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TWICE DIFFERENTIABLE OSTROWSKI TYPE TENSORIAL

NORM INEQUALITY FOR CONTINUOUS FUNCTIONS OF

SELFADJOINT OPERATORS IN HILBERT SPACES

V. STOJILJKOVIĆ

Abstract. In this paper several tensorial norm inequalities for continuous

functions of selfadjoint operators in Hilbert space have been obtained. The
recent progression of the Hilbert space inequalities following the definition of

the convex operator inequality has lead researchers to explore the concept of

Hilbert space inequalities even further. The motivation for this paper stems
from the recent development in the theory of tensorial and Hilbert space in-

equalities. Multiple inequalities are obtained with variations due to the con-

vexity properties of the mapping f∣∣∣∣∣∣∣∣16
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360
∥1⊗B −A⊗ 1∥2 (∥exp(A)∥+ ∥exp(B)∥).

Tensorial version of a Lemma given by Hezenci is derived and utilized to obtain

the desired inequalities. In the introduction section is given a brief history of

the inequalities, while in the preliminary section we give necessary Lemmas
and results in order to understand the paper. Structure and novelty of the

paper are discussed at the end of the introduction section.

1. Introduction and preliminaries

The notion of a tensor has its origin in the 19th century, where it was formulated
by Gibbs, though he didn’t formally use the word tensor but a dyadic. In modern
language, it can be seen as the origin of the tensor definition and its introduction to
the mathematics. Interplay of inequalities in mathematics is vast, and as such it has
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applications in tensors as well. Mathematics and other scientific fields are highly
influenced by inequalities. Many types of inequalities exist, but those involving
Jensen, Ostrowski, Hermite–Hadamard, and Minkowski hold particular significance
among them. More about inequalities and its history can be found in these books
[22, 25]. Regarding the generalizations of the aforementioned inequalities, numer-
ous studies have been published; for additional information, check the following and
the references therein [1, 2, 3, 4, 5, 26, 20, 28, 7, 8, 9, 29, 30, 31, 32, 33, 34]. The first
five citations are related to the inequalities concerning the possible relation which
can be defined on an interval, such as center-radius(CR) relation, interval-valued
relation and the inequalities related to the Hermite-Hadamard type. Citations from
7-9 are concerned with obtaining Hermite-Hadamard and Fejer type inequalities in
a classical sense with addition to using fractional operators. Citation 20 is con-
cerned with obtaining Hermite-Hadamard and Fejer type inequalities. Citation 26
is concerned with obtaining midpoint type Hermite-Hadamard inequalities with
Caputo-Fabrizio fractional operators. Citations from 28-31 and 33 are concerned
with obtaining variations of the modified integral inequalities as well as obtaining
various Hermite-Hadamard-Fejer type inequalities. Citation 32 is concerned with
obtaining refinement of the Hermite-Hadamard type inequality in the Hilbert space
in tensorial sense.
Since our paper is about tensorial Ostrowski type inequalities, we give the brief
introduction to the topic. In 1938, A. Ostrowski [23] , proved the following inequal-

ity concerning the distance between the integral mean 1
b−a

∫ b

a
f(t)dt and the value

f(x), x ∈ [a, b].

Theorem 1.1. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b)
such that f ′ : (a, b) → R is bounded on (a, b) and ∥f ′∥∞ := supt∈(a,b) |f ′(t)| < +∞.
Then ∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣ ⩽ [14 +

(
x− a+b

2

b− a

)2 ]
∥f ′∥∞ (b− a),

for all x ∈ [a, b] and the constant 1
4 is the best possible.

If we take x = a+b
2 we get the midpoint inequality∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣ ⩽ 1

4
∥f ′∥∞ (b− a),

with 1
4 as best possible constant.

In order to derive similar inequalities of the tensorial type, we need the following
introduction and preliminaries.
Let I1, ..., Ik be intervals from R and let f : I1 × ... × Ik → R be an essentially
bounded real function defined on the product of the intervals. Let A = (A1, ..., Ak)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1, ...,Hk such that
the spectrum of Ai is contained in Ii for i = 1, ..., k. We say that such a k-tuple is
in the domain of f . If

Ai =

∫
Ii

λidEi(λi)

is the spectral resolution of Ai for i = 1, ..., k by following , we define

f(A1, ..., Ak) :=

∫
I1

...

