Electronic Journal of Mathematical Analysis and Applications Vol. 6(2) July 2018, pp. 76-85. ISSN: 2090-729X(online) http://fcag-egypt.com/Journals/EJMAA/

ASYMPTOTICALLY LACUNARY EQUIVALENT SEQUENCE SPACES DEFINED BY IDEAL CONVERGENCE AND AN ORLICZ FUNCTION

TUNAY BİLGİN

ABSTRACT. The purpose of this paper is to introduce certain new sequence spaces using ideal convergence, a lacunary sequence $\theta = (k_r)$, a strictly positive sequence $p = (p_k)$, and an Orlicz function and examine some of their properties.

1. INTRODUCTION

Let s, ℓ_{∞}, c denote the spaces of all real sequences, bounded, and convergent sequences, respectively. Any subspace of s is called a sequence space.

Following Freedman et al.[5], we call the sequence $\theta = (k_r)$ lacunary if it is an increasing sequence of integers such that $k_0 = 0$, $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $q_r = k_r/k_{r-1}$. These notations will be used troughout the paper. The sequence space of lacunary strongly convergent sequences N_{θ} was defined by Freedman et al.[5], as follows:

$$N_{\theta} = \{ x = (x_i) \in s : \lim_r h_r^{-1} \sum_{i \in I_r} |x_i - s| = 0 \text{ for some s} \}.$$

Orlicz [8] used the idea of Orlicz function to construct the space L^M . An Orlicz function is a function $M: [0, \infty) \to [0, \infty)$, which is continuous, nondecreasing and convex with M(0) = 0, M(x) > 0 and $M(x) \to \infty$ as $x \to \infty$.

An Orlicz function M is said to satisfy the Δ_2 -condition for all values of u, if there exists constant K > 0, such that $M(2u) \leq KM(u)$ $(u \geq 0)$. It is also easy to see that always K > 2. The Δ_2 -conditionis equivalent to the satisfaction fin equality $M(Lu) \leq KLM(u)$ for all values of u and L > 1.

Remark 1. An Orlicz function satisfies the inequality $M(\lambda x) < \lambda M(x)$ for all λ with $0 < \lambda < 1$

The following well known inequality will be used troughout the paper;

(1) $|a_i + b_i|^{p_i} \le T(|a_i|^{p_i} + |b_i|^{p_i})$

where a_i and b_i are complex numbers, $T = max(1, 2^{H-1})$, and $H = supp_i < \infty$.

²⁰¹⁰ Mathematics Subject Classification. 40A05,40A35,40A99,40G15.

 $Key\ words\ and\ phrases.$ Asymptotically equivalence, Ideal convergence, Lacunary sequence, Orlicz function.

Submitted Jan. 29, 2017.

Marouf presented definitions for asymptotically equivalent sequences and asymptotic regular matrices in [7]. Patterson extended these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices in [9].Subsequently,many

authors have shown their interest to solve different problems arising in this area (see [1],[3],and [10]).

Kostyrko et al. [6] introduced the notion of I-convergence with the help of an admissible ideal I, which denotes the ideal of subsets of N, which is a generalization of statistical convergence. Quite recently, Das et al. [4] unified these two approaches to introduce new concepts such as I- statistical convergence and I-lacunary statistical convergence and investigated some of their consequences. For more applications of ideals we refer to [2,6,11] where many important references can be found.

Recently, Karakuş and Bilgin[3] used an Orlicz function to define some notions of asymptotically equivalent sequences and studied some of their connections. This paper extended these concepts by presenting a non-trivial ideal I. We introduce some new notions,(M, p)-asymptotically equivalent of multiple L, strong (M, p)asymptotically equivalent of multiple L, and strong (M, p)-asymptotically lacunary equivalent of multiple L with respect to the ideal I which is a natural comon-trivial ideal I, Lacunary sequence, a strictly positive sequence $p = (p_k)$, and Orlicz function. In addition to these definitions, we obtain some revelant connections between these notions.

2. Definitions and Notations

Now we recall some definitions of sequence spaces .

Definition 2.1. Two nonnegative sequences [x] and [y] are said to be asymptotically equivalent if $\lim_k \frac{x_k}{y_k} = 1$, (denoted by $x \sim y$).

Definition 2.2. Two nonnegative sequences [x] and [y] are said to be asymptotically statistical equivalent of multiple L provided that for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} \left| \left\{ k \le n : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| = 0,$$

(denoted by $x \stackrel{S}{\sim} y$) and simply asymptotically statistical equivalent, if L = 1.

