UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING PRODUCT OF DIFFERENCE POLYNOMIALS

HARINA P. WAGHAMORE

ABSTRACT. In this paper, we deal with distribution of zeros of certain types of difference polynomial and in addition to this we investigate the uniqueness of product of difference polynomials $f^n \prod_{j=1}^d f(z + c_j)^{s_j}$ and $g^n \prod_{j=1}^d g(z + c_j)^{s_j}$ which are sharing a fixed point z and f, g share ∞ IM. I obtained some results which extends some recent results of Renukadevi S. Dyavnal and Ashwini M. Hattikal.

1. INTRODUCTION AND MAIN RESULTS

A meromorphic function $f(z)$ means meromorphic in the whole complex plane. We assume that the reader is familiar with standard symbols and fundamental results of Nevanlinna Theory [3]. As usual, the abbreviation CM stands for counting multiplicities, while IM means ignoring multiplicities. We use $\rho(f)$ to denote the order of $f(z)$ and $N_p(r, \frac{1}{f - a})$ to denote the counting function of the zeros of $f - a,$ where an m-fold zero is counted m times if $m \leq p$ and p times if $m > p.$

A meromorphic function a is called small function with respect to f if $T(r, a) = S(r, f)$ and the order, hyper order of meromorphic function f are defined by

$$\rho(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}, \quad \rho_2(f) = \limsup_{r \to \infty} \frac{\log \log T(r, f)}{\log r}.$$

In 2010, J.F.Xu, F.Lu and H.X.Yi obtained the following result on meromorphic function sharing a fixed point.

Theorem A. [7] Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions and let n, k be two positive integers with $n \geq 3k + 10.$ If $(f^n(z))^{(k)}$ and $(g^n(z))^{(k)}$ share z CM, f and g share ∞ IM, then either $f(z) = c_1 e^{cz^2}, g(z) = c_2 e^{-cz^2}$ where c_1, c_2 and c are three constants satisfying $4n^2(c_1 c_2)^n c^2 = -1,$ or $f \equiv tg$ for a constant t such that $t^n = 1.$
Further, Fang and Qiu investigated uniqueness for the same functions as in the Theorem A, when \(k = 1 \).

Theorem B.[2] Let \(f(z) \) and \(g(z) \) be two non-constant meromorphic functions and let \(n \geq 11 \) be a positive integer. If \(f^n(z)f'(z) \) and \(g^n(z)g'(z) \) share \(z \) CM, then either \(f(z) = c_1e^{cz^2}, g(z) = c_2e^{-cz^2} \), where \(c_1, c_2 \) and \(c \) are three constants satisfying \(4(c_1c_2)^{n+1}c^2 = -1 \), or \(f(z) \equiv tg(z) \) for a constant \(t \) such that \(t^{n+1} = 1 \).

In 2012, Cao and Zhang replaced \(f' \) with \(f^{(k)} \) and obtained the following theorem.

Theorem C.[1] Let \(f(z) \) and \(g(z) \) be two transcendental meromorphic functions, whose zeros are of multiplicities atleast \(k \), where \(k \) is a positive integer. Let \(n > max\{2k-1, 4+4/k+4\} \) be a positive integer. If \(f^n(z)f^{(k)}(z) \) and \(g^n(z)g^{(k)}(z) \) share \(z \) CM, and \(f \) and \(g \) share \(\infty \) IM, then one of the following two conclusions holds.

1. \(f^n(z)f^{(k)}(z) = g^n(z)g^{(k)}(z) \)
2. \(f(z) = c_1e^{cz^2}, g(z) = c_2e^{-cz^2} \), where \(c_1, c_2 \) and \(c \) are constants such that \(4(c_1c_2)^{n+1}c^2 = -1 \).

Recently, X.B. Zhang reduced the lower bond of \(n \) and relax the condition on multiplicity of zeros in Theorem C and proved the below result.

Theorem D.[11] Let \(f(z) \) and \(g(z) \) be two transcendental meromorphic functions and \(n, k \) two positive integers with \(n > k + 6 \). If \(f^n(z)f^{(k)}(z) \) and \(g^n(z)g^{(k)}(z) \) share \(z \) CM, and \(f \) and \(g \) share \(\infty \) IM, then one of the following two conclusions holds.

1. \(f^n(z)f^{(k)}(z) = g^n(z)g^{(k)}(z) \)
2. \(f(z) = c_1e^{cz^2}, g(z) = c_2e^{-cz^2} \), where \(c_1, c_2 \) and \(c \) are constants such that \(4(c_1c_2)^{n+1}c^2 = -1 \).

In 2016, Renukadevi S. Dyavanal and Ashwini M. Hattikal proved the following theorem.

Theorem E.[8] Let \(f \) and \(g \) be two transcendental meromorphic functions of hyper order \(\rho_2(f) < 1 \) and \(\rho_2(g) < 1 \). Let \(k, n, \lambda \) be positive integers and \(n > max\{2d(k + 2) + \lambda(k + 3) + 7, \lambda_1, \lambda_2\} \). If \(F(z) = f(z)^n \left[\prod_{j=1}^{d} f(z + c_j)^{s_j} \right]^{(k)} \) and \(G(z) = g(z)^n \left[\prod_{j=1}^{d} g(z + c_j)^{s_j} \right]^{(k)} \) share \(z \) CM an \(f, g \) share \(\infty \) IM, then one of the following two conclusions holds.

1. \(F(z) \equiv G(z) \)
2. \(\prod_{j=1}^{d} f(z + c_j)^{s_j} = C_1e^{Cz^2}, \prod_{j=1}^{d} g(z + c_j)^{s_j} = C_2e^{-Cz^2} \), where \(C_1, C_2 \) and \(C \) are constants such that \(4(C_1C_2)^{n+1}C^2 = -1 \).

We define a difference product of meromorphic function \(f(z) \) as follows
\[F(z) = f(z)^n P(f) \left(\prod_{j=1}^{d} f(z + c_j)^{s_j} \right)^{(k)} \] (1)

\[F_1(z) = f(z)^n P(f) \prod_{j=1}^{d} f(z + c_j)^{s_j} \] (2)

where \(c_j \in \mathbb{C} \setminus \{0\} \) \((j = 1, 2, ..., d)\) are distinct constants. \(n, k, d, s_j (j = 1, 2, ..., d) \) are positive integers and \(\lambda = \sum_{j=1}^{d} s_j \).

For \(j = 1, 2, 3, ... d, \lambda_1 = \sum_{j=1}^{d} \alpha_j s_j \) and \(\lambda_2 = \sum_{j=1}^{d} \beta_j s_j \), where \(f(z + c_j) \) and \(g(z + c_j) \) have zeros with maximum orders \(\alpha_j \) and \(\beta_j \) respectively.

In this article, we prove the theorem on product of difference-differential polynomials sharing a fixed point as follows.