∫
Ik

f(λ1, ..., λk)dE1(λ1)⊗ ...⊗ dEk(λk)
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as bounded selfadjoint operator on the tensorial product H1 ⊗ ...Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become finite
sums, and we may consider the functional calculus for arbitrary real functions. This
construction extends the definition of Koranyi [21] for functions of two variables
and have the property that

f(A1, ...Ak) = f1(A1)⊗ ...⊗ fk(Ak),

whenever f can be separated as a product f(t1, ..., tk) = f1(t1)...fk(tk) of k functions
each depending on only one variable.

Recall the following property of the tensorial product

(AC)⊗ (BD) = (A⊗B)(C ⊗D)

that holds for any A,B,C,D ∈ B(H).
From the property we can deduce easily the following

An ⊗Bn = (A⊗B)n, n ⩾ 0,

(A⊗ 1)(1⊗B) = (1⊗B)(A⊗ 1) = A⊗B,

which can be extended, for two natural numbers m; n we have

(A⊗ 1)n(1⊗B)m = (1⊗B)n(A⊗ 1)m = An ⊗Bm.

The current research concerning tensorial inequalities can be seen in the following
papers, [10, 11, 12, 13, 14]. The following Lemma which we require can be found
in a paper of Dragomir [15].

Lemma 1.1. Assume A and B are selfadjoint operators with Sp(A) ⊂ I, Sp(B) ⊂
J and having the spectral resolutions . Let f ;h be continuous on I, g, k continuous
on J and ϕ and ψ continuous on an interval K that contains the sum of the intervals
f(I) + g(J);h(I) + k(J),then

ϕ(f(A)⊗ 1 + 1⊗ g(B))ψ(h(A)⊗ 1 + 1⊗ k(B))

=

∫
I

∫
J

ϕ(f(t) + g(s))ψ(h(t) + k(s))dEt ⊗ dFs.

Definition of a well known Riemann-Liouville (RL) fractional integral is given.

Definition 1.1. Let f ∈ C([a, b]). Then the left and right sided Riemann Liouville
(RL) fractional integrals of order α > 0 with a ≥ 0 are defined as

Iαa+f(z) =
1

Γ(α)

∫ z

a

(z − u)α−1f(u)du, z > a, (1)

and

Iαb−f(z) =
1

Γ(α)

∫ b

z

(u− z)α−1f(u)du, z < b, (2)

where Γ(.) denotes the Gamma function.

Definition 1.2. A real valued function f : I → R is called a convex function on
interval I if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (3)

holds for all t ∈ [0, 1] and for all x, y ∈ I.
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In the paper written by Hezenci et al. [18] , the authors used the following
Lemma. We will utilize it to produce results in the tensorial setting.

Lemma 1.2. Let f : [a, b] → R be a differentiable mapping on (a, b) such that
f ′′ ∈ L1([a, b]). Then, the following equality holds

1

6

(
f(a) + 4f

(
a+ b

2

)
+ 2f(b)

)
(4)

−2α−1Γ(1 + α)

(b− a)α

(
Jα
b−f

(
a+ b

2

)
+ Jα

a+f

(
a+ b

2

))
=

(b− a)2

8(α+ 1)

∫ 1

0

(
1− 2α

3
+

2(α+ 1)

3
τ − τα+1

)(
f ′′
((

1 + τ

2

)
b+

(
1− τ

2

)
a

)
+f ′′

((
1 + τ

2

)
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(
1− τ

2

)
b

))
dτ.

Lemma 1.3. We will prove the following relation for fractional integrals,

Jα
b−f

(
a+ b

2

)
=

b− a

2αΓ(α)

∫ 1

0

f

((
1− k

2

)
a+

(
1 + k

2

)
b

)
kα−1(b− a)α−1dk,

Jα
a+f

(
a+ b

2

)
=

b− a

2αΓ(α)

∫ 1

0

f

((
1− k

2

)
a+

k

2
b

)
((k − 1)a+ (1− k)b)α−1dk.

