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DISEASE DYNAMICS FROM EXOTIC PREY TO NATIVE

POPULATION: A PREY-PREDATOR MODEL

C. PURUSHWANI, H. PURUSHWANI AND P. SINHA

Abstract. In this paper a prey-predator model between two communities is
proposed in which disease transmits from endemic exotic prey to native prey

and predator population with functional response Holling type II. Bounded

region for positive solutions is found out. Trivial and non trivial (disease free
and endemic in absence and presence of predator) equilibrium points are cal-

culated. Bendixson-Dulac criteria is used to derive the conditions for stability

of equilibrium points. Persistence of the model is also discussed. Transmis-
sion rate of disease, predation rate and carrying capacity of environment were

taken under consideration as these parameters affect community structure.

Numerical solution and graphs are illustrated to support the results.

1. Introduction

There are number of factors that play an important role in transmission of dis-
ease. Currently, serious concern has been raised about the role of endemic exotic
prey and native prey- predator in the transmission of disease [1]. Different species in
various ecosystems perpetuate and transmit disease to new geographical locations.
Migration of species from one geographical region may introduce a new disease to
other ecosystem by prey-predator relationship [2]. It is well established fact that
when endemic exotic prey is consumed by the predator, if infected, may trans-
mit its disease to the prey, if it survives. This effect is negative or unnoticeable
depending upon the virulence of the disease. Sometimes, the disease can change
the behavioural pattern of prey, which makes then more susceptible to predation.
There are several studies that have been conducted by the researchers all over the
world related to present study [3, 4, 5]. However, studies are lacking in the direction
of endemic exotic prey and native prey-predator. Therefore, this study is necessary
to study the interaction between the endemic exotic prey and native prey-predator.

A model of predator dommalia ecologically infected populations was studied by
Mukhopadhyay and Bhattacharyya (2009) [6]. Yang, Dan and Shengqiang (2016)
[7] discussed the global asymptotical behaviours of the model and optimal hunt-
ing strategies for the predators on various carrying capacities, infection rates and
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Figure 1. Flowchart for preparation of this paper

hunting rates. Santosh Biswas, Sudip Samanta and Joydev Chattopadhyay (2017)
[19] suggested a cannibalistic eco-epidemiological model with disease in predator
population. Preparation of model can be understood by flow chart 1 given below;

2. Basic Assumptions, Model Preliminaries and Formulation

In the proposed model, we have taken population from two linked communities
as follows;
(i) Native population, consisting prey (P ) and predator (Q).
(ii) Exotic population, consisting susceptible prey (Ps) and infected prey (Pi).
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Figure 2. Systematic diagram of the proposed model

The following assumptions were made to form system of non linear ordinary differ-
ential equations to demonstrate some real situation;
(A1) We considered prey-predator type of interaction.
(A2) In the absence of disease and predation, native prey population grows logis-
tically with growth rate r(r > 0) and carrying capacity K(K > 0).
(A3) There is certain recruitment rate ∆ of exotic prey population.
(A4) It is assumed that disease transmits only from exotic infected prey to exotic
susceptible prey through contact. Let the transmission rate of disease be β then
the term βPsPi indicates dynamics of infection. The detailed dynamics and cause
of infection along with control strategies were ignored in the present model.
(A5) Predators consume both the native prey as well as exotic (susceptible and
infected) prey as they attack any of the prey of their choice. We denote predation
rate by η1, η2, η3 on preys P, Ps, Pi, respectively, we assume that η3 > η1, η2 be-
cause the infected prey Pi is weaker than uninfected preys P, Ps.
(A6) Holling type II functional response of the predation is assumed. k1 is positive
constant represents handling time on feeding rate and k2 is a nonnegative constant
representing the magnitude of interference among predators. α (0 < α < 1) is con-
version coefficient of prey into predator.
(A7) It assumes that native prey species are controlled logistically. Native preda-
tors have their natural death rate d. Exotic preys are having natural death rate µ
and disease induced death rate σ.
(A8) It is also assumed that exotic infected predator neither recover nor immune.
A mathematical model from all these assumptions is framed as follows:

dP

dt
= rP

(
1− P

K

)
− η1PQ

1 + k1P + k2Q
(1)

dQ

dt
=

αη1PQ

1 + k1P + k2Q
+

αη2PSQ

1 + k1PS + k2Q
+

αη3PiQ

1 + k1Pi + k2Q
− dQ (2)

dPS
dt

= ∆− βPSPi −
η2PSQ

1 + k1PS + k2Q
− µPS (3)

dPi
dt

= βPSPi −
η3PiQ

1 + k1Pi + k2Q
− (µ+ σ)Pi (4)



256 C. PURUSHWANI, H. PURUSHWANI AND P. SINHA EJMAA–2022/10(1)

System (1) to (4) has to be analyzed with the following initial conditions:
P (0) > 0, Q(0) > 0, Ps(0) > 0, Pi(0) > 0. Proposed epidemic model can be easily
understood by following systematic diagram given below;