Theorem 1. Let \(f \) and \(g \) be two transcendental meromorphic functions of hyper order \(\rho_2(f) < 1 \) and \(\rho_2(g) < 1 \). Let \(k, n, d, \lambda \) be positive integers and \(n > \max \{2d(k + 2) + \lambda(k + 4) + \Gamma_0 + 8 - m, \lambda_1, \lambda_2 \} \). If \(F(z) \) and \(G(z) \) share \(z \) CM and \(f, g \) share \(\infty \) IM, then one of the following two conclusions holds.

1. \(F(z) \equiv G(z) \)
2. \(\prod_{j=1}^{d} f(z + c_j)^{s_j} = C_1 e^{Cz^2}, \prod_{j=1}^{d} g(z + c_j)^{s_j} = C_2 e^{-Cz^2} \) where \(C_1, C_2 \) and \(C \) are constants such that \(4(C_1C_2)^{n+1}C^2 = -1 \).

Remark.
If \(m = 1 \) then Theorem 1 reduces to Theorem E.

Theorem 2. Let \(f \) and \(g \) be two transcendental meromorphic functions. Let \(k, n, d, \lambda \) be positive integers and \(n > \max \{(\frac{3k+5)d}{2} + \frac{(9+3k)\lambda}{2} + \frac{3}{2}\Gamma_0 + \frac{19}{2} - m, \lambda_1, \lambda_2 \} \). If \(F(z) \) and \(G(z) \) share \("(\alpha(z), 1)" \) and \(f, g \) share \(\infty \) IM, then \(F(z) \equiv G(z) \).

Theorem 3. Let \(f \) and \(g \) be two transcendental meromorphic functions. Let \(k, n, d, \lambda \) be positive integers and \(n > \max \{\frac{5k+6)d}{2} + (7+4k)\lambda + \Gamma_0 + 14 - m, \lambda_1, \lambda_2 \} \). If \(F(z) \) and \(G(z) \) share \("(\alpha(z), 0)" \) and \(f, g \) share \(\infty \) IM, then \(F(z) \equiv G(z) \).

2. **Lemmas**

In this section we present some lemmas needed in the sequel. Let \(F, G \) be two non-constant meromorphic functions. Henceforth we shall denote by \(H \) the following function.

\[H = \left(\frac{F''}{F'} - \frac{2F'}{F - 1} \right) - \left(\frac{G''}{G'} - \frac{2G'}{G - 1} \right) \] (3)

Lemma 2.1.[9] Let \(f \) and \(g \) be two non-constant meromorphic functions, \('a' \) be a finite non-zero constant. If \(f \) and \(g \) share \('a' \) CM and \(\infty \) IM, then one of the following cases holds.

1. \(T(r, f) \leq N_2(r, \frac{1}{f}) + N_2(r, \frac{1}{g}) + 3\overline{N}(r, f) + S(r, f) + S(r, g) \).

The same inequality holding for \(T(r, g) \);
(2) $fg \equiv a^2$;
(3) $f \equiv g$.

Lemma 2.2.[5] Let $f(z)$ be a transcendental meromorphic functions of hyper order $\rho_2(f) < 1$, and let c be a non-zero complex constant Then we have

$$T(r, f(z + c)) = T(r, f(z)) + S(r, f(z)), \quad N(r, f(z + c)) = N(r, f(z)) + S(r, f(z)).$$

Lemma 2.3.[10] Let f be a non-constant meromorphic function, let $P(f) = a_0 + a_1f + a_2f^2 + \ldots + a_nf^n$, where $a_0, a_1, a_2, \ldots a_n$ are constants and $a_n \neq 0$. Then

$$T(r, P(f)) = nT(r, f) + S(r, f).$$

Lemma 2.4.[10] Let f be a non-constant meromorphic function and p, k be positive integers. Then

$$T(r, f^{(k)}) \leq T(r, f) + kN(r, f) + S(r, f), \quad (4)$$

$$N_p \left(r, \frac{1}{f^{(k)}} \right) \leq T(r, f^{(k)}) - T(r, f) + N_{p+k} \left(r, \frac{1}{f} \right) + S(r, f), \quad (5)$$

$$N_p \left(r, \frac{1}{f^{(k)}} \right) \leq N_{p+k} \left(r, \frac{1}{f} \right) + kN(r, f) + S(r, f), \quad (6)$$

$$N \left(r, \frac{1}{f^{(k)}} \right) \leq N \left(r, \frac{1}{f} \right) + kN(r, f) + S(r, f). \quad (7)$$

Lemma 2.5.[3] Suppose that f is a non-constant meromorphic function, $k \geq 2$ is an integer. If

$$N(r, f) + N(r, \frac{1}{f^{(k)}}) = S(r, \frac{f'}{f}),$$

then $f(z) = e^{az+b}$, where $a \neq 0, b$ are constants.

Lemma 2.6.[12] If f, g be two nonconstant meromorphic functions such that they share “$(1, 1)$”, then

$$2N_L(r, 1; f) + 2N_L(r, 1; g) + N^2_E(r, 1; f) - N^2_{f>2}(r, 1; g) \leq N(r, 1; g) - N(r, 1; g).$$

Lemma 2.7.[12] Let f, g share “$(1, 1)$”, Then

$$N_{f>2}(r, 1; g) \leq \frac{1}{2}N(r, 0; f) + \frac{1}{2}N(r, \infty; f) - \frac{1}{2}N_0(r, 0; f') + S(r, f).$$

Lemma 2.8.[12] Let f, g be two nonconstant meromorphic functions such that they share “$(1, 0)$”. Then $N_L(r, 1; f) + 2N_L(r, 1; g) + N^2_E(r, 1; f) - N^2_{f>2}(r, 1; g) - N_{g>2}(r, 1; f) \leq N(r, 1; g) - N(r, 1; g).$

Lemma 2.9.[12] Let f, g share “$(1, 0)$”. Then $N_L(r, 1; f) \leq N(r, 0; f) + N(r, \infty; f) + S(r, f).$
Lemma 2.10.[12] Let \(f, g \) share "(1,0)". Then
\[
(i) \mathcal{N}_{f>1}(r,1;g) \leq \mathcal{N}(r,0;f) + \mathcal{N}(r,\infty;f) - \mathcal{N}_0(r,0;f') + S(r,f);
\]
\[
(ii) \mathcal{N}_{g>1}(r,1;g) \leq \mathcal{N}(r,0;g) + \mathcal{N}(r,\infty;f) - \mathcal{N}_0(r,0;f') + S(r,g);
\]

Lemma 2.11. Let \(f(z) \) be a transcendental meromorphic function of hyper order \(\rho_2(f) < 1 \) and \(F_1(z) \) be stated as in (2). Then
\[
(n + m - \lambda) T(r,f) + S(r,f) \leq T(r,F_1(z)) \leq (n + m + \lambda) T(r,f) + S(r,f).
\]