Proof. Use the integral definition of the fractional integrals and introduce the fol-
lowing substitution ζ = (1− k)a+b

2 + kb and ζ = (1− k)a+ k a+b
2 on the first and

second integral, the result follows. □

Novel aspects in this work can be seen in the development of the inequalities
of the Ostrowski type for the twice differentiable functions in the Hilbert space
of tensorial type. This field is relatively new, therefore obtaining new bounds for
various convex combinations of the functions is instrumental to the development of
it.
The rest of the paper is structured as follows, main results is the section in which
results concerning the novelty of the work will be given. The following section ,
some examples and consequences will feature examples of the obtained results by
using the known fact about the exponential operator and its integral, therefore by
utilizing it and choosing f to be a specific convex function, we obtain numerous
examples and bounds of the Ostrowski type in the tensorial sense. In the conclusion
section we conclude what has been done in the paper. In the following Theorem,
we give a fundamental result which we will use in our paper to produce inequalities.

2. Main results

Theorem 2.2. Assume that f is continuously differentiable on I, A and B are
selfadjoint operators with Sp(A), Sp(B) ⊂ I, then

1

6

(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ f(B)

)
(5)

−1

2
α

(∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)
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= (1⊗B −A⊗ 1)2
1

8(α+ 1)

∫ 1

0

(
1− 2α

3
+

2(α+ 1)

3
τ − τα+1

)
(
f ′′
((

1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

)
+f ′′

((
1 + τ

2

)
A⊗ 1 +

(
1− τ

2

)
1⊗B

))
dτ.

Proof. We start with Lemma 3 (4). Rewriting the fractional integral using Lemma
4, simplifying we obtain

1

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
−1

2
α

(∫ 1

0

f

((
1− k

2

)
a+

(
1 + k

2

)
b

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
a+

k

2
b

)
(1− k)α−1dk

)
= (b− a)2

1

8(α+ 1)

∫ 1

0

(
1− 2α

3
+

2(α+ 1)

3
τ − τα+1

)
(
f ′′
((

1 + τ

2

)
b+

(
1− τ

2

)
a

)
+f ′′

((
1 + τ

2

)
a+

(
1− τ

2

)
b

))
dτ.

Assuming that A and B have the spectral resolutions

A =

∫
tdE(t) and B =

∫
sdF (s).

If we take the integral
∫
I

∫
I
over dEt ⊗ dFs , then we get∫

I

∫
I

1

6

(
f(t) + 4f

(
t+ s

2

)
+ f(s)

)
dEt ⊗ dFs

−
∫
I

∫
I

1

2
α

(∫ 1

0

f

((
1− k

2

)
t+

(
1 + k

2

)
s

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
t+

k

2
s

)
(1− k)α−1dk

)
dEt ⊗ dFs

=

∫
I

∫
I

(s− t)2
1

8(α+ 1)

∫ 1

0

(
1− 2α

3
+

2(α+ 1)

3
τ − τα+1

)
(
f ′′
((

1 + τ

2

)
s+

(
1− τ

2

)
t

)
+f ′′

((
1 + τ

2

)
t+

(
1− τ

2

)
s

))
dτdEt ⊗ dFs.

By utilizing Lemma 3 for appropriate choices of the functions involved, we have
successively ∫

I

∫
I

1

6
f(t)dEt ⊗ dFs =

1

6
(f(A)⊗ 1),∫

I

∫
I

1

6
f

(
s+ t

2

)
dEt ⊗ dFs =

2

3
f

(
A⊗ 1 + 1⊗B

2

)
,
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I

∫
I

1

6
f(s)dEt ⊗ dFs =

1

6
(1⊗ f(B)).

The right hand side can be dealt with in a similar manner. We will illustrate it
with the one term, the rest follow analogously∫

I

∫
I

∫ 1

0

(s− t)2τα+1

(
f ′′
((

1 + τ

2

)
s+

(
1− τ

2

)
t

)

+f ′′
((

1 + τ

2

)
t+

(
1− τ

2

)
s

))
dτdEt ⊗ dFs

=

∫ 1

0

∫
I

∫
I

(s− t)2τα+1

(
f ′′
((

1 + τ

2

)
s+

(
1− τ

2

)
t

)
+f ′′

((
1 + τ

2

)
t+

(
1− τ

2

)
s

))
dEt ⊗ dFsdτ

=

∫ 1

0

(1⊗B −A⊗ 1)2τα+1

(
f ′′
((

1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

)
+f ′′

((
1 + τ

2

)
A⊗ 1 +

(
1− τ

2

)
1⊗B

))
dEt ⊗ dFsdτ.

□

We give our first inequality of the tensorial type utilizing the tensorial equality
obtained in Theorem 2.2.