Definition 2.3. Two nonnegative sequences [x] and [y] are said to be strong asymptotically equivalent of multiple L provided that

 $\lim_{n} \frac{1}{n} \sum_{k=1}^{n} \left| \frac{x_{k}}{y_{k}} - L \right| = 0$, (denoted by $x \stackrel{w}{\sim} y$) and simply strong asymptotically equivalent, if L = 1.

Definition 2.4. Let θ be a lacunary sequence; the two nonnegative sequences [x] and [y] are said to be asymptotically lacunary statistical equivalent of multiple L provided that for every $\varepsilon > 0$,

L provided that for every $\varepsilon > 0$, $\lim_{r} \frac{1}{h_{r}} \left| \left\{ k \in I_{r} : \left| \frac{x_{k}}{y_{k}} - L \right| \ge \varepsilon \right\} \right| = 0, \text{(denoted by } x \overset{S_{\theta}}{\sim} y\text{) and simply asymptotically lacunary statistical equivalent, if <math>L = 1.$

Definition 2.5. Let θ be a lacunary sequence; the two nonnegative sequences [x] and [y] are said to be strong asymptotically lacunary equivalent of multiple L provided that $\lim_{r} \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| = 0$ (denoted by $x \overset{N_{\theta}}{\sim} y$) and simply strong asymptotically lacunary equivalent, if L = 1.

Definition 2.6. Let M be any Orlicz function; the two nonnegative sequences [x] and [y] are said to be M-asymptotically equivalent of multiple L provided that,

 $\lim_{k} M(\left|\frac{x_{k}}{y_{k}}-L\right|/\rho) = 0$, for some $\rho > 0$, (denoted by $x \stackrel{M}{\sim} y$) and simply strong M-asymptotically equivalent, if L = 1.

Definition 2.7. Let M be any Orlicz function; the two nonnegative sequences [x] and [y] are said to be strong M-asymptotically equivalent of multiple L provided that, $\lim_{n} \frac{1}{n} \sum_{k=1}^{n} M(\left|\frac{x_{k}}{y_{k}} - L\right|/\rho) = 0$, for some $\rho > 0$, (denoted by $x \overset{w^{M}}{\sim} y$) and simply strong M-asymptotically equivalent, if L = 1.

Definition 2.8. Let M be any Orlicz function and θ be a lacunary sequence; the two nonnegative sequences [x] and [y] are said to be strong M-asymptotically lacunary equivalent of multiple L provided that

 $\lim_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} M\left(\left| \frac{x_{k}}{y_{k}} - L \right| / \rho \right) = 0, \text{for some } \rho > 0, \text{ (denoted by } x \overset{N_{\theta}^{M}}{\sim} y \text{) and}$

simply strong M-asymptotically lacunary equivalent, if L = 1.

For any non-empty set X, let P(X) denote the power set of X.

Definition 2.9. A family $I \subseteq P(X)$ is said to be an ideal in X if

(i) $\emptyset \in I$;

(ii) $A, B \in I$ imply $A \cup B \in I$ and

(iii) $A \in I, B \subset A$ imply $B \in I$.

Definition 2.10. A non-empty family $F \subseteq P(X)$ is said to be a filter in X if (i) $\emptyset \notin F$;

(ii) $A, B \in F$ imply $A \cap B \in F$ and

(iii) $A \in F, B \supset A$ imply $B \in F$.

An ideal I is said to be non-trivial if $I \neq \{\emptyset\}$ and $X \notin I$. A non-trivial ideal I is called admissible if it contains all the singleton sets. Moreover, if I is a non-trivial ideal on X, then $F = F(I) = \{X - A : A \in I\}$ is a filter on X and conversely. The filter F(I) is called the filter associated with the ideal I.

Definition 2.11. Let $I \subset P(N)$ be a non-trivial ideal in N. A sequence [x] in X is said to be I-convergent to ξ if for each $\varepsilon > 0$, the set $\{k \in N : |x_k - \xi| \ge \varepsilon\} \in I$. In this case, we write $I - lim_{k \to \infty} x_k = \xi$. A sequence [x] in X is said to be I - null

if L = 0. In this case we write $I - lim_{k\to\infty} x_k = \zeta$. A sequence [x] if X is said to be I - hatif L = 0. In this case we write $I - lim_{k\to\infty} x_k = 0$.