Table 1: Description of variables and parameters

Parameters description Parameter
value

P Native prey population. -
Q Native predator population. -
Ps Exotic susceptible prey population. -
Pi Exotic infected prey population. -
r Intrinsic growth rate 3
K The carrying capacity of the environment 45
k1 Half saturation constant. 0.9
k2 Magnitude of interference among predators. 0.23
α Conversion efficiency. (0 < α < 1) 0.4
β Disease transmission rate 0.02
∆ Recruitment rate of exotic susceptible prey

population
400

η1 The predation rate of native prey population 0.29
η2 The predation rate of exotic susceptible prey

population
0.52

η3 The predation rate of exotic infected prey
population

0.55

d The constant natural death rate of native
predator population

0.09

µ The constant natural death rate of exotic
prey population

0.54

σ Disease induced death rate of infected exotic
prey population

0.25

Positive invariance:
Let Y = (P, Q, Ps, Pi)

T ∈ R4 so system (1) to (4) may express in a vector form as

F (Y ) = (F1 (Y ) , F2 (Y ) , F3 (Y ) , F4 (Y ))
T
, (5)

Where F : C+ → R4 and F ∈ C∞(R4). Then equation (5) gives

•
Y = F (Y ) (6)

with Y (0) = Y0 ∈ R4
+ . It is easy to check in Eq. (5) that whenever, choosing

Y (0) ∈ R4
+ such that Yi = 0 then Fi(Y )|Yi=0 ≥ 0, (i = 1, 2, 3, 4). Now any

solution of with Y0 ∈ R4
+, say Y (t) = Y(t, y0), is such that Y (t) ∈ R4

+ for all t > 0
(Yang and Chen 1996). [16]

3. Equilibrium points

The model system (1) to (4) possesses following feasible biological equilibrium
points.
(i) The trivial equilibrium point E0(0, 0, 0, 0)



EJMAA–2022/10(1) DISEASE DYNAMICS: A PREY-PREDATOR MODEL 257

(ii) Disease-free equilibrium point without Predator E1

(
K, 0, ∆

µ , 0
)
.

(iii) Disease-free equilibrium point with Predator E2

(
∧
P ,
∧
Q,
∧
Ps, 0

)
Where,

− αr
(
∧
P

)2

+ αrK
∧
P +K

(
α∆− αµ

∧
Ps−d

∧
Q

)
= 0 (7)

∧
Q =

1 + k1

∧
P

η1

r

(
1−
∧
P
K

) − k2
(8)

− µk1

(
∧
Ps

)2

+

(
∆k1 − (η2 + µk2)

∧
Q−µ

)
∧
Ps +

(
∆ + k2

∧
Q

)
= 0 (9)

It is clear from equation (7) native prey population (
∧
P ) survives since it has at least

one positive root. Also from equation (8) if K >
∧
P > K

(
1− η1

rk2

)
then native

predator population (
∧
Q) will exist. Similarly, from equation (9) exotic susceptible

preys
∧

(Ps) will survive when
∧
Q exists. So under above conditions equilibrium point

E2 will exist.

(iv) Endemic equilibrium point without Predator E3

(
K, 0, µ+σ

β , 1
β

[
∆β
µ+σ − µ

])
.

It is clear that, the existence condition of equilibrium point E3 is ∆ > µ(µ+σ)
β .

(v) Endemic equilibrium point without Predator E4

(
∗
P ,
∗
Q,
∗
Ps,

∗
Pi

)
Where,

− αr
( ∗
P
)2

+ αrK
∗
P +K

(
α∆− d

∗
Q−αµ

∗
Ps−α (µ+ σ)

∗
Pi

)
= 0 (10)

∗
Q =

1 + k1

∗
P

η1

r

(
1−
∗
P
K

) − k2
(11)

∗
Pi =

1 + k2

∗
Q

k1


 η3

∗
Q(

β
∗
Ps− (µ+ σ)

)(
1 + k2

∗
Q

) − 1

 (12)

−k1

(
β
∗

Pi+µ

)(
∗
Ps

)2

+

(
∆k1 −

(
β
∗

Pi+µ

)(
1 + k2

∗
Q

)
− η2

∗
Q

)
∗
Ps

+ ∆

(
1 + k2

∗
Q

)
= 0 (13)

It is clear from equation (10) native prey population (
∗
P ) survives since it has at

least one positive root. Also from equation (11) native predator population (
∗
Q)

will exist if K >
∗
P > K

(
1− η1

rk2

)
.

Similarly, from equation (12) exotic infected preys (
∗
Pi) will survive if
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1
β

 η3
∗
Q(

1+k2
∗
Q

) + (µ+ σ)

 > ∗
Ps >

(µ+σ)
β

Further, from equation (13) exotic susceptible preys population (
∗
Ps) will survive

when
∧
Q exists. So under above conditions equilibrium point E4 will exist.