Theorem 2.3. Assume that f is continuously differentiable on I with ∥f ′′∥I,+∞ :=

supt∈I |f ′′(t)| < +∞ and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I,
then ∣∣∣∣∣∣∣∣16

(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ f(B)

)
(6)

−1

2
α

(∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
≤ ∥1⊗B −A⊗ 1∥2

∥f ′′∥I,+∞ (3α2 + 8α+ 7)

(α+ 2)(12α+ 12)
.

Setting α = 1
2 we obtain∣∣∣∣∣∣∣∣16

(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ f(B)

)
(7)

−1

4

(∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
k−

1
2 dk

+

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)−

1
2 dk

)∣∣∣∣∣∣∣∣
≤ 47

180
∥1⊗B −A⊗ 1∥2 ∥f ′′∥I,+∞ .
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Proof. If we take the operator norm and use the triangle inequality, we get∣∣∣∣∣∣∣∣16
(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ f(B)

)

−1

2
α

(∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
≤ ∥1⊗B −A⊗ 1∥2 1

8(α+ 1)

∣∣∣∣∣∣∣∣ ∫ 1

0

(
1− 2α

3
+

2(α+ 1)

3
τ − τα+1

)
(
f ′′
((

1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

)
+f ′′

((
1 + τ

2

)
A⊗ 1 +

(
1− τ

2

)
1⊗B

))
dτ

∣∣∣∣∣∣∣∣.
Using the properties of the integral and the norm, we get

∥1⊗B −A⊗ 1∥2 1

8(α+ 1)

∣∣∣∣∣∣∣∣ ∫ 1

0

(
1− 2α

3
+

2(α+ 1)

3
τ − τα+1

)
(
f ′′
((

1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

)
+f ′′

((
1 + τ

2

)
A⊗ 1 +

(
1− τ

2

)
1⊗B

))
dτ

∣∣∣∣∣∣∣∣
≤ ∥1⊗B −A⊗ 1∥2 1

8(α+ 1)

∫ 1

0

(
1 + 2α

3
+

2(α+ 1)

3
τ + τα+1

)
∣∣∣∣∣∣∣∣(f ′′((1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

)
+f ′′

((
1 + τ

2

)
A⊗ 1 +

(
1− τ

2

)
1⊗B

))∣∣∣∣∣∣∣∣dτ.
≤ ∥1⊗B −A⊗ 1∥2 1

8(α+ 1)

∫ 1

0

(
1 + 2α

3
+

2(α+ 1)

3
τ + τα+1

)
(∥∥∥∥f ′′((1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

)∥∥∥∥
+

∥∥∥∥f ′′((1 + τ

2

)
A⊗ 1 +

(
1− τ

2

)
1⊗B

)∥∥∥∥)dτ.
Observe that by Lemma 1

∣∣∣∣f ′′((1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f ′′((1 + τ

2

)
s+

(
1− τ

2

)
t

) ∣∣∣∣dEt⊗dFs.

Since ∣∣∣∣f ′′((1 + τ

2

)
s+

(
1− τ

2

)
t

) ∣∣∣∣ ⩽ ∥f ′′∥I,+∞
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for all τ ∈ [0, 1] and t, s ∈ I. If we take the integral
∫
I

∫
I
over dEt ⊗ dFs, then we

get∣∣∣∣f ′′((1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f ′′((1 + τ

2

)
s+

(
1− τ

2

)
t

) ∣∣∣∣dEt⊗dFs

⩽ ∥f ′∥I,+∞

∫
I

∫
I

dEt ⊗ dFs = ∥f ′′∥I,+∞

for all τ ∈ [0, 1] and t, s ∈ I. Similarly, we get∣∣∣∣f ′′((1 + τ

2

)
A⊗ 1 +

(
1− τ

2

)
1⊗B

) ∣∣∣∣ ≤ ∥f ′′∥I,+∞ .

Which combined gives

∥1⊗B −A⊗ 1∥2 1

8(α+ 1)

∫ 1

0

(
1 + 2α

3
+

2(α+ 1)

3
τ + τα+1

)
(∥∥∥∥f ′′((1 + τ

2

)
1⊗B +

(
1− τ

2

)
A⊗ 1

)∥∥∥∥
+

∥∥∥∥f ′′((1 + τ

2

)
A⊗ 1 +

(
1− τ

2

)
1⊗B

)∥∥∥∥)dτ.
≤ ∥1⊗B −A⊗ 1∥2 1

8(α+ 1)

∫ 1

0

(
1 + 2α

3
+

2(α+ 1)

3
τ + τα+1

)
(
∥f ′′∥I,+∞ + ∥f ′′∥I,+∞

)
dτ.