Definition 2.12. A sequence [x] of numbers is said to be *I*-statistical convergent or S(I)-convergent to L, if for every $\varepsilon > 0$ and $\delta > 0$, we have

$$\left\{n \in N; \frac{1}{n} |\{k \le n : |x_k - L| \ge \varepsilon\}| \ge \delta\right\} \in I.$$

In this case, we write $x_k \to L(S(I))$ or $S(I) - \lim_{k \to \infty} x_k = L$.

Definition 2.13 Let $I \subset P(N)$ be a non-trivial ideal in N. The two non-negative sequences [x] and [y] are said to be strongly asymptotically equivalent of multiple Lwith respect to the ideal I provided that for each $\varepsilon > 0$

$$\left\{ n \in N; \frac{1}{n} \sum_{k=1}^{n} \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \in I,$$

(denoted by $x \stackrel{I(w)}{\sim} y$) and simply strongly asymptotically equivalent with respect to the ideal I, if L = 1.

Definition 2.14. Let $I \subset P(N)$ be a non-trivial ideal in N and $\theta = (k_r)$ be a lacunary sequence. The two nonnegative sequences [x] and [y] are said to

be asymptotically lacunary statistical equivalent of multiple L with respect to the ideal I provided that for each $\varepsilon > 0$ and $\gamma > 0$,

$$\left\{ r \in N; \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| \ge \gamma \right\} \in I$$

(denoted by $x \stackrel{I(S,\theta)}{\sim} y$) and simply asymptotically lacunary statistical equivalent with respect to the ideal I, if L = 1.

Definition 2.15. Let $I \subset P(N)$ be a non-trivial ideal in N and $\theta = (k_r)$ be a lacunary sequence. The two non-negative sequences [x] and [y] are said to be strongly asymptotically lacunary equivalent of multiple L with respect to the ideal

I provided that for $\varepsilon > 0$,

$$\left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \in I$$

(denoted by $x \stackrel{I(N_{\theta})}{\sim} y$) and simply asymptotically lacunary equivalent with respect to the ideal I, if L = 1.

3. Main Results

We now consider our main results. We begin with the following definitions.

Definition 3.1. Let $I \subset P(N)$ be a non-trivial ideal in N and M be any Orlicz function. The two non-negative sequences [x] and [y] are said to be Masymptotically equivalent of multiple L with respect to the ideal I provided that for each $\varepsilon > 0$

$$\left\{k \in N; M\left(\left|\frac{x_k}{y_k} - L\right| / \rho\right) \ge \varepsilon\right\} \in I, \text{for some } \rho > 0,$$

(denoted by $x \stackrel{I(M)}{\sim} y$) and simply *M*- asymptotically equivalent with respect to the ideal *I*, if L = 1.

Definition 3.2. Let $I \subset P(N)$ be a non-trivial ideal in N, M be any Orlicz function, and $p = (p_k)$ be a sequence of positive real numbers. Two number sequences [x] and [y] are said to be strongly (M, p)-asymptotically equivalent of multiple L with respect to the ideal I provided that for each $\varepsilon > 0$,

$$\left\{ n \in N; \frac{1}{n} \sum_{k=1}^{n} \left[M(\left| \frac{x_k}{y_k} - L \right| / \rho) \right]^{p_k} \ge \varepsilon \right\} \in I, \text{for some } \rho > 0,$$

(denoted by $x \stackrel{(w)}{\sim} y$) and simply strongly (M, p) - asymptotically equivalent with respect to the ideal I, if L = 1.

If we take M(x) = x for $x \ge 0$, we write $x \stackrel{I(w^p)}{\sim} y$ instead of $x \stackrel{I(w^{(M,p)})}{\sim} y$ and simply strongly p-asymptotically equivalent with respect to the ideal I, if L = 1.

If we take $p_k = p$ for all $k \in N$, we write $x \stackrel{I(w^{M_p})}{\sim} y$ instead of $x \stackrel{I(w^{(M,p)})}{\sim} y$. If we take p = 1, we write $x \stackrel{I(w^M)}{\sim} y$ instead of $x \stackrel{I(w^{M_p})}{\sim} y$ and simply strongly *M*-asymptotically equivalent with respect to the ideal *I*, if L = 1.

Definition 3.3. Let $I \subset P(N)$ be a non-trivial ideal in N, M be any Orlicz function, $\theta = (k_r)$ be a lacunary sequence, and $p = (p_k)$ be a sequence of positive real numbers. Two number sequences [x] and [y] are said to be (M, p)-asymptotically lacunary equivalent of multiple L with respect to the ideal I provided that for each $\varepsilon > 0$,

$$\left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} \left[M(\left| \frac{x_k}{y_k} - L \right| / \rho) \right]^{p_k} \ge \varepsilon \right\} \in I, \text{for some } \rho > 0, \text{ (denoted by } L(\rho))$$

 $x \stackrel{I(N_{\phi}^{(M,p)})}{\sim} y)$ and simply (M,p) -asymptotically lacunary equivalent with respect to the ideal I, if L = 1.