Proof. Since \(f \) is a meromorphic function with \(\rho_2(f) < 1 \). From Lemma 2.2 and Lemma 2.3 we have
\[
T(r,F_1(z)) \leq T(r,f(z)^n) + T(r,P(f)) + T \left(r, \prod_{j=1}^{d} f(z + c_j)^{s_j} \right) + S(r,f) \tag{8}
\]
\[
\leq (n + m + \lambda) T(r,f) + S(r,f)
\]
On the other hand, from Lemma 2.2 and Lemma 2.3, we have
\[
(n + m + \lambda) T(r,f) = T(r,f^n f^m f^\lambda) + S(r,f)
\]
\[
= m(r, f^n f^m f^\lambda) + N(r, f^n f^m f^\lambda) + S(r,f)
\]
\[
\leq m \left(r, \frac{F_1(z)f^\lambda}{\prod_{j=1}^{d} f(z + c_j)^{s_j}} \right) + N \left(r, \frac{F_1(z)f^\lambda}{\prod_{j=1}^{d} f(z + c_j)^{s_j}} \right) + S(r,f)
\]
\[
\leq m(r,F_1(z)) + N(r,F_1(z)) + T \left(r, \frac{f^\lambda}{\prod_{j=1}^{d} f(z + c_j)^{s_j}} \right) + S(r,f) \tag{9}
\]
\[
\leq T(r,F_1(z)) + 2\lambda T(r,f) + S(r,f)
\]
\[
(n + m + \lambda - 2\lambda) T(r,f) \leq T(r,F_1(z)) + S(r,f)
\]
\[
\Rightarrow (n + m - \lambda) T(r,f) + S(r,f) \leq T(r,F_1(z)).
\]
Hence we get Lemma 2.11.

3. Proof of the Theorem

Proof of the Theorem 1

Let \(F^* = \frac{F}{z} \) and \(G^* = \frac{G}{z} \) \(\tag{10} \)

From the hypothesis of the Theorem 1, we have \(F \) and \(G \) share \(z \) CM and \(f, g \) share \(\infty \) IM. It follows that \(F^* \) and \(G^* \) share 1 CM and \(\infty \) IM.

By Lemma 2.1, we arrive at 3 cases as follows.

Case 1. Suppose that case (1) of Lemma 2.1 holds.
\[
T(r,F^*) \leq N_2(r, \frac{1}{F^*}) + N_2(r, \frac{1}{G^*}) + 3\mathcal{N}(r,F^*) + S(r,F^*) + S(r,G^*) \tag{11}
\]
We deduce from (11) and obtained the following
\[T(r, F) \leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + 3N(r, F) + S(r, F) + S(r, G) \quad (12) \]

From Lemma 2.2 and Lemma 2.6, we have \(S(r, F) = S(r, f) \) and \(S(r, G) = S(r, g) \).
From (12), we have
\[
T(r, F) = N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + 3N(r, F) + S(r, f) + S(r, g)
\]
\[
\leq N_2 \left(r, \frac{1}{f^n} \right) + N_2 \left(r, \frac{1}{P(f)} \right) + N_2 \left(r, \frac{1}{(\prod_{j=1}^d f(z + c_j)^{s_j})^{(k)}} \right) + N_2 \left(r, \frac{1}{g^n} \right) + N_2 \left(r, \frac{1}{P(g)} \right)
\]
\[
+ N_2 \left(r, \frac{1}{(\prod_{j=1}^d g(z + c_j)^{s_j})^{(k)}} \right) + 3N(r, f^n) + 3N(r, P(f)) + 3N \left(r, \left(\prod_{j=1}^d f(z + c_j)^{s_j} \right)^{(k)} \right)
\]
\[
+ S(r, f) + S(r, g).
\]
Using (5) of Lemma 2.4 in (13) we have
\[
T(r, F) \leq 2T(r, f) + \Gamma_0T(r, f) + T \left(r, \left(\prod_{j=1}^d f(z + c_j)^{s_j} \right)^{(k)} \right) - T \left(r, \left(\prod_{j=1}^d f(z + c_j)^{s_j} \right)^{(k)} \right)
\]
\[
+ N_{k+2} \left(r, \frac{1}{(\prod_{j=1}^d f(z + c_j)^{s_j})^{(k)}} \right) + 2T(r, g) + \Gamma_0T(r, g) + T \left(r, \left(\prod_{j=1}^d g(z + c_j)^{s_j} \right)^{(k)} \right)
\]
\[
- T \left(r, \left(\prod_{j=1}^d g(z + c_j)^{s_j} \right)^{(k)} \right) + N_{k+2} \left(r, \frac{1}{(\prod_{j=1}^d g(z + c_j)^{s_j})^{(k)}} \right) + 6N(r, f) + 3N \left(r, \left(\prod_{j=1}^d f(z + c_j)^{s_j} \right)^{(k)} \right)
\]
\[
+ S(r, f) + S(r, g)
\]
\[
\leq (2 + \Gamma_0)T(r, f) + T \left(r, \left(\prod_{j=1}^d f(z + c_j)^{s_j} \right)^{(k)} \right) + T(r, f^n) - T(r, f^n) - T \left(r, \left(\prod_{j=1}^d f(z + c_j)^{s_j} \right)^{(k)} \right)
\]
\[
+ (k + 2)dT(r, f) + (2 + \Gamma_1)T(r, g) + T \left(r, \left(\prod_{j=1}^d g(z + c_j)^{s_j} \right)^{(k)} \right) + kN \left(r, \left(\prod_{j=1}^d g(z + c_j)^{s_j} \right)^{(k)} \right)
\]
\[
- T \left(r, \left(\prod_{j=1}^d g(z + c_j)^{s_j} \right)^{(k)} \right) + (k + 2)dT(r, g) + 6T(r, f) + 3\lambda T(r, f) + S(r, f) + S(r, g)
\]
\[
T(r, F) \leq (2 + \Gamma_0)T(r, f) + T(r, F) - T(r, F_1) + (k + 2)dT(r, f) + (2 + \Gamma_0)T(r, g) + k\lambda T(r, g)
\]
\[
+ (k + 2)dT(r, g) + (6 + 3\lambda)T(r, f) + S(r, f) + S(r, g)
\]
\[
T(r, F_1) \leq (2 + \Gamma_0)T(r, f) + (k + 2)dT(r, f) + (2 + \Gamma_0)T(r, g) + (k + 2)dT(r, g) + k\lambda T(r, g)
\]
\[
+ (6 + 3\lambda)T(r, f) + S(r, f) + S(r, g)
\]
\[
\leq (2 + \Gamma_0)[T(r, f) + T(r, g)] + (k + 2)d[T(r, f) + T(r, g)] + k\lambda T(r, g) + (6 + 3\lambda)T(r, f)
\]
\[
+ S(r, f) + S(r, g)
\]
From Lemma 2.11, we have
\[(n + m - \lambda)T(r, f) \leq ((k + 2)d + 2 + \Gamma_0)[T(r, f) + T(r, g)] + k\lambda T(r, g) + (6 + 3\lambda)T(r, f) + S(r, f) + S(r, g) \]
(14)
Similarly for \(T(r, g) \) we obtain the following
\[(n + m - \lambda)T(r, g) \leq ((k + 2)d + 2 + \Gamma_0)[T(r, f) + T(r, g)] + k\lambda T(r, f) + (6 + 3\lambda)T(r, g) + S(r, f) + S(r, g) \]
(15)
From (14) and (15), we have
\[(n + m - \lambda)[T(r, f) + T(r, g)] \leq 2((k + 2)d + 2 + \Gamma_0)[T(r, f) + T(r, g)] + (k\lambda + 6 + 3\lambda)
\[[T(r, f) + T(r, g)] + S(r, f) + S(r, g) \]
Which is contradiction to \(n > 2d(k + 2) + \Gamma_0 + \lambda(k + 4) + 8 - m \).