Solving the resulting integral and simplifying, we obtain the desired result. □

Theorem 2.4. Assume that f is continuously differentiable on I and |f ′′| is convex
and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I, then∣∣∣∣∣∣∣∣16

(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ f(B)

)
(8)

−1

2
α

(∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
≤ ∥1⊗B −A⊗ 1∥2

(∥f ′′(A)∥+ ∥f ′′(B)∥)
(
3α2 + 8α+ 7

)
(α+ 2)(24α+ 24)

.

Proof. Since |f ′′| is convex on I, then we get∣∣∣∣f ′′(1− τ

2
t+

1 + τ

2
s

) ∣∣∣∣ ⩽ 1− τ

2
|f ′′(t)|+ 1 + τ

2
|f ′′(s)|

for all τ ∈ [0, 1] and t, s ∈ I.
If we take the integral

∫
I

∫
I
over dEt ⊗ dFs, then we get∣∣∣∣f ′′(1− τ

2
A⊗ 1 +

1 + τ

2
1⊗B

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f ′′(1− τ

2
t+

1 + τ

2
s

) ∣∣∣∣dEt ⊗ dFs

⩽
∫
I

∫
I

[
1− τ

2
|f ′′(t)|+ 1 + τ

2
|f ′′(s)|

]
dEt ⊗ dFs
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=
1− τ

2
|f ′′(A)| ⊗ 1 +

1 + τ

2
1⊗ |f ′′(B)|

for all τ ∈ [0, 1].
If we take the norm in the inequality, we get the following∥∥∥∥f ′′(1− τ

2
A⊗ 1 +

1 + τ

2
1⊗B

)∥∥∥∥ ⩽

∥∥∥∥1− τ

2
|f ′′(A)| ⊗ 1 +

1 + τ

2
1⊗ |f ′′(B)|

∥∥∥∥
⩽

1− τ

2
∥|f ′′(A)| ⊗ 1∥+ 1 + τ

2
∥1⊗ |f ′′(B)|∥

=
1− τ

2
∥f ′′(A)∥+ 1 + τ

2
∥f ′′(B)∥ .

Similarly, we get ∥∥∥∥f ′′(1− τ

2
1⊗B +

1 + τ

2
A⊗ 1

)∥∥∥∥
⩽

1− τ

2
∥f ′′(B)∥+ 1 + τ

2
∥f ′′(A)∥ .

We have the following from the previous Theorem, which when combined with the
estimates we obtained for |f ′′|, we obtain the following inequality∣∣∣∣∣∣∣∣16

(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ f(B)

)
−1

2
α

(∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
⩽ ∥1⊗B −A⊗ 1∥2 1

8(α+ 1)

∫ 1

0

(
1 + 2α

3
+

2(α+ 1)

3
+ τα+1

)
(
1− τ

2
∥f ′′(B)∥+ 1 + τ

2
∥f ′′(A)∥

+
1 + τ

2
∥f ′′(B)∥+ 1− τ

2
∥f ′′(A)∥

)
dτ.

Which when simplified after integrating the terms, we obtain the original inequality.
□

We recall that the function f : I → R is quasi-convex, if

f((1− λ)t+ λs) ⩽ max(f(t), f(s)) =
1

2
(f(t) + f(s) + |f(s)− f(t)|)

for all t, s ∈ I and λ ∈ [0, 1].

Theorem 2.5. Assume that f is continuously differentiable on I with |f ′′| is quasi-
convex on I, A and B are selfadjoint operators with Sp(A), Sp(B) ⊂ I, then∣∣∣∣∣∣∣∣16

(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ f(B)

)
(9)

−1

2
α

(∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
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≤ ∥1⊗B −A⊗ 1∥2
(
3α2 + 8α+ 7

)
(α+ 2)(24α+ 24)

× (∥|f ′′(A)| ⊗ 1 + 1⊗ |f ′′(B)|∥+ ∥|f ′′(A)| ⊗ 1− 1⊗ |f ′′(B)|∥) .