If we take $p_k = p$ for all $k \in N$, we write $x \stackrel{I(N_{\theta}^{M_p})}{\sim} y$ instead of $x \stackrel{I(N_{\theta}^{(M,p)})}{\sim} y$ Note that, we put p = 1, we write $x \overset{I(N_{\theta}^{M})}{\sim} y$ instead of $x \overset{I(N_{\theta}^{M_{p}})}{\sim} y$ and simply *M*-asymptotically lacunary equivalent with respect to the ideal *I*, if L = 1.

Also if we put M(x) = x for $x \ge 0$, we write $x \stackrel{I(N_{\theta}^p)}{\sim} y$ instead of $x \stackrel{I(N_{\theta}^{(M,p)})}{\sim} y$.

Hence $x \stackrel{I(N_{\theta}^{p})}{\sim} y$ is the same as the $x \stackrel{N_{\theta}^{L(p)}(I)}{\sim} y$ of Savas and Gumus [11]

We start this section with the following Theorem to show that the relation between strongly M- asymptotically equivalence and strong asymptotically equivalence with respect to the ideal I

Theorem 3.1. Let $I \subset P(N)$ be a non-trivial ideal in N, M be any Orlicz function which satisfies the Δ_2 -condition, $\theta = (k_r)$ be a lacunary sequence, then if $x \stackrel{I(w)}{\sim} y$ then $x \stackrel{I(w^M)}{\sim} y$

Proof. Let $x \stackrel{I(w)}{\sim} y$ and $\varepsilon > 0$. We choose $0 < \delta < 1$ such that $M(u) < \varepsilon/2$ for every u with $0 \le u \le \delta$. We can write

$$\frac{1}{n}\sum_{k=1}^{n} M(\left|\frac{x_{k}}{y_{k}} - L\right|/\rho) = \frac{1}{n}\sum_{k=1}^{n} M(\left|\frac{x_{k}}{y_{k}} - L\right|/\rho) + \frac{1}{n}\sum_{k=1}^{n} M(\left|\frac{x_{k}}{y_{k}} - L\right|/\rho)$$

where the first summation is over $\left(\left|\frac{x_k}{y_k} - L\right|/\rho\right) \leq \delta$ and the second summation

over $\left(\left| \frac{x_k}{y_k} - L \right| / \rho \right) > \delta$. Since M is continuous $\frac{1}{n} \sum_{1} M\left(\left| \frac{x_k}{y_k} - L \right| / \rho \right) < \varepsilon/2$ and for $\left(\left| \frac{x_k}{y_k} - L \right| / \rho \right) > \delta$ we use the fact that $\left(\left|\frac{x_k}{y_k} - L\right|/\rho\right) < \left(\left|\frac{x_k}{y_k} - L\right|/\rho\right)/\delta < 1 + \left(\left|\frac{x_k}{y_k} - L\right|/\rho\right)/\delta$. Since M is non-decreasing and convex, it follows that

$$\begin{split} M(\left|\frac{x_{k}}{y_{k}}-L\right|/\rho) &< M(1+\left(\left|\frac{x_{k}}{y_{k}}-L\right|/\rho)/\delta\right) \\ &< \frac{1}{2}M(2) + \frac{1}{2}M(2(\left|\frac{x_{k}}{y_{k}}-L\right|/\rho)/\delta) \\ \text{Since } M \text{ satisfies the } \Delta_{2}\text{-condition, therefore} \\ M(\left|\frac{x_{k}}{y_{k}}-L\right|/\rho) &< \frac{1}{2}K(\left(\left|\frac{x_{k}}{y_{k}}-L\right|/\rho)/\delta\right)M(2) + \frac{1}{2}K(\left(\left|\frac{x_{k}}{y_{k}}-L\right|/\rho)/\delta) \\ &= K(\left|\frac{x_{k}}{y_{k}}-L\right|/\delta)M(2) \end{split}$$