4. Local Stability analysis

In this section, stability of the model will be discussed with the help of Jacobian
matrix and Lyapunov function around equilibrium points.
The Jacobian matrix J of the model system (1) to (4) can be calculated as follows;

J(P,Q, Ps, Pi) =


∂P
∂P

∂P
∂Q

∂P
∂Ps

∂P
∂Pi

∂Q
∂P

∂Q
∂Q

∂Q
∂Ps

∂Q
∂Pi

∂Ps

∂P
∂Ps

∂Q
∂Ps

∂Ps

∂Ps

∂Pi
∂Pi

∂P
∂Pi

∂Q
∂Pi

∂Ps

∂Pi

∂Pi


Theorem 4.1 The trivial equilibrium point E0 of model system (1) to (4) is always
unstable.
Proof The Jacobian matrix of model system (1) to (4) around E0(0, 0, 0, 0) is given
by;

J(E0) =


r 0 0 0
0 −d 0 0
0 0 −µ 0
0 0 0 − (µ+ σ)


Now from matrix J(E0), we can easily notice that one Eigen value of this matrix is
positive and remaining Eigen values of J(E0) are negative, so E0(0, 0, 0, 0) is always
unstable.

Theorem 4.2 The Disease-free equilibrium point without predator E1 of model

system (1) to (4) is always stable if
(
αη1K

1+k1K
+ αη2∆

µ+k1∆

)
< d and β∆

µ < (µ+ σ) hold,

otherwise unstable.

Proof The Jacobian matrix of model system (1) to (4) around E1

(
K, 0, ∆

µ , 0
)

is

given by;

J(E1) =


−r − η1K

1+k1K
0 0

0 αη1K
1+k1K

+ αη2∆
µ+k1∆ − d 0 0

0 − η2∆
µ+k1∆ −µ −β∆

µ

0 0 0 β∆
µ − (µ+ σ)


Now from matrix J(E1), we can easily notice that two Eigen values of this matrix

are negative also remaining are positive if
(
αη1K

1+k1K
+ αη2∆

µ+k1∆

)
> d and β∆

µ > (µ+ σ)

or vice versa. Hence E1

(
K, 0, ∆

µ , 0
)

is stable if
(
αη1K

1+k1K
+ αη2∆

µ+k1∆

)
< d and β∆

µ <

(µ+ σ) otherwise unstable.

Theorem 4.3 The Disease-free equilibrium point with predator E2 of model system
(1) to (4) is always stable under following conditions;
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r
K > η1k1

∧
Q

A
∧
A
,

(
r
K −

η1k1
∧
Q

A
∧
A

)
.

(
αη1k2

∧
P

A
∧
A

+ αη2k2
∧
Ps

B
∧
B

)
> 1

4

 η1

(
1+k1

∧
P

)
−αη1

(
1+k2

∧
Q

)
A
∧
A

2

,

(
r
K −

η1k1
∧
Q

A
∧
A

)(
αη1k2

∧
P

A
∧
A

+ αη2k2
∧
Ps

B
∧
B

)(
∆

Ps

∧
Ps

− η2k1
∧
Q

B
∧
B

)
> 1

4

(
r
K −

η1k1
∧
Q

A
∧
A

)η2

(
1+k1

∧
Ps

)
−αη2

(
1+k2

∧
Q

)
B
∧
B

2

+
1

4

 ∆

Ps
∧
Ps

− η2k1

∧
Q

B
∧
B


 η1

(
1 + k1

∧
P

)
− αη1

(
1 + k2

∧
Q

)
A
∧
A


2

and ∆

Ps

∧
Ps

> η2k1
∧
Q

B
∧
B

Otherwise unstable.

Proof To determine stability of E2

(
∧
P ,
∧
Q,
∧
Ps, 0

)
, we consider the following positive

definite Lyapunov function of model system (1) to (4) as follows;

V (P,Q, Ps, 0) =

(
P −

∧
P −

∧
P log

P
∧
P

)
+

Q− ∧Q− ∧Q log
Q
∧
Q

 +

(
Ps −

∧
Ps−

∧
Ps log

Ps
∧
Ps

)
Now,computing the time derivative of V and using model system (1) to (4), we get
•
V =

(
P −

∧
P

)(
r
(
1− P

K

)
− η1Q

1+k1P+k2Q

)
+

(
Q−

∧
Q

)(
αη1P

1+k1P+k2Q
+ αη2PS

1+k1PS+k2Q
− d
)

+

(
Ps −

∧
Ps

)(
∆

Ps
− η2Q

1 + k1PS + k2Q
− µ

)

•
V =

(
P −

∧
P

)(
− r

K

(
P −

∧
P

)
− η1


(

1 + k1

∧
P

)(
Q−

∧
Q

)
− k1

∧
Q

(
P −

∧
P

)
(1 + k1P + k2Q)

(
1 + k1

∧
P +k2

∧
Q

)



+

(
Q−

∧
Q

)αη1


(

1 + k2

∧
Q

)(
P −

∧
P

)
− k2

∧
P

(
Q−

∧
Q

)
(1 + k1P + k2Q)

(
1 + k1

∧
P +k2

∧
Q

)


+αη2


(

1 + k2

∧
Q

)(
Ps −

∧
Ps

)
− k2

∧
Ps

(
Q−

∧
Q

)
(1 + k1Ps + k2Q)