Case 2. Suppose that \(FG \equiv z^2 \) holds.

\[i.e., f^n P(f) \left[\prod_{j=1}^{d} f(z + c_j)^{s_j} \right]^{(k)} g^n P(g) \left[\prod_{j=1}^{d} g(z + c_j)^{s_j} \right]^{(k)} \equiv z^2 \]
(16)
Now, (16) can be written as
\[f^n P(f)g^n P(g) \equiv \frac{z^2}{\prod_{j=1}^{d} f(z + c_j)^{s_j} |^{(k)} \prod_{j=1}^{d} g(z + c_j)^{s_j} |^{(k)}} \]
By using Lemma 2.2, Lemma 2.3 and (8) of Lemma 2.4, we derive
\[(n + m)[N(r, f) + N(r, g)] \leq \lambda[N(r, \frac{1}{f}) + N(r, \frac{1}{g})] + kd[N(r, f) + N(r, g)] + S(r, f) + S(r, g) \]
(17)
From (16), we can write
\[\frac{1}{f^n P(f)g^n P(g)} = \frac{\prod_{j=1}^{d} f(z + c_j)^{s_j} |^{(k)} \prod_{j=1}^{d} g(z + c_j)^{s_j} |^{(k)}}{z^2} \]
Similarly, as (17), we obtain
\[(n + m)[N(r, \frac{1}{f}) + N(r, \frac{1}{g})] \leq (\lambda + kd)[N(r, f) + N(r, g)] + S(r, f) + S(r, g) \]
(18)
From (17) and (18), deduce
\[(n + m - (\lambda + 2kd))[N(r, f) + N(r, g)] + (n + m - \lambda)[N(r, \frac{1}{f}) + N(r, \frac{1}{g})] \leq S(r, f) + S(r, g) \]
Since \(n > 2d(k + 2) + \lambda(4 + k) + \Gamma_0 + 8 - m \), we have
\[N(r, f) + N(r, g) + N(r, \frac{1}{f}) + N(r, \frac{1}{g}) < S(r, f) + S(r, g) \]
Hence, we conclude that \(f \) and \(g \) have finitely many zeros and poles.

Let \(z_0 \) be a pole of \(f \) of multiplicity \(p \), then \(z_0 \) is pole of \(f^n \) of multiplicity \(np \), since \(f \) and \(g \) share \(\infty \) IM, then \(z_0 \) is pole of \(g \) of multiplicity \(q \).
If \(z_0 \) also zero of \(\prod_{j=1}^{d} f(z + c_j)^{s_j} \) and \(\prod_{j=1}^{d} g(z + c_j)^{s_j} \) then we have from (16) that
\[
n(p + q) \leq \sum_{j=1}^{d} \alpha_j s_j + \sum_{j=1}^{d} \beta_j s_j - 2k.
\]
\(\Rightarrow 2n < n(p + q) \leq \sum_{j=1}^{d} \alpha_j s_j + \sum_{j=1}^{d} \beta_j s_j - 2k = \lambda_1 + \lambda_2 - 2k < \lambda_1 + \lambda_2 \leq 2\max\{\lambda_1, \lambda_2\}
\]
\(\Rightarrow n < \max\{\lambda_1, \lambda_2\} \), which is contradiction to \(n > \max\{2d(k + 2) + \lambda(4 + k) + \Gamma_0 + 8 - m, \lambda_1, \lambda_2\} \).
Therefore \(f \) has no poles.

Similarly, we can get contradiction for other two cases namely, if \(z_0 \) is zero of \(\prod_{j=1}^{d} f(z + c_j)^{s_j} \), but not zero of \(\prod_{j=1}^{d} g(z + c_j)^{s_j} \) and other way. Therefore \(f \) has no poles. Similarly, we get that \(g \) also has no poles. By this we conclude that \(f \) and \(g \) are entire functions and hence \(\prod_{j=1}^{d} f(z + c_j)^{s_j} \) and \(\prod_{j=1}^{d} g(z + c_j)^{s_j} \) are entire functions.

Then from (16), we deduce that \(f \) and \(g \) have no zeros.

Therefore
\[
f = e^{\alpha(z)}, g = e^{\beta(z)} \quad \text{and}
\]
\[
\prod_{j=1}^{d} f(z + c_j)^{s_j} = \prod_{j=1}^{d} (e^{\alpha(z + c_j)})^{s_j}, \quad \prod_{j=1}^{d} g(z + c_j)^{s_j} = \prod_{j=1}^{d} (e^{\beta(z + c_j)})^{s_j}
\]
\[
(19)
\]
where \(\alpha, \beta \) are entire functions with \(\rho_2(f) < 1 \). Substituting \(f \) and \(g \) into (16) we get
\[
e^{n\alpha(z)} \left[\prod_{j=1}^{d} (e^{\alpha(z + c_j)})^{s_j} \right]^{(k)} e^{n\beta(z)} \left[\prod_{j=1}^{d} (e^{\beta(z + c_j)})^{s_j} \right]^{(k)} \equiv z^2
\]
(20)

If \(k = 1 \), then
\[
e^{n\alpha(z)} \left[\prod_{j=1}^{d} (e^{\alpha(z + c_j)})^{s_j} \right]' e^{n\beta(z)} \left[\prod_{j=1}^{d} (e^{\beta(z + c_j)})^{s_j} \right]' \equiv z^2
\]
(21)

\[\Rightarrow e^{n(\alpha + \beta)} e^{\sum_{j=1}^{d}(\alpha + \beta(z + c_j))s_j} \prod_{j=1}^{d} (\alpha'(z + c_j))s_j \prod_{j=1}^{d} (\beta'(z + c_j))s_j \equiv z^2\]
(22)