Hence $\frac{1}{n} \sum_{2} M(\left|\frac{x_k}{y_k} - L\right| / \rho) \leq (KM(2)/\delta) \frac{1}{n} \sum_{k=1}^{\infty} \left(\left|\frac{x_k}{y_k} - L\right| / \rho\right)$, which together with $\frac{1}{n}\sum_{i}M(\left|\frac{x_k}{y_k}-L\right|/\rho) < \varepsilon$

yields

$$\frac{1}{n}\sum_{k=1}^{n} M\left(\left|\frac{x_k}{y_k} - L\right|/\rho\right) \le \varepsilon/2 + \left(KM(2)/\delta\right) \left|\frac{1}{n}\sum_{k=1}^{n} \left(\left|\frac{x_k}{y_k} - L\right|/\rho\right). \text{Thus},$$

ASYMPTOTICALLY LACUNARY EQUIVALENT SEQUENCE SPACES 81 EJMAA-2018/6(2)

$$\left\{ n \in N; \frac{1}{n} \sum_{k=1}^{n} M(\left| \frac{x_k}{y_k} - L \right| / \rho) \ge \varepsilon \right\} \subset \left\{ n \in N; \frac{1}{n} \sum_{k=1}^{n} \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \delta / 2KM(2) \right\}$$

Since $x \stackrel{I(w)}{\sim} y$ it follows the later set, and hence, the first set in above expression belongs to *I*. This proves that $x \stackrel{I(w^M)}{\sim} y$

Theorem 3.2. Let M_1, M_2 be Orlicz functions that satisfy the Δ_2 -condition.

Then

(i) if $x \xrightarrow{I(M_2)} y$ then $x \xrightarrow{I(M_1 o M_2)} y$, (ii) if $x \xrightarrow{I(M_1 \cap M_2)} y$ then $x \xrightarrow{I(M_1 + M_2)} y$ **Proof.** (i) Let $x \stackrel{I(M_2)}{\sim} y$. Then there exists $\rho > 0$ such that

$$\left\{ n \in N; \frac{1}{n} \sum_{k=1}^{n} M_2(\left| \frac{x_k}{y_k} - L \right| / \rho) \ge \varepsilon \right\} \in I$$

Let $\varepsilon > 0$ and choose $0 < \delta < 1$ such that $M_1(u) < \varepsilon/2$ for every u with $0 \le u \le \delta$. Write $A_k = M_2(\left|\frac{x_k}{y_k} - L\right|/\rho)$ By the Remark, we have, for $A_k \le \delta$

$$\begin{split} M_1(M_2(\left|\frac{x_k}{y_k} - L\right|/\rho)) &\leq M_1(2)M_2(\left|\frac{x_k}{y_k} - L\right|/\rho)\varepsilon/2\\ \text{For } A_k &> \delta, \text{ we have } A_k < A_k/\delta < 1 + A_k/\delta. \text{ Since } M \quad \text{ is non-decreasing and } \end{split}$$

convex, it follows that $M_1(A_k) < M_1(1 + A_k/\delta)$

$$\begin{split} & \operatorname{M_1(A_k)} < \operatorname{M_1(1+A_k/0)} \\ & < \frac{1}{2}M_1(2) + \frac{1}{2}M_1(2A_k/\delta) \\ & \text{Since } M \text{ satisfies the } \Delta_2\text{-condition, therefore} \\ & M_1(A_k) < \frac{1}{2}K(A_k/\delta) M_1(2) + \frac{1}{2}K(A_k/\delta) \\ & = K(A_k/\delta)M_1(2) \\ & \operatorname{Hence } M_1(M_2(\left|\frac{x_k}{y_k} - L\right|/\rho)) \leq max(1, K\delta^{-1}M_1(2))M_2(\left|\frac{x_k}{y_k} - L\right|/\rho) + \varepsilon/2 \\ & \left\{n \in N; M_1(M_2(\left|\frac{x_k}{y_k} - L\right|/\rho)) \geq \varepsilon\right\} \\ & \subset \left\{n \in N; M_2(\left|\frac{x_k}{y_k} - L\right|/\rho) \geq \varepsilon/2max(1, K\delta^{-1}M_1(2))\right\} \\ & \text{we have} \left\{n \in N; M_1(M_2(\left|\frac{x_k}{y_k} - L\right|/\rho)) \geq \varepsilon\right\} \in I \quad \text{Hence } x \overset{I(M_1 \circ M_2)}{\sim} y. \\ & \text{(ii) Let } x \overset{I(M_1 \cap M_2)}{\sim} y. \text{Then there exists } \rho > 0 \text{ such that} \\ & \left\{n \in N; \frac{1}{n}\sum_{k=1}^n M_1(\left|\frac{x_k}{y_k} - L\right|/\rho) \geq \varepsilon\right\} \in I \text{ and} \\ & \left\{n \in N; \frac{1}{n}\sum_{k=1}^n M_2(\left|\frac{x_k}{y_k} - L\right|/\rho) \geq \varepsilon\right\} \in I. \end{split}$$