(
1 + k1

∧
Ps +k2

∧
Q

)



+

(
Ps −

∧
Ps

)(
− ∆

Ps
∧
Ps

(
Ps −

∧
Ps

)
−η2


(

1 + k1

∧
Ps

)(
Q−

∧
Q

)
− k1

∧
Q

(
Ps −

∧
Ps

)
(1 + k1Ps + k2Q)

(
1 + k1

∧
Ps +k2

∧
Q

)



Consequently, we get

•
V = −

 r

K
− η1k1

∧
Q

A
∧
A

 (P − ∧P)2

+

αη1k2

∧
P

A
∧
A

+
αη2k2

∧
Ps

B
∧
B

(Q− ∧Q)2
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+

 ∆

Ps
∧
Ps

− η2k1

∧
Q

B
∧
B

(Ps − ∧
Ps

)2

+

 η1

(
1 + k1

∧
P

)
− αη1

(
1 + k2

∧
Q

)
A
∧
A

(Q− ∧Q)(P − ∧P)

+

η2

(
1 + k1

∧
Ps

)
− αη2

(
1 + k2

∧
Q

)
B
∧
B

(Q− ∧Q) (Ps − ∧
Ps

)]

The above expression can be written as LTML, where L =

(
P −

∧
P, Q−

∧
Q, Ps −

∧
Ps

)
and

M =

 MPP MPQ MPPs

MPQ MQQ MQPs

MPPs
MQPs

MPsPs


with

MPP =

(
r
K −

η1k1
∧
Q

A
∧
A

)
, MQQ =

(
αη1k2

∧
P

A
∧
A

+ αη2k2
∧
Ps

B
∧
B

)
, MPsPs

=

(
∆

Ps

∧
Ps

− η2k1
∧
Q

B
∧
B

)
,

MPPs
= MPsP = 0, MPQ = MQP = 1

2

 η1

(
1+k1

∧
P

)
−αη1

(
1+k2

∧
Q

)
A
∧
A

 , MPsQ =

MQPs = 1
2

η2

(
1+k1

∧
Ps

)
−αη2

(
1+k2

∧
Q

)
B
∧
B


Therefore,
•
V = dV

dt is negative definite if the symmetric matrix M is positive definite.
The matrix M is positive definite, if all the principal minors of M are positive.

P1 = MPP =

(
r
K −

η1k1
∧
Q

A
∧
A

)
,

P2 = MPP .MQQ−M2
PQ =

(
r
K −

η1k1
∧
Q

A
∧
A

)
.

(
αη1k2

∧
P

A
∧
A

+ αη2k2
∧
Ps

B
∧
B

)
− 1

4

 η1

(
1+k1

∧
P

)
−αη1

(
1+k2

∧
Q

)
A
∧
A

2

,

P3 = MPP .MQQ.MPsPs+2MPQ.MPPsMQPs−MPP .M
2
QPs
−MQQ.M

2
PPs
−MPsPs .M

2
PQ

=

 r

K
− η1k1

∧
Q

A
∧
A

αη1k2

∧
P

A
∧
A

+
αη2k2

∧
Ps

B
∧
B

 ∆

Ps
∧
Ps

− η2k1

∧
Q

B
∧
B



−1

4

 r

K
− η1k1

∧
Q

A
∧
A


η2

(
1 + k1

∧
Ps

)
− αη2

(
1 + k2

∧
Q

)
B
∧
B


2

−1

4

 ∆

Ps
∧
Ps

− η2k1

∧
Q

B
∧
B


 η1

(
1 + k1

∧
P

)
− αη1

(
1 + k2

∧
Q

)
A
∧
A


2

.

P1 > 0 if r
K > η1k1

∧
Q

A
∧
A
,
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P2 > 0 if

(
r
K −

η1k1
∧
Q

A
∧
A

)
.

(
αη1k2

∧
P

A
∧
A

+ αη2k2
∧
Ps

B
∧
B

)
> 1

4

 η1

(
1+k1

∧
P

)
−αη1

(
1+k2

∧
Q

)
A
∧
A

2

and

P3 > 0 if

(
r
K −

η1k1
∧
Q

A
∧
A

)(
αη1k2

∧
P

A
∧
A

+ αη2k2
∧
Ps

B
∧
B

)(
∆

Ps

∧
Ps

− η2k1
∧
Q

B
∧
B

)
> 1

4

(
r
K −

η1k1
∧
Q

A
∧
A

)
η2

(
1+k1

∧
Ps

)
−αη2

(
1+k2

∧
Q

)
B
∧
B

2

+ 1
4

(
∆

Ps

∧
Ps

− η2k1
∧
Q

B
∧
B

) η1

(
1+k1

∧
P

)
−αη1

(
1+k2

∧
Q

)
A
∧
A

2

Thus if previous conditions hold then E2

(
∧
P ,
∧
Q,
∧
Ps, 0

)
is stable, otherwise unstable.

