2m-+1)

(3.22)
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Thus,
1kt I o~ 5(2m +1,n) ¢(k+1—n)
_ 2m+1
W= 2 kz4m2m+ i (k+1—n)! (2m+1),
(3.23)
which completes the proof. d
Remark 3.4.
1 For k = 0in (3.13), we obtain
= 1
= — - 1). .
In2 ;4m(2m+l)g(2m+ ) (3.24)

2 For k=11in(3.13), we get

1 = 1 ,
= Sz mz::l T T (< (2m + 1) — Hapm((2m + 1)) . (3.25)

Now, we restate Euler-Mascheroni constant (3.10) and provide a proof.

Theorem 3.4. (Euler-Mascheroni)

v= 3 E e, (3.26)

m=2

where ((m) is the Riemann zeta function.

Proof. By integrating (2.5) and applying (2.18), we get

InT(z+1)+vz= i (i —In(m+2z)+ 1n(m)) (3.27)

m

(-n3))

S

n

M

1

3
Il

By (2.26) and (2.8), we obtain

IT(z4+ 1) +72= 3 M%C(m). (3.28)

m=2
and letting z = 1 completes the proof. O
We further give new series representations for the Euler-Mascheroni constant

involving Bernoulli numbers, Bernoulli polynomials and generalized clausen func-
tions.

Theorem 3.5.

> (—1)k 27T)2kB o0 (_1)1—k(27r)2k+1 1
= ’; W o ; Q(Qk + 1)(2/€ F 1)| /0 BZk—i-l(t) COt(?Tt)dﬁ, (329)

where By, and Bay.11(t) are Bernoulli numbers and polynomials respectively.
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Proof. For even values of m in (3.10), we

= ((m) ((m+1)
v=3 " Z - (3.30)

m=2

If m = 2k for k € N, we get

= (2 C(2k +1)
7_; o Z T (3.31)
Substituting (2.21) and (2.22) into (3.31) completes the proof. |

The remark below is a deduction on the Euler-Mascheroni constant associated
with the generalized Clausen function.

Remark 3.5. Substituting (2.25) into (2.19) and (2.20) yields

> ok+1 s
- z 32
; 1 — 22k) k+1)(2k+1)Cl%+1<2)’ (3-32)
> ok+1 ™
=m2-) z .
n2 2 (1= 22) 2k + 1) Clakss (2) ’ (3.33)

where Cly,41(t) is a generalized Clausen function.

4. CONCLUSIONS

New generalized Euler-Mascheroni constants have been established. For k =0
a new seies representation for the classical Euler-Mascheroni constant is estab-
lished. In addition, we derived expressions for ~ involving Bernoulli constants,
Bernoulli polynomials and the Clausen function.
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