The rest of the proof follows from the following equality $(M_1 + M_2)(\left|\frac{x_k}{y_k} - L\right|/\rho) = M_1(\left|\frac{x_k}{y_k} - L\right|/\rho) + M_2(\left|\frac{x_k}{y_k} - L\right|/\rho)$ The next theorem shows the relationship between the strongly *M*-asymptotically

equivalence and the M-asymptotically lacunary equivalence with respect to the ideal I.

Theorem 3.3.Let $I \subset P(N)$ be a non-trivial ideal in N, M be an Orlicz function ,and $\theta = (k_r)$ be a lacunary sequence, then

(i) if $\limsup_r q_r < \infty$ then $x \stackrel{I(N_{\theta}^M)}{\sim} y$ implies $x \stackrel{I(w_M)}{\sim} y$

T. BİLGİN

(ii) if $\liminf_r q_r > 1$ then $x \overset{I(w_M)}{\sim} y$ implies $x \overset{I(N_M^M)}{\sim} y$

(iii) if $1 < \liminf_r q_r \le \limsup_r q_r < \infty$, then $x \stackrel{I(w_M)}{\sim} y \iff x \stackrel{I(N_{\theta}^M)}{\sim} y$. **Proof.** Part (i): If $\limsup_r q_r < \infty$ then there exists K > 0 such that $q_r < K$ for every r. Now suppose that $x \stackrel{I(N_{\theta}^M)}{\sim} y$ and $\varepsilon > 0$. Let

$$A = \left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} M(\left| \frac{x_k}{y_k} - L \right| / \rho) < \varepsilon \right\}, \text{for some } \rho > 0$$

Hence, for all $j \in A$ and for some $\rho > 0$, we have $H_j = \frac{1}{h_j} \sum_{k \in I_j} M(\left| \frac{x_k}{y_k} - L \right| / \rho)$ < ε . Let n be any integer with $k_r \ge n \ge k_{r-1}$. Now write

$$\begin{aligned} \frac{1}{n} \sum_{k=1}^{n} M(\left|\frac{x_k}{y_k} - L\right|/\rho) &\leq \frac{1}{k_{r-1}} \sum_{k=1}^{k_r} M(\left|\frac{x_k}{y_k} - L\right|/\rho) \\ &= \frac{1}{k_{r-1}} \sum_{m=1}^{r} \sum_{k \in I_m} M(\left|\frac{x_k}{y_k} - L\right|/\rho) \\ &= \frac{1}{k_{r-1}} \sum_{m=1}^{r} \frac{k_m - k_{m-1}}{h_m} \sum_{k \in I_m} M(\left|\frac{x_k}{y_k} - L\right|/\rho) \\ &= \frac{1}{k_{r-1}} \sum_{m=1}^{r} (k_m - k_{m-1}) \sup_{j \in A} H_j \\ &= \frac{k_r}{k_{r-1}} \sup_{j \in A} H_j \\ &= q_r \sup_{j \in A} H_j \\ &\leq K \varepsilon = \varepsilon' \end{aligned}$$

it follows that for any $\varepsilon' > 0$, $\left\{ n \in N; \frac{1}{n} \sum_{k=1}^{n} M(\left| \frac{x_k}{y_k} - L \right| / \rho) < \varepsilon' \right\} \in F(I)$

which yields that $x \stackrel{I(w_M)}{\sim} y$. Because for any set $A \in F(I), \cup \{n : k_{r-1} < n < k_r, r \in A\} \in F(I).$

Part (ii): Let $x \stackrel{I(w_M)}{\sim} y$ and $\liminf_r q_r > 1$. There exist $\delta > 0$ such that

 $q_r = (k_r/k_{r-1}) \ge 1 + \delta$ for all $r \ge 1$. We have, for sufficiently large r, that $(k_r/h_r) \le \frac{1+\delta}{\delta}$ and $(k_{r-1}/h_r) \le \frac{1}{\delta}$. Let $\varepsilon > 0$ and define the set

$$A = \left\{ k_r \in N; \frac{1}{k_r} \sum_{k=1}^{k_r} M(\left| \frac{x_k}{y_k} - L \right| / \rho) < \varepsilon \right\}, \text{for some } \rho > 0.$$