Theorem 4.4 The endemic equilibrium point without predator E3 of model sys-

tem (1) to (4) is always stable if αη1K
1+k1K

+ αη2(µ+σ)
β+k1(µ+σ) + αη3[β∆−µ(µ+σ)]

β(µ+σ)+k1[β∆−µ(µ+σ)] < d

and β∆
µ > (µ+ σ) hold, otherwise unstable.

Proof The Jacobian matrix around E3

(
K, 0, µ+σ

β , 1
β

[
∆β
µ+σ − µ

])
of the model sys-

tem (1) to (4) is given by,

J(E3) =


−r − η1K

1+k1K
0 0

0 αη1K
1+k1K

+ αη2(µ+σ)
β+k1(µ+σ) + αη3[β∆−µ(µ+σ)]

β(µ+σ)+k1[β∆−µ(µ+σ)] − d 0 0

0 −η2(µ+σ)
β+k1(µ+σ) − β∆

(µ+σ) − (µ+ σ)

0 −η3[β∆−µ(µ+σ)]
β(µ+σ)+k1[β∆−µ(µ+σ)]

β∆−µ(µ+σ)
(µ+σ) 0



Now from matrix J(E3), we can easily notice that one Eigen value of this ma-

trix is negative also remaining Eigen values are negative if αη1K
1+k1K

+ αη2(µ+σ)
β+k1(µ+σ) +

αη3[β∆−µ(µ+σ)]
β(µ+σ)+k1[β∆−µ(µ+σ)] < d and β∆

µ > (µ+ σ)so in this case E3 is stable otherwise

unstable.

Theorem 4.5 The Endemic equilibrium point with predator E4 of model system
(1) to (4) is always stable if following conditions hold;(
r
K −

η1k1
∗
Q

A
∗
A

)
.

(
r
K −

η1k1
∗
Q

A
∗
A

)
.

(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)
> 1

4

 η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2

,(
r
K −

η1k1
∗
Q

A
∗
A

)(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)
>

(
1
4

(
r
K −

η1k1
∗
Q

A
∗
A

)
η2

(
1+k1

∗
Ps

)
−αη2

(
1+k2

∗
Q

)
B
∗
B

2

+ 1
4

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)  η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2
 and

(
r
K −

η1k1
∗
Q

A
∗
A

)(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)(
−η3k1

∗
Pi

C
∗
C

)
>

{
1
4

(
r
K −

η1k1
∗
Q

A
∗
A

)
(

∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)η3

(
1+k1

∗
Pi

)
−αη3

(
1+k2

∗
Q

)
C
∗
C

2

+ 1
4

(
r
K −

η1k1
∗
Q

A
∗
A

)(
−η3k1

∗
Pi

C
∗
C

)η2

(
1+k1

∗
Ps

)
−αη2

(
1+k2

∗
Q

)
B
∗
B

2
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+ 1
4

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)(
−η3k1

∗
Pi

C
∗
C

)  η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2


Otherwise unstable.
where

A = 1
1+k1P+k2Q

,
∗
A = 1

1+k1
∗
P +k2

∗
Q
, B = 1

1+k1Ps+k2Q
,
∗
B = 1

1+k1
∗
Ps +k2

∗
Q
,

C = 1
1+k1Pi+k2Q

and
∗
C = 1

1+k1
∗
Pi +k2

∗
Q

Proof To determine stability of E4

(
∗
P ,
∗
Q,
∗
Ps,

∗
Pi

)
, we consider the following pos-

itive definite Lyapunov function of the model system (1) to (4) is given by,

W (P,Q, Ps, Pi) =

(
P −

∗
P −

∗
P log P

∗
P

)
+

(
Q−

∗
Q−

∗
Q log Q

∗
Q

)
+

(
Ps −

∗
Ps−

∗
Ps log Ps

∗
Ps

)

+

(
Pi −

∗
Pi−

∗
Pi log

Pi
∗
Pi

)

Now, computing the time derivative of Wand using model system (1) to (4), we
get;
•
W =

(
P −

∗
P
)(

r
(
1− P

K

)
− η1Q

1+k1P+k2Q

)
+

(
Q−

∗
Q

)(
αη1P

1+k1P+k2Q
+ αη2PS

1+k1PS+k2Q
+

αη3Pi

1+k1Pi+k2Q
− d
)

+

(
Ps −

∗
Ps

)(
∆
Ps
− βPi − η2Q

1+k1PS+k2Q
− µ

)
+

(
Pi −

∗
Pi

)
(βPS

− η3Q
1+k1Pi+k2Q

− (µ+ σ)
)

•
W =

(
P −

∗
P
) (
− r
K

(
P −

∗
P
)
− η1

(
1+k1

∗
P

)(
Q−

∗
Q

)
−k1

∗
Q

(
P−

∗
P

)
(1+k1P+k2Q)

(
1+k1

∗
P +k2

∗
Q

)


+

(
Q−

∗
Q

)αη1

(
1+k2

∗
Q

)(
P−

∗
P

)
−k2

∗
P

(
Q−

∗
Q

)
(1+k1P+k2Q)

(
1+k1

∗
P +k2

∗
Q

)
 +αη2

(
1+k2

∗
Q

)(
Ps−

∗
Ps

)
−k2

v
Ps

(
Q−

∗
Q

)
(1+k1Ps+k2Q)