Proof. Since |f ′′| is quasi-convex on I, then we get∣∣∣∣f ′′(1− τ

2
t+

1 + τ

2
s

) ∣∣∣∣ ⩽ 1

2
(|f ′′(t)|+ |f ′′(s)|+ ||f ′′(t)| − |f ′′(s)||)

for all τ ∈ [0, 1] and t, s ∈ I. If we take the integral
∫
I

∫
I
over dEt ⊗ dFs, then we

get ∣∣∣∣f ′′(1− τ

2
A⊗ 1 +

1 + τ

2
1⊗B

) ∣∣∣∣
=

∫
I

∫
I

|f ′′
(
1− τ

2
t+

1 + τ

2
s

)
|dEt ⊗ dFs

⩽
1

2

∫
I

∫
I

(|f ′′(t)|+ |f ′′(s)|+ ||f ′′(t)| − |f ′′(s)||)dEt ⊗ dFs

=
1

2
(|f ′′(A)| ⊗ 1 + 1⊗ |f ′′(B)|+ ||f ′′(A)| ⊗ 1− 1⊗ |f ′′(B)||)

for all τ ∈ [0, 1].
If we take the norm, then we get∥∥∥∥f ′′(1− τ

2
A⊗ 1 +

1 + τ

2
1⊗B

)∥∥∥∥
⩽

∥∥∥∥12(|f ′′(A)| ⊗ 1 + 1⊗ |f ′′(B)|+ ||f ′′(A)| ⊗ 1− 1⊗ |f ′′(B)||)
∥∥∥∥

⩽
1

2
(∥|f ′′(A)| ⊗ 1 + 1⊗ |f ′′(B)|∥+ ∥|f ′′(A)| ⊗ 1− 1⊗ |f ′′(B)|∥)

for all τ ∈ [0, 1]. In a similar way, we obtain∥∥∥∥f ′′(1 + τ

2
A⊗ 1 +

1− τ

2
1⊗B

)∥∥∥∥
⩽

∥∥∥∥12(|f ′′(A)| ⊗ 1 + 1⊗ |f ′′(B)|+ ||f ′′(A)| ⊗ 1− 1⊗ |f ′′(B)||)
∥∥∥∥

⩽
1

2
(∥|f ′′(A)| ⊗ 1 + 1⊗ |f ′′(B)|∥+ ∥|f ′′(A)| ⊗ 1− 1⊗ |f ′′(B)|∥) .

Using these inequalities in the inequality obtained during Theorem 5, we obtain
the following ∣∣∣∣∣∣∣∣16

(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ f(B)

)
−1

2
α

(∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
⩽ ∥1⊗B −A⊗ 1∥2 1

8(α+ 1)

∫ 1

0

(
1 + 2α

3
+

2(α+ 1)

3
+ τα+1

)
(
1

2
(∥|f ′′(A)| ⊗ 1 + 1⊗ |f ′′(B)|∥+ ∥|f ′′(A)| ⊗ 1− 1⊗ |f ′′(B)|∥)
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+
1

2
(∥|f ′′(A)| ⊗ 1 + 1⊗ |f ′′(B)|∥+ ∥|f ′′(A)| ⊗ 1− 1⊗ |f ′′(B)|∥)

)
dτ.

Which when simplified, we obtain the desired inequality. □

3. Some examples and consequences

It is known that if U and V are commuting, that is UV = V U , then the expo-
nential function satisfies the property

exp(U) exp(V ) = exp(V ) exp(U) = exp(U + V ).

Also, if U is invertible and a, b ∈ R and a < b then∫ b

a

exp(tU)dt = U−1[exp(bU)− exp(aU)].

Moreover, if U and V are commuting and V − U is invertible, then∫ 1

0

exp((1− k)U + kV )dk =

∫ 1

0

exp(k(V − U)) exp(U)dk

= (exp(k(V − U))dk) exp(U)

= (V − U)−1[exp(V − U)− I] exp(U) = (V − U)−1[exp(V )− exp(U)].

Since the operators U = A⊗1 and V = 1⊗B are commutative and if 1⊗B−A⊗1
is invertible, then ∫ 1

0

exp((1− k)A⊗ 1 + k1⊗B)dk

= (1⊗B −A⊗ 1)−1[exp(1⊗B)− exp(A⊗ 1)].