We have $A\in F(I),$ which is the filter of the ideal I, For each $k_r\in A,$ we have, for some $\rho>0$,

$$\begin{split} \frac{1}{h_r} \sum_{k \in I_r} M(\left|\frac{x_k}{y_k} - L\right|/\rho) &= \frac{1}{h_r} \sum_{k=1}^{k_r} M(\left|\frac{x_k}{y_k} - L\right|/\rho) - \frac{1}{h_r} \sum_{k=1}^{k_{r-1}} M(\left|\frac{x_k}{y_k} - L\right|/\rho) \\ &= \frac{k_r}{k_r h_r} \sum_{k=1}^{k_r} M(\left|\frac{x_k}{y_k} - L\right|/\rho) - \frac{k_{r-1}}{h_r k_{r-1}} \sum_{k=1}^{k_{r-1}} M(\left|\frac{x_k}{y_k} - L\right|/\rho) \\ &\leq \frac{k_r}{k_r h_r} \sum_{k=1}^{k_r} M(\left|\frac{x_k}{y_k} - L\right|/\rho) \\ &< (\frac{1+\delta}{\delta}) \varepsilon = \varepsilon' \end{split}$$

it follows that for any $\varepsilon' > 0$,

82

EJMAA-2018/6(2)

$$\left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} M(\left| \frac{x_k}{y_k} - L \right| / \rho) < \varepsilon' \right\} \in F(I) \text{ which yields that } x \overset{I(N_{\theta}^M)}{\sim} y$$

Part (iii): This immediately follows from (i) and (ii).

Now we give relation between asymptotically lacunary statistical equivalence and *M*-asymptotically lacunary equivalence with respect to the ideal *I*.

Theorem 3.4. Let $I \subset P(N)$ be a non-trivial ideal in N, M be an Orlicz function, and $\theta = (k_r)$ be a lacunary sequence, then

(i) if $x \stackrel{I(N_{\theta}^{M})}{\sim} y$ then $x \stackrel{I(S_{\theta})}{\sim} y$,

(ii) if M is bounded then $x \stackrel{I(N_{\theta}^{M})}{\sim} y \iff x \stackrel{I(S_{\theta})}{\sim} y$, **Proof.** Part (i): Take $\varepsilon > 0$ and let \sum_{1} denote the sum over $k \in I_r$ for some 0 mith $\begin{vmatrix} x_k \\ z_k \end{vmatrix}$ T $\begin{vmatrix} z_k \\ z_k \end{vmatrix}$ The set

$$\begin{split} \rho &> 0, \text{with} \left| \frac{x_k}{y_k} - L \right| / \rho \geq \varepsilon \text{ .Then} \\ &\frac{1}{h_r} \sum_{k \in I_r} M(\left| \frac{x_k}{y_k} - L \right| / \rho) \geq \frac{1}{h_r} \sum_1 M(\left| \frac{x_k}{y_k} - L \right| / \rho) \\ &\geq \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| / \rho \geq \varepsilon \right\} \right|, \\ \text{and } \left\{ r \in N; \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| / \rho \geq \varepsilon \right\} \right| \geq \gamma \right\} \\ &\subseteq \left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} M(\left| \frac{x_k}{y_k} - L \right| / \rho) \geq \gamma \right\} \in I. \text{But then, by definition of an ideal,} \end{split}$$

later set belongs to I, and therefore $x \stackrel{I(S_{\theta})}{\sim} y$

Part (ii): Suppose that M is bounded and $x \stackrel{I(S_{\theta})}{\sim} y$. Since M is bounded, there exists an integer T such that $|M(x)| \leq T$ for all $x \geq 0$. We see that

$$\begin{aligned} \frac{1}{h_r} \sum_{k \in I_r} M(\left|\frac{x_k}{y_k} - L\right|/\rho) &\leq T \frac{1}{h_r} \left| \left\{ k \in I_r : \left|\frac{x_k}{y_k} - L\right|/\rho \geq \varepsilon \right\} \right| + M(\varepsilon) \text{ so we have} \\ \left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} M(\left|\frac{x_k}{y_k} - L\right|/\rho) \geq \varepsilon \right\} \\ &\subseteq \left\{ r \in N; \frac{1}{h_r} \left| \left\{ k \in I_r : \left|\frac{x_k}{y_k} - L\right| \geq \varepsilon \right\} \right| \\ &\geq \frac{\varepsilon - M(\varepsilon)}{T} \right\} \in I. \text{ Therefore we have} \\ x \stackrel{I(N_{\alpha}^M)}{\sim} y \end{aligned}$$

Let $p_k = p$ for all k, $t_k = t$ for all k and 0 . Then it follows followingTheorem.