(
1+k1

∗
Ps +k2

∗
Q

)
+

αη3

(
1+k2

∗
Q

)(
Pi−

∗
Pi

)
−k2

∗
Pi

(
Q−

∗
Q

)
(1+k1Pi+k2Q)

(
1+k1

∗
Pi +k2

∗
Q

)


+

(
Ps −

∗
Ps

)(
− ∆

Ps

∗
Ps

(
Ps −

∗
Ps

)
− η2

(
1+k1

∗
Ps

)(
Q−

∗
Q

)
−k1

∗
Q

(
Ps−

∗
Ps

)
(1+k1Ps+k2Q)

(
1+k1

∗
Ps +k2

∗
Q

)


+

(
Pi −

∗
Pi

)−η3

(
1+k1

∗
Pi

)(
Q−

∗
Q

)
−k1

∗
Q

(
Pi−

∗
Pi

)
(1+k1Pi+k2Q)

(
1+k1

∗
Pi +k2

∗
Q

)


consequently, we get
•
W = −

[(
r
K −

η1k1
∗
Q

A
∗
A

) (
P −

∗
P
)2

+

[
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

](
Q−

∗
Q

)2

+

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)(
Ps −

∗
Ps

)2

+

 η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

(Q− ∗Q)(P − ∗
P
)
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+

η2(1+k1
∗
Ps

)
−αη2

(
1+k2

∗
Q

)
B
∗
B

(Q− ∗Q)(Ps − ∗
Ps

)

+

 η3

(
1+k1

∗
Pi

)
−αη3

(
1+k2

∗
Q

)
C
∗
C

(Q− ∗Q)(Pi − ∗
Pi

)
−
(
η3k1

∗
Q

C
∗
C

) (
Pi −

∗
Pi

)2
]

The above expression can be written as L
′TM

′
L
′
, where L

′
=

(
P −

∗
P, Q−

∗
Q, Ps −

∗
Ps, Pi −

∗
Pi

)

andM
′

=


M
′

PP M
′

PQ M
′

PPs
M
′

PPi

M
′

PQ M
′

QQ M
′

QPs
M
′

QPi

M
′

PPs
M
′

QPs
M
′

PsPs
M
′

PiPs

M
′

PPi
M
′

QPi
M
′

PiPs
M
′

PiPi


With

M
′

PP =

(
r
K −

η1k1
∗
Q

A
∗
A

)
, M

′

QQ =

[
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

]
,M

′

PsPs
=

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)
,

M
′

PiPi
=

(
−η3k1

∗
Q

C
∗
C

)
, M

′

PsQ
= M

′

QPs
= 1

2

η2

(
1+k1

∗
Ps

)
−αη2

(
1+k2

∗
Q

)
B
∗
B

 ,

M
′

PQ = M
′

QP = 1
2

 η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

 , M
′

PPs
= M

′

PsP
= 0,

M
′

PsPi
= M

′

PiPs
= 0, M

′

PPi
= M

′

PiP
= 0, M

′

PiQ
= M

′

QPi
= 1

2

 η3

(
1+k1

∗
Pi

)
−αη3

(
1+k2

∗
Q

)
C
∗
C


Therefore,
•
W = dW

dt is negative definite if the symmetric matrix M is positive definite.
The matrix M is positive definite, if all the principal minors of M are positive.

P
′

1 = M
′

PP =

(
r
K −

η1k1
∗
Q

A
∗
A

)
,

P
′

2 = M
′

PP .M
′

QQ −M
′

PQ
2

=

(
r
K −

η1k1
∗
Q

A
∗
A

)
.

(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)
− 1

4

 η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2

,

P
′

3 = M
′

PP .M
′

QQ.M
′

PsPs
−M ′

PP .M
′

QPs

2 −M ′

PsPs
.M
′

PQ
2

=

(
r
K −

η1k1
∗
Q

A
∗
A

)(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)

− 1
4

(
r
K −

η1k1
∗
Q

A
∗
A

)η2

(
1+k1

∗
Ps

)
−αη2

(
1+k2

∗
Q

)
B
∗
B

2

− 1
4

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

) η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2

and
P
′

4 = M
′

PP .M
′

QQ.M
′

PsPs
.M
′

PiPi
−M ′

PP .M
′

PsPs
M
′

QPi

2−M ′

PP .M
′

PiPi
.M
′

QPs

2−M ′

PsPs
.M
′

PiPi
.M
′

PQ
2

=

(
r
K −

η1k1
∗
Q

A
∗
A

)(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)(
−η3k1

∗
Pi

C
∗
C

)

− 1
4

(
r
K −

η1k1
∗
Q

A
∗
A

)(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)η3

(
1+k1

∗
Pi

)
−αη3

(
1+k2

∗
Q

)
C
∗
C

2
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− 1
4

(
r
K −

η1k1
∗
Q

A
∗
A

)(
−η3k1

∗
Pi

C
∗
C

)η2

(
1+k1

∗
Ps

)
−αη2

(
1+k2

∗
Q

)
B
∗
B

2

− 1
4

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)(
−η3k1

∗
Pi

C
∗
C

) η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2

.