Since \(\alpha(z) \) and \(\beta(z) \) are non-constant entire functions, then we have
\[
T\left(r, \frac{\prod_{j=1}^{d} f(z + c_j)^{s_j}'}{\prod_{j=1}^{d} f(z + c_j)^{s_j}} \right) = T\left(r, \frac{\prod_{j=1}^{d} e^{\alpha(z + c_j)s_j}'}{\prod_{j=1}^{d} e^{\alpha(z + c_j)s_j}} \right)
\]
(23)

\[
T\left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \prod_{j=1}^{d} e^{\alpha(z + c_j)s_j} \right) = T\left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right)
\]
(24)
Let

\[(n + m)T(r, f) = T(r, f_n^m) = T \left(r, \frac{F}{\prod_{j=1}^{d} f(z + c_j)^{s_j}} \right) \leq T(r, F) \]

\[+ T \left(r, \left(\prod_{j=1}^{d} f(z + c_j)^{s_j} \right)^{(k)} \right) + S(r, f) \]

\[\leq T(r, F) + T \left(r, \prod_{j=1}^{d} f(z + c_j)^{s_j} \right)^{(k)} + kN \left(r, \prod_{j=1}^{d} f(z + c_j)^{s_j} \right) + S(r, f) \]

\[(n + m)T(r, f) \leq T(r, F) + (\lambda + kd)T(r, f) + S(r, f) \]

\[(n + m - \lambda - kd)T(r, f) \leq T(r, F) + S(r, f) \quad (25) \]

We obtain from (24) that

\[T(r, f) = O(T(r, F)) \quad (26)\]

as \(r \in E\) and \(r \to \infty\), where \(E \subset (0, +\infty)\) is some subset of finite linear measure.

On the other hand, we have

\[T(r, F) = T \left(r, f^{n} P(f) \left(\prod_{j=1}^{d} f(z + c_j)^{s_j} \right)^{(k)} \right) \]

\[\leq nT(r, f) + mT(r, f) + \lambda T(r, f) + kN \left(r, \prod_{j=1}^{d} f(z + c_j)^{s_j} \right) + S(r, f) \quad (27)\]

\[\leq (n + m + kd + \lambda)T(r, f) + S(r, f) \]

\[\Rightarrow T(r, F) = O(T(r, f)) \]

as \(r \in E\) and \(r \to \infty\), where \(E \subset (0, +\infty)\) is some subset of finite linear measure.

Thus from (25),(26) and the standard reasoning of removing exceptional set we deduce \(\rho(f) = \rho(F)\). Similarly, we have \(\rho(g) = \rho(G)\). It follows from (16) that \(\rho(F) = \rho(G)\). Hence we get \(\rho(f) = \rho(g)\).

We deduce that either both \(\alpha\) and \(\beta\) are polynomials or both \(\alpha\) and \(\beta\) are transcendental entire functions. Moreover, we have

\[N \left(r, \frac{1}{\prod_{j=1}^{d} f(z + c_j)^{s_j}} \right) \leq N \left(r, \frac{1}{z^2} \right) = O(\log r) \quad (28)\]

From (27) and (19), we have

\[N \left(r, \prod_{j=1}^{d} f(z + c_j)^{s_j} \right) + N \left(r, \frac{1}{\prod_{j=1}^{d} f(z + c_j)^{s_j}} \right) + N \left(r, \frac{1}{\prod_{j=1}^{d} f(z + c_j)^{s_j}} \right) = O(\log r).\]
If \(k \geq 2 \), then it follows from (23), (27) and Lemma 2.5 that \(\sum_{j=1}^{d} \alpha'(z + c_j)s_j \) is a polynomial and therefore we have \(\alpha(z) \) is a non-constant polynomial.

Similarly, we can deduce that \(\beta(z) \) is also a non-constant polynomial. From this, we deduce from (19) that

\[
\left(\prod_{j=1}^{d} f(z + c_j)^{s_j} \right)^{(k)} = e^{\sum_{j=1}^{d} \alpha(z + c_j)s_j} \left[P_{k-1}(\alpha'(z + c_j)) + \left(\sum_{j=1}^{d} \alpha'(z + c_j)s_j \right)^k \right]
\]

\[
\left(\prod_{j=1}^{d} g(z + c_j)^{s_j} \right)^{(k)} = e^{\sum_{j=1}^{d} \beta(z + c_j)s_j} \left[Q_{k-1}(\alpha'(z + c_j)) + \left(\sum_{j=1}^{d} \beta'(z + c_j)s_j \right)^k \right]
\]

Where \(P_{k-1} \) and \(Q_{k-1} \) are difference-differential polynomials in \(\alpha'(z + c_j) \) with degree at most \(k - 1 \). Then (20) becomes

\[
e^{n(\alpha + \beta) + \sum_{j=1}^{d} (\alpha(z + c_j) + \beta(z + c_j))s_j} \left[\sum_{j=1}^{d} \alpha^{(k)}(z + c_j)s_j + \left(\sum_{j=1}^{d} \alpha'(z + c_j)s_j \right)^k \right]
\]

\[
\left[\sum_{j=1}^{d} \beta^{(k)}(z + c_j)s_j + \left(\sum_{j=1}^{d} \beta'(z + c_j)s_j \right)^k \right] = z^2 \quad \text{(29)}
\]

We deduce from (28) that \(\alpha(z) + \beta(z) \equiv C \) for a constant \(C \).

If \(k = 1 \), from (22), we have

\[
e^{n(\alpha + \beta) + \sum_{j=1}^{d} (\alpha(z + c_j) + \beta(z + c_j))s_j} \left[\sum_{j=1}^{d} \alpha'(z + c_j)s_j \sum_{j=1}^{d} \beta'(z + c_j)s_j \right] \equiv z^2. \quad \text{(30)}
\]

Next, we let \(\alpha + \beta = \gamma \) and suppose that \(\alpha, \beta \) both are transcendental entire functions.

If \(\gamma \) is a constant, then \(\alpha' + \beta' = 0 \) and \(\sum_{j=1}^{d} \alpha'(z + c_j) = -\sum_{j=1}^{d} \beta'(z + c_j) \).

From (29) we have

\[
e^{n(\alpha + \beta) + \sum_{j=1}^{d} (\alpha(z + c_j) + \beta(z + c_j))s_j} \left\{ - \left[\sum_{j=1}^{d} \alpha'(z + c_j)s_j \right]^2 \right\} \equiv z^2
\]

\[
e^{n\gamma + d\gamma} \left\{ - \sum_{j=1}^{d} \alpha'(z + c_j) \right\}^2 = z^2 \quad \text{(31)}
\]
Which implies that α' is a non-constant polynomial of degree 1. This together with $\alpha' + \beta' = 0$ which implies that β' is also non-constant polynomial of degree 1. Which is contradiction to α, β both are transcendental entire functions.

If γ is not a constant, then we have

$$\alpha + \beta = \gamma \text{ and } \sum_{j=1}^{d} \alpha(z + c_j)s_j + \sum_{j=1}^{d} \beta(z + c_j)s_j = \sum_{j=1}^{d} \gamma(z + c_j)s_j$$

From (29) we have

$$\left[\sum_{j=1}^{d} \alpha'(z + c_j)s_j \right] \left[\sum_{j=1}^{d} \gamma'(z + c_j)s_j - \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right] e^{n\gamma+\sum_{j=1}^{d} \gamma(z+c_j)s_j} = z^{2} \tag{32}$$

Since

$$T \left(r, \sum_{j=1}^{d} \gamma'(z + c_j)s_j \right) = m \left(r, \sum_{j=1}^{d} \gamma'(z + c_j)s_j \right) + N \left(r, \sum_{j=1}^{d} \gamma'(z + c_j)s_j \right) \leq m \left(r, \frac{\sum_{j=1}^{d} \gamma'(z+c_j)s_j\gamma'}{e^{\sum_{j=1}^{d} \gamma'(z+c_j)s_j}} \right) + O(1) = S \left(r, e^{\sum_{j=1}^{d} \gamma(z+c_j)s_j} \right) \tag{33}$$

And also we have

$$T \left(r, n\gamma' + \sum_{j=1}^{d} \gamma'(z + c_j)s_j \right) = m \left(r, n\gamma' + \sum_{j=1}^{d} \gamma'(z + c_j)s_j \right) + N \left(r, n\gamma' + \sum_{j=1}^{d} \gamma'(z + c_j)s_j \right) \leq m \left(r, \frac{\sum_{j=1}^{d} \gamma'(z+c_j)s_j\gamma'}{e^{\sum_{j=1}^{d} \gamma'(z+c_j)s_j}} \right) + O(1) = S \left(r, e^{n\gamma+\sum_{j=1}^{d} \gamma(z+c_j)s_j} \right) \tag{34}$$

From (31), we have

$$T \left(r, e^{n\gamma+\sum_{j=1}^{d} \gamma(z+c_j)s_j} \right) \leq T \left(r, e^{\sum_{j=1}^{d} \alpha'(z + c_j)s_j \sum_{j=1}^{d} \gamma'(z+c_j)s_j} e^{\sum_{j=1}^{d} \alpha'(z+c_j)s_j} \right) + O(1) = T(r, z^{2}) + T \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \left[\sum_{j=1}^{d} \gamma'(z+c_j)s_j - \sum_{j=1}^{d} \alpha'(z+c_j)s_j \right] \right) + O(1) \leq 2logr + 2T \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right) + O(1)$$

$$\Rightarrow T \left(r, e^{n\gamma+\sum_{j=1}^{d} \gamma(z+c_j)s_j} \right) \leq O \left(T \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right) \right) \tag{35}$$
Similarly, we have
\[T \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right) \leq O \left(T \left(r, e^{n\gamma + \sum_{j=1}^{d} \gamma(z+c_j)s_j} \right) \right) \] (36)

Thus, from (32)-(35) we have
\[T(r, n\gamma' + \sum_{j=1}^{d} \gamma'(z + c_j)s_j) = S \left(r, e^{n\gamma + \sum_{j=1}^{d} \gamma(z+c_j)s_j} \right) = S \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right) \]

By the second fundamental theorem and (31), we have
\[T \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right) \leq N \left(r, \sum_{j=1}^{d} \frac{1}{\alpha'(z + c_j)s_j} \right) + N \left(r, \sum_{j=1}^{d} \frac{1}{\alpha'(z + c_j)s_j - \sum_{j=1}^{d} \gamma'(z + c_j)s_j} \right) \]
\[+ S \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right) \leq O(\log r) + S \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right) \]

This implies \(\sum_{j=1}^{d} \alpha'(z + c_j)s_j \) is a polynomial, which leads to \(\alpha'(z) \) is a polynomial.

Which contradicts that \(\alpha(z) \) is a transcendental entire function.

Thus \(\alpha \) and \(\beta \) are both polynomials and \(\alpha(z) + \beta(z) \equiv C \) for a constant \(C \).

Hence from (28) and using \(\alpha + \beta = C \) we get
\[(-1)^k \left(\sum_{j=1}^{d} \alpha'(z + c_j)s_j \right)^{2k} = z^{2k} + P_{2k-1}(\alpha'(z + c_j)s_j) \text{ for } j = 1, 2, ..., d. \]

Where \(P_{2k-1} \) is difference-differential polynomial in \(\alpha'(z + c_j)s_j \) of degree at most \(2k - 1 \). From (36) we have
\[2kT \left(r, \sum_{j=1}^{d} \alpha'(z + c_j)s_j \right) = 2\log r + S \left(r, \alpha'(z + c_j)s_j \right) \]

From (3.28), we can see that \(\sum_{j=1}^{d} \alpha'(z + c_j)s_j \) is a non-constant polynomial of degree 1 and \(k = 1 \).

Which implies,
\[\sum_{j=1}^{d} \alpha'(z + c_j)s_j = zl_1 \]

Since \(\alpha' + \beta' = 0 \), we get \(\sum_{j=1}^{d} \beta'(z + c_j)s_j = -\sum_{j=1}^{d} \alpha'(z + c_j)s_j \). Which implies \(\sum_{j=1}^{d} \beta'(z + c_j)s_j \) is also a non-constant polynomial of degree 1. Hence we have
\[\sum_{j=1}^{d} \beta'(z + c_j)s_j = zl_2 \]

Hence, we get
\[\prod_{j=1}^{d} f(z + c_j)^{s_j} = C_1 e^{C_2z} \]

Similarly, we have
\[\prod_{j=1}^{d} g(z + c_j)^{s_j} = C_2 e^{-C_2z} \]
where C_1, C_2 and C are constants such that $4(C_1C_2)^{n+1}C^2 = -1$.

This proves the conclusion (2) of Theorem 1.

Case 3. If $F \equiv G$

$i.e., \ f^n P(f) \left[\prod_{j=1}^{d} f(z+c_j)^s \right]^{(k)} \equiv g^n P(g) \left[\prod_{j=1}^{d} g(z+c_j)^s \right]^{(k)}$

This proves the conclusion (1) of Theorem 1.

Proof of Theorem 2

Let F, G be given by from the assumption of Theorem 2, we know that F and G share "(1,1)".