Theorem 3.5. Let $I \subset P(N)$ be a non-trivial ideal in N, M be an Orlicz function, and $\theta = (k_r)$ be a lacunary sequence, then

$$\begin{array}{l} x \stackrel{I(N_{\theta}^{Mt})}{\sim} y \text{ implies } x \stackrel{I(N_{\theta}^{Mp})}{\sim} y , \\ \mathbf{Proof.Let } x \stackrel{I(N_{\theta}^{Mt})}{\sim} y. \text{ It follows from Holder's inequality} \\ \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M(\left| \frac{x_{k}}{y_{k}} - L \right| / \rho) \right]^{p} \leq (\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M(\left| \frac{x_{k}}{y_{k}} - L \right| / \rho) \right]^{t})^{p/t} \end{array}$$

EJMAA-2018/6(2)

and
$$\left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} \left[M(\left| \frac{x_k}{y_k} - L \right| / \rho) \right]^p \ge \varepsilon \right\}$$

$$\subseteq \left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} \left[M(\left| \frac{x_k}{y_k} - L \right| / \rho) \right]^t \ge \varepsilon^{t/p} \right\} \in I. \text{ Thus we}$$

have $x \stackrel{I(N_{\theta}^{m_p})}{\sim} y$

We now consider that (p_k) and (t_k) are not constant sequences.

Theorem 3.6. Let $I \subset P(N)$ be a non-trivial ideal in N, M be an Orlicz function, $\theta = (k_r)$ be a lacunary sequence, $0 < p_k \leq t_k$ for all k and (t_k/p_k) be bounded ,then $x \stackrel{I(N_{\theta}^{(M,t)})}{\sim} y$ implies $x \stackrel{I(N_{\theta}^{(M,p)})}{\sim} y$ **Proof.** Let $x \stackrel{I(N_{\theta}^{(M,t)})}{\sim} y$. $z_k = \left[M(\left| \frac{x_k}{y_k} - L \right| / \rho) \right]^{t_k}$ and $\lambda_k = (p_k / t_k)$, so that

 $0 < \lambda \leq \lambda_k \leq 1$:We define the

sequences (u_k) and (v_k) as follows: For $z_k \ge 1$; let $u_k = z_k$ and $v_k = 0$ and for $z_k < 1$; let $v_k = z_k$ and $u_k = 0$. Then we have $z_k = u_k + v_k$; $z_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$. Now it follows that $u_k^{\lambda_k} \le u_k \le z_k$ and $v_k^{\lambda_k} \le v_k^{\lambda}$. Therefore

$$\begin{split} \frac{1}{h_r} \sum_{k \in I_r} z_k^{\lambda_k} &= \frac{1}{h_r} \sum_{k \in I_r} (u_k^{-\lambda_k} + v_k^{\lambda_k}) \\ &\leq \frac{1}{h_r} \sum_{k \in I_r} z_k + \frac{1}{h_r} \sum_{k \in I_r} v_k^{\lambda} \\ \text{Now for each } r; \\ \frac{1}{h_r} \sum_{k \in I_r} v_k^{\lambda} &= \sum_{k \in I_r} \left(\frac{1}{h_r} v_k\right)^{\lambda} \left(\frac{1}{h_r}\right)^{1-\lambda} \\ &\leq \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r} v_k\right)^{\lambda}\right]^{1/\lambda}\right)^{\lambda} \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r}\right)^{1-\lambda}\right]^{1/1-\lambda}\right)^{1-\lambda} \\ &< \left(\frac{1}{h_r} \sum_{k \in I_r} v_k\right)^{\lambda} \text{ and so} \\ \frac{1}{h_r} \sum_{k \in I_r} \left[M\left(\left|\frac{x_k}{y_k} - L\right|/\rho\right)\right]^{p_k} &= \frac{1}{h_r} \sum_{k \in I_r} z_k^{\lambda_k} \leq \frac{1}{h_r} \sum_{k \in I_r} z_k + \left(\frac{1}{h_r} \sum_{k \in I_r} v_k\right)^{\lambda} \\ &= \left\{ \begin{array}{c} \frac{1}{h_r} \sum_{k \in I_r} z_k &, z_k \geq 1 \\ \frac{1}{h_r} \sum_{k \in I_r} z_k + \left(\frac{1}{h_r} \sum_{k \in I_r} z_k\right)^{\lambda} &, z_k < 1 \end{array} \right\} \\ &\leq \left\