Corollary 3.0. If A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ [m,M ] and
1⊗B −A⊗ 1 is invertible, then by Theorem 3, we get∣∣∣∣∣∣∣∣16

(
exp(A)⊗ 1 + 4 exp

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ exp(B)

)
(10)

−1

2
α

(∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
≤ ∥1⊗B −A⊗ 1∥2 2 exp(M)(3α2 + 8α+ 7)

(α+ 2)(12α+ 12)
.

Setting α = 1
2 we obtain∣∣∣∣∣∣∣∣16
(
exp(A)⊗ 1 + 4 exp

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ exp(B)

)
(11)

−1

4

(∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
k−

1
2 dk

+

∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)−

1
2 dk

)∣∣∣∣∣∣∣∣
≤ 47

180
∥1⊗B −A⊗ 1∥2 exp(M).
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Corollary 3.0. Since for f(t) = exp(t), t ∈ R, |f ′′| is convex, then by Theorem 4∣∣∣∣∣∣∣∣16
(
exp(A)⊗ 1 + 4 exp

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ exp(B)

)
(12)

−1

2
α

(∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
≤ ∥1⊗B −A⊗ 1∥2

(∥exp(A)∥+ ∥exp(B)∥)
(
3α2 + 8α+ 7

)
(α+ 2)(24α+ 24)

.

If α = 1
2 , then∣∣∣∣∣∣∣∣16

(
exp(A)⊗ 1 + 4 exp

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ exp(B)

)
(13)

−1

4

(∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
k−

1
2 dk

+

∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)−

1
2 dk

)∣∣∣∣∣∣∣∣
≤ 47

360
∥1⊗B −A⊗ 1∥2 (∥exp(A)∥+ ∥exp(B)∥)

Corollary 3.0. Choosing f(t) = exp(t); t ∈ R, and since |f ′′| is convex, we get by
Theorem 7 ∣∣∣∣∣∣∣∣16

(
exp(A)⊗ 1 + 4 exp

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ exp(B)

)
(14)

−1

2
α

(∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
kα−1dk

+

∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
≤ ∥1⊗B −A⊗ 1∥2

(
3α2 + 8α+ 7

)
(α+ 2)(24α+ 24)

× (∥| exp(A)| ⊗ 1 + 1⊗ | exp(B)|∥+ ∥| exp(A)| ⊗ 1− 1⊗ | exp(B)|∥) .
Setting α = 1

2 , we obtain∣∣∣∣∣∣∣∣16
(
exp(A)⊗ 1 + 4 exp

(
A⊗ 1 + 1⊗B

2

)
+ 1⊗ exp(B)

)
(15)

−1

4

(∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

(
1 + k

2

)
1⊗B

)
k−

1
2 dk

+

∫ 1

0

exp

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
(1− k)−

1
2 dk

)∣∣∣∣∣∣∣∣
≤ 47

360
∥1⊗B −A⊗ 1∥2

× (∥| exp(A)| ⊗ 1 + 1⊗ | exp(B)|∥+ ∥| exp(A)| ⊗ 1− 1⊗ | exp(B)|∥) .
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4. Conclusion

Tensors have become important in various fields, for example in physics because
they provide a concise mathematical framework for formulating and solving physical
problems in fields such as mechanics, electromagnetism, quantum mechanics, and
many others. As such inequalities are crucial in numerical aspects. Reflected in this
work is the Lemma and the new Ostrowski type inequality for twice differentiable
functions. Using that Lemma enabled us to obtain new Ostrowski type tensorial
inequalities. Examples of specific convex functions and their inequalities using our
results are given in the section some examples and consequences. Plans for future
research can be reflected in the fact that the obtained inequalities in this work can
be sharpened or generalized by using other methods. An interesting perspective
can be seen in incorporating other techniques for Hilbert space inequalities with the
techniques shown in this paper. One direction is the technique of the Mond-Pecaric
inequality, on which we will work on.
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Exactas, FÌsicas y Naturales. Serie A. Matematicas 111 (2017), no. 2, 349-354.

[14] S. S. Dragomir, P. Cerone and A. Sofo, Some remarks on the trapezoid rule in numerical
integration, Indian J. Pure Appl. Math. 31 (2000)



14 V. STOJILJKOVIĆ EJMAA-2023/11(2)
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[30] V. Stojiljković.; Ramaswamy, R.; Alshammari, F.; Ashour, O.A.; Alghazwani,
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ments of the Tensorial Inequalities in Hilbert Spaces. Symmetry 2023, 15, 925.
https://doi.org/10.3390/sym15040925
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