P
′

1 > 0 if

(
r
K −

η1k1
∗
Q

A
∗
A

)
,

P
′

2 > 0 if

(
r
K −

η1k1
∗
Q

A
∗
A

)
.

(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)
> 1

4

 η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2

,

P
′

3 > 0 if

(
r
K −

η1k1
∗
Q

A
∗
A

)(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)
>

(
1
4

(
r
K −

η1k1
∗
Q

A
∗
A

)
η2

(
1+k1

∗
Ps

)
−αη2

(
1+k2

∗
Q

)
B
∗
B

2

+ 1
4

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)  η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2


and

P
′

4 > 0 if

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)(
−η3k1

∗
Pi

C
∗
C

)(
r
K −

η1k1
∗
Q

A
∗
A

)(
αη1k2

∗
P

A
∗
A

+ αη2k2
∗
Ps

B
∗
B

+ αη3k2
∗
Pi

C
∗
C

)
>

{
1
4

(
r
K −

η1k1
∗
Q

A
∗
A

) (
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)η3

(
1+k1

∗
Pi

)
−αη3

(
1+k2

∗
Q

)
C
∗
C

2

+ 1
4

(
r
K −

η1k1
∗
Q

A
∗
A

)(
−η3k1

∗
Pi

C
∗
C

)η2

(
1+k1

∗
Ps

)
−αη2

(
1+k2

∗
Q

)
B
∗
B

2

+ 1
4

(
∆

Ps

∗
Ps

− η2k1
∗
Q

B
∗
B

)(
−η3k1

∗
Pi

C
∗
C

)  η1

(
1+k1

∗
P

)
−αη1

(
1+k2

∗
Q

)
A
∗
A

2


Thus if previous conditions hold then J(E4) is stable, otherwise unstable.

5. Persistence

The long term stability of a particular population without caring for the initial
population is known as persistence. Mathematically, A population x(t) is said to
be uniformly persistent if there exists a δ > 0, independent of x(0) > 0, such that
lim
t→∞

inf x(t) > δ and lim
t→∞

sup x(t) < δ. (Mukherjee 2014)

5.1. Dissipativeness: The terms dissipativeness refers to condition in which dif-
ferent species of a particular population change with respect to time i.e., instability.
We claim that solution of model system (1) to (4) always exits and bounded.
Suppose M =max{K,P (0)}
Now, taking equation (1)

dP

dt
= P

(
r

(
1− P

K

)
− η1Q

1 + k1P + k2Q

)
This implies dP

dt ≤ rP
(
1− P

K

)
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it follows that lim
t→∞

sup P (t) ≤M i.e.,P (t) is bounded and defined on the interval

[0,∞) ,∀t ≥ 0.
Again, we consider the function V (t) = Ps(t) + Pi(t)

dV

dt
= ∆− η2PSQ

1 + k1PS + k2Q
− η3PiQ

1 + k1Pi + k2Q
− µPS − (µ+ σ)Pi

dV

dt
≤ ∆− µV

which implies
dV

dt
+ µV ≤ ∆

on solving we get

V (t) ≤ ∆

µ
+
V (0)

eµt
,∀t ≥ 0

consequently

lim
t→∞

sup V (t) = lim
t→∞

sup(Ps(t) + Pi(t)) ≤
∆

µ
Now we assume

dQ

dt
=

(
αη1P

1 + k1P + k2Q
+

αη2PS
1 + k1PS + k2Q

+
αη3Pi

1 + k1Pi + k2Q
− d
)
Q

dQ

dt
≤ (αη1P + αη2PS + αη3Pi − d)Q

dQ

dt
≤
(
αη1M + αη2

∆

µ
+ αη3

∆

µ
− d
)
Q

dQ

dt
≤ (ω − d)Q

where ω =
(
αη1M + αη2

∆
µ + αη3

∆
µ

)
On solving we get

Q ≤ e(ω−d)t +Q(0)

Consequently when ω < d, lim
t→∞

sup Q(t) = lim
t→∞

(e(ω−d)t +Q(0)) = Q(0)

So all the solutions of model system (1) to (4) that initiate in R4
+ can be confined in

the region E =
{

(P,Q, Ps, Pi) ∈ R4
+ : P ≤M, Q ≤ Q(0), Ps + Pi ≤ ∆

µ

}
as t→∞

Therefore, the solutions of the model system (1) to (4) with positive initial condi-
tions are dissipative.