Let H be defined as in (3) Suppose that $H \neq 0$. Since F, G share "(1,1)", we can get

$$N(r, \infty; H) \leq \overline{N}(r, \infty; F) + \overline{N}(r, 1; F \geq 2) + \overline{N}(r, 0; F \geq 2) + \overline{N}(r, 0; G \geq 2) + \overline{N}_0(r, 0; F') + \overline{N}_0(r, 0; G') + S(r, f)$$

which

$$N(r, 1; F \geq 1) \leq N(r, 0; H) + S(r, f) \leq N(r, \infty; H) + S(r, f)$$

where $\overline{N}_0(r, 0; F')$ is the reduced counting function of those zeros of F' which are not the zeros of $F(F-1)$ and $\overline{N}_0(r, 0; G')$ is similarly defined.

By the second fundamental theorem, we see that

$$T(r, F) + T(r, G) \leq \overline{N}(r, \infty; F) + \overline{N}(r, 0; F) + \overline{N}(r, \infty; G) + \overline{N}(r, 0; G) + \overline{N}(r, 1; F) + \overline{N}(r, 1; G)$$

$$- N_0(r, 0; F') - N_0(r, 0; G') + S(r, F) + S(r, G).$$

Using Lemmas 2.6 and 2.7, (37) and (38) we can get

$$\overline{N}(r, 1; F) + \overline{N}(r, 1; G) \leq N(r, 1; F = 1) + \overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + \overline{N}_E^2(r, 1; F) + \overline{N}(r, 1; G)$$

$$\leq N(r, 1; F = 1) + N(r, 1; G) - \overline{N}_L(r, 1; F) - \overline{N}_L(r, 1; G) + \overline{N}_{F>2}(r, 1; G)$$

$$\leq \overline{N}(r, 1; F \geq 2) + \overline{N}(r, 1; G \geq 2) + \overline{N}(r, \infty; F) + \overline{N}_{s}(r, 1; F, G) + T(r, G)$$

$$- m(r, 1; G) + O(1) + \frac{1}{2} \overline{N}(r, \infty; F) - \overline{N}_L(r, 1; F) - \overline{N}_L(r, 1; G) + \frac{1}{2} \overline{N}(r, 0, F)$$

$$+ N_0(r, 0; F') + N_0(r, 0; G') + S(r, F) + S(r, G).$$

Combining (39) and (40), we can obtain

$$T(r, F) \leq \frac{7}{2} \overline{N}(r, \infty; F) + N_2(r, 0; F) + N_2(r, 0; G) + \frac{1}{2} \overline{N}(r, 0; F)$$
By the definition of F, G we have

$$
T(r, F) \leq 2T(r, f) + \Gamma_0 T(r, f) + T(r, \prod_{j=1}^{d} f(z + c_j)^{(k)}) - T(r, \prod_{j=1}^{d} f(z + c_j)^{(k)})
+ N_{k+2} \left(r, \frac{1}{\prod_{j=1}^{d} f(z + c_j)^{(k)}}\right) + 2T(r, g) + \Gamma_0 T(r, g) + T(r, \prod_{j=1}^{d} g(z + c_j)^{(k)})

- T(r, \prod_{j=1}^{d} g(z + c_j)^{(k)}) + N_{k+2} \left(r, \frac{1}{\prod_{j=1}^{d} f(z + c_j)^{(k)}}\right) + \frac{1}{2} N(r, \frac{1}{\lfloor n \rceil}) + \frac{1}{2} N(r, \frac{1}{P(f)})

+ \bar{N}(r, \frac{1}{\prod_{j=1}^{d} g(z + c_j)^{(k)}}) + \frac{7}{2} (2N(r, f)) + \frac{7}{2} \left(r, \prod_{j=1}^{d} f(z + c_j)^{(k)}\right) + S(r, f) + S(r, g).

$$

$$
T(r, F) \leq (2 + \Gamma_0) T(r, f) + T(r, \prod_{j=1}^{d} f(z + c_j)^{(k)}) + T(r, f^n) - T(r, f^n) - T(r, \prod_{j=1}^{d} f(z + c_j)^{(k)})
\leq (2 + \Gamma_0) T(r, f) + (k + 2)d T(r, f) + (k + 2)d T(r, f) + (7 + \frac{7}{2} \lambda) T(r, f)

+ \frac{1}{2} T(r, f) + \frac{1}{2} T(r, f) + \frac{1}{2} T(r, \prod_{j=1}^{d} f(z + c_j)^{(k)}) - T(r, \prod_{j=1}^{d} f(z + c_j)^{(k)})
+ N_{1+k} \left(r, \frac{1}{\prod_{j=1}^{d} f(z + c_j)^{(k)}}\right) + S(r, f) + S(r, g).

$$

$$
T(r, F) \leq (2 + \Gamma_0) T(r, f) + T(r, f) - T(r, F_1) + (k + 2)d T(r, f) + (2 + \Gamma_0) T(r, g) + (k \lambda + k + 2)d T(r, g)
\leq (2 + \Gamma_0) T(r, f) + (k + 2)d T(r, f) + (2 + \Gamma_0) T(r, g) + (k \lambda + (k + 2)d) T(r, f)
\leq (2 + \Gamma_0) T(r, f) + (k + 2)d T(r, f) + (2 + \Gamma_0) T(r, g) + (k \lambda + (k + 2)d) T(r, f)
\leq (2 + \Gamma_0) T(r, f) + (1 + \Gamma_0) T(r, f) + \frac{1}{2} (1 + \Gamma_0) T(r, f) + \frac{1}{2} (k \lambda + (k + 1)d) T(r, f)
+ S(r, f) + S(r, g)

$$

From Lemma 2.11, we have

$$
(n + m - \lambda) T(r, f) \leq (2 + \Gamma_0 + (k + 2)d) [T(r, f) + T(r, g)] + k \lambda T(r, g)
+ \frac{15}{2} + \frac{7}{2} \lambda + \frac{\Gamma_0}{2} + \frac{k \lambda}{2} + \frac{(1 + k)d}{2} T(r, f) + S(r, f) + S(r, g). \tag{42}
$$

Similarly for $T(r, g)$ we obtain the following

$$
(n + m - \lambda) T(r, g) \leq (2 + \Gamma_0 + (k + 2)d) [T(r, f) + T(r, g)] + k \lambda T(r, f)
+ \frac{15}{2} + \frac{7}{2} \lambda + \frac{\Gamma_0}{2} + \frac{k \lambda}{2} + \frac{(1 + k)d}{2} T(r, g) + S(r, f) + S(r, g). \tag{43}
$$

From (42) and (43), we have

$$
(n + m - \lambda) [T(r, f) + T(r, g)] \leq (2 + \Gamma_0 + (k + 2)d) [T(r, f) + T(r, g)] + [k \lambda + \frac{15}{2} + \frac{7}{2} \lambda + \frac{k \lambda}{2} \tag{44}
+ \frac{\Gamma_0}{2} + \frac{(1 + k)d}{2}] [T(r, f) + T(r, g)] + S(r, f) + S(r, g)
$$

which is contradiction to \(n > \frac{19}{2} + \frac{19 + 3k}{2} + \frac{3k + 5}{2} - m. \)

Proof of Theorem 3

Let \(F, G \) be given by (1), from the assumption of Theorem 3, we know that \(F \) and \(G \) share “(1, 0)”. Let \(H \) be defined as in (3) Suppose that \(H \neq 0 \). Since \(F, G \) share “(1, 0)”, we can get

\[
N(r, \infty; H) \leq \overline{N}(r, \infty; F) + \overline{N}(1, F | \geq 2) + \overline{N}(r, 0; F | \geq 2) + \overline{N}(r, 0; G | \geq 2) + \overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + \overline{N}_0(r, 0; F') + \overline{N}_0(r, 0; G') + S(r, f)
\]

(45)

and

\[
N_E^1(r, 1; F) \leq N_E^1(r, 1; G) + S(r, f)
\]

\[
N_E^2(r, 1; F) \leq N_E^2(r, 1; G) + S(r, f)
\]

(46)

Using Lemmas 2.8-2.10 and (45) and (46), we get

\[
\overline{N}(r, 1; F) + \overline{N}(r, 1; G) \leq \overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + \overline{N}_E^2(r, 1; F) + \overline{N}(r, 1; G)
\]

\[
\leq N_E^1(r, 1; F) + N(r, 1; G) - N_L(r, 1; G) + N_{F > 1}(r, 1; G) + N_{G > 1}(r, 1; G)
\]

\[
\leq \overline{N}(r, 0; F | \geq 2) + \overline{N}(r, 0; G | \geq 2) + \overline{N}(r, \infty; F) + \overline{N}_G(r, 1; F, G) + T(r, G)
\]

\[- m(r, 1; G) + O(1) - N_L(r, 1; G) + \overline{N}_{F > 1}(r, 1; G) + \overline{N}_{G > 1}(r, 1; G) + N_0(r, 0; F')
\]

\[+ N_0(r, 0; G') + S(r, F) + S(r, G).
\]

(47)

Combining (39) and (47) and by Lemma we can obtain

\[
T(r, F) \leq 6\overline{N}(r, \infty; F) + N(r, 0; F) + 2\overline{N}(r, 0; F) + 2\overline{N}(r, 0; G) + S(r, f)
\]

\[\leq N_2(r, 0; F) + 2\overline{N}(r, 0; F) + 2\overline{N}(2, 0; G) + 6\overline{N}(r, \infty; F)
\]

\[
T(r, F) \leq 2T(r, f) + \Gamma_0 T(r, f) + T(r, \prod_{j=1}^d f(z + c_j)^{x_j})\]

\[+ N_{k+2} \left(\frac{1}{\prod_{j=1}^d f(z + c_j)^{x_j}} \right) + 2[T(r, \prod_{j=1}^d f(z + c_j)^{x_j}) + k\overline{N}(r, \prod_{j=1}^d f(z + c_j)^{x_j})
\]

\[- T(r, \prod_{j=1}^d f(z + c_j)^{x_j}) + (1 + k)dT(r, f)] + 2[T(r, \prod_{j=1}^d g(z + c_j)^{x_j}) + k\overline{N}(r, \prod_{j=1}^d g(z + c_j)^{x_j})
\]

\[- T(r, \prod_{j=1}^d g(z + c_j)^{x_j}) + (1 + k)dT(r, g)] + 6[N(r, f) + N(r, f) + N(r, \prod_{j=1}^d f(z + c_j)^{x_j})] + S(r, f)
\]
\[\leq (2 + \Gamma_0)T(r, f) + T(r, \prod_{j=1}^{d} f(z + c_j)^{r_{i,j}}(k_i) + T(r, f_n) - T(r, f_n) - T(r, \prod_{j=1}^{d} f(z + c_j)^{r_{i,j}}) + (k + 2)dT(r, f) + 2T(r, \prod_{j=1}^{d} f(z + c_j)^{r_{i,j}}) + kN(r, \prod_{j=1}^{d} f(z + c_j)^{r_{i,j}}) - T(r, \prod_{j=1}^{d} g(z + c_j)^{r_{i,j}}) + (1 + k)dT(r, f) + 2[T(r, \prod_{j=1}^{d} g(z + c_j)^{r_{i,j}}) + kN(r, \prod_{j=1}^{d} g(z + c_j)^{r_{i,j}}) - T(r, \prod_{j=1}^{d} g(z + c_j)^{r_{i,j}}) + (1 + k)dT(r, g)] + 12T(r, f) + 6\lambda T(r, f) + S(r, f)\]

\[T(r, F) \leq (2 + \Gamma_0)T(r, f) + T(r, F) - T(r, F_1) + (k + 2)dT(r, f) + (2k\lambda + 2(1 + k)d)T(r, f) + (2k\lambda + 2(1 + k)d)T(r, g) + (12 + 6\lambda)T(r, f) + S(r, f)\]

\[T(r, F_1) \leq (2 + \Gamma_0)T(r, f) + (k + 2)dT(r, f) + 2(k\lambda + (1 + k)d)[T(r, f) + T(r, g)] + (12 + 6\lambda)T(r, f) + S(r, f)\]

From Lemma 2.11 we have

\[(n + m - \lambda)T(r, f) \leq (2 + \Gamma_0 + (k + 2)d)T(r, f) + 2(k\lambda + (1 + k)d)[T(r, f) + T(r, g)] + (12 + 6\lambda)T(r, f) + S(r, f)\] \hspace{1cm} (49)

Similarly for \(T(r, g)\) we obtain the following

\[(n + m - \lambda)T(r, g) \leq (2 + \Gamma_0 + (k + 2)d)T(r, g) + 2(k\lambda + (1 + k)d)[T(r, f) + T(r, g)] + (12 + 6\lambda)T(r, g) + S(r, g)\] \hspace{1cm} (50)

from (49) and (50), we have

\[(n + m - \lambda)[T(r, f) + T(r, g)] \leq (2 + \Gamma_0 + (k + 2)d)[T(r, f) + T(r, g)] + 4(k\lambda + (1 + k)d)[T(r, f) + T(r, g)] + (12 + 6\lambda)[T(r, f) + T(r, g)] + S(r, f) + S(r, g)\] \hspace{1cm} (51)

which is contradiction to \(n > d(5k + 6) + \Gamma_0 + \lambda(4k + 7) + 14 - m\).

Acknowledgment.

The author is grateful to the referee for a number of helpful suggestions to improve the paper.

References

HARINA P. WAGHAMORE
DEPARTMENT OF MATHEMATICS, JNANABHARATHI CAMPUS, BANGALORE UNIVERSITY, BANGALORE, INDIA
E-mail address: harinapw@gmail.com, harina@bub.ernet.in