5.2. Permanence. Under suitable conditions all the populations of a particular
population survive in future as well. Mathematically, permanence of the system
means that strictly positive solutions having no limit points on the bounded region.
From the equation (1); we have

dP

dt
≥
(
r

(
1− P

K

)
− η1Q

)
P

dQ

dt
≥ Q

(
αη1P

1 + k1P + k2Q
+

αη2PS
1 + k1PS + k2Q

− d
)

dPS
dt
≥ (∆− βPSPi − η2PSQ− µPS)
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dPi
dt
≥ Pi (βPS − η3Q− (µ+ σ))

if(y1, y2, y3, y4)is the positive root of the system of equalities

r

(
1− P

K

)
− η1Q = 0 (14)

αη1P

1 + k1P + k2Q
+

αη2PS
1 + k1PS + k2Q

− d = 0 (15)

∆− βPSPi − η2PSQ− µPS = 0 (16)

βPS − η3Q− (µ+ σ) = 0 (17)

By standard comparison theorem (Xiao and Chen 2001)
lim
t→∞

inf P (t) ≥ y1, lim
t→∞

inf Q(t) ≥ y2, lim
t→∞

inf Ps(t) ≥ y3 and lim
t→∞

inf Pi(t) ≥ y4.

where y2 is the positive root of the equation AQ2 +BQ+ C = 0
where

A = αη2η3
β

(
k2 − k1η1K

r

)
+
(
dk1η1K

r − αη21K
r − dk2

)(
k1η3
β + k2

)
,

B = (αη1K − d (1 + k1K))
(
k1η3
β + k2

)
+
(
dk1η1K

r − αη21K
r − dk2

)(
1 + k1(µ+σ)

β

)
+αη2

β

(
(1 + k1K) η3 + (µ+ σ)

(
k2 − k1η1K

r

))
,

C = αη2(µ+σ)
β (1 + k1K) + (αη1K − d (1 + k1K))

(
1 + k1(µ+σ)

β

)
,

y1 = K
(

1− η1

r
y2

)
, y3 =

η3y2 + (µ+ σ)

β
, y4 =

∆β − (η2y2 + µ) (η3y2 + µ+ σ)

(η3y2 + µ+ σ)β

(y1, y2, y3, y4) is feasible solution of model system (14) to (17) if the following con-
ditions hold. Using descarte’s rule of sign Equation has at least one positive root
if A < 0, B > 0 or A > 0, B < 0, 1 > η1

r y2 and ∆β > (η2y2 + µ) (η3y2 + µ+ σ)
thus under these conditions model system (1) to (4) is uniformly persistent.

6. Numerical simulations and conclusion

Predation is an important factor that controls the infection in prey. The fatal dis-
ease can harm predator population that decreases the growth rate or increasing the
death rate. In this paper, a non linear mathematical model with endemic exotic
prey and native prey-predator with functional response Holling type II was framed
to study the transmission of disease. We have put set of biologically feasible pa-
rameter values in Table 1 which are taken from some of the reference papers also
observed the dynamics of model system (1) to (4) for the same values. The obtained
equilibrium point is (27.4216, 1470.55, 151.38, 24.7039). Further, we have analyzed
the model in three parts. In first part; we focused on effect of transmission rate of
disease (β), in second part; we noted effect of predation rate of exotic infected preys
(η3), in third part; we saw effect of carrying capacity on the environment (K) on
survival of native and exotic populations, respectively, as they all are responsible
for transmission of disease.

Whole mathematical analysis can be summarized in following Table-2, given below;
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Figure 3. Plot between Time and all species for various
values of β

Table 2: Summery of analysis

Equilibrium points Existence conditions Stability conditions
E0(0, 0, 0, 0) Always Always unstable in the-

orem 4.1

E1

(
K, 0, ∆

µ , 0
)

Always Stable under condi-
tions of theorem 4.2

E2

(
∧
P ,
∧
Q,
∧
Ps, 0

)
K >

∧
P > K

(
1− η1

rk2

)
Stable under condi-
tions of theorem 4.3

E3

(
K, 0, µ+σ

β , 1
β

[
∆β
µ+σ − µ

])
∆ > µ(µ+σ)

β Stable under condi-
tions of theorem 4.4

E4

(
∗
P ,
∗
Q,
∗
Ps,

∗
Pi

)
K >

∗
P > K

(
1− η1

rk2

)
and

1
β

 η3
∗
Q(

1+k2
∗
Q

) + (µ+ σ)

 >

∗
Ps >

(µ+σ)
β

Stable under condi-
tions of theorem 4.5
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Figure 4. Plot between Time and all species for various
values of η3

Role of disease transmission rate (β)
Keeping η3 = 0.55 and K = 45fixed, it was concluded that as disease transmission
rate (β)decreases, then predator population decreases, exotic susceptible prey pop-
ulation increases, exotic infected prey population decreases and there is no effect
on native preys (Fig.3).

Role of the predation rate of exotic infected prey (η3)
Keepingβ = 0.02and K = 45fixed, it was concluded that as the predation rate of
exotic infected prey(η3) decreases, then predator population decreases, exotic sus-
ceptible prey population decreases, exotic infected prey population increases and
there is no effect on native preys (Fig4).

Role of carrying capacity of the environment (K)
Keeping η3 = 0.55 and β = 0.02 fixed, it was concluded that as carrying capacity
(K) decreases then native prey population, native predator population decreases
and there is no effect on exotic susceptible and infected preys (Fig.5). However, it is
also argued that consumption of prey that is infected may be harmful or beneficial,
depends on the virulence of its infection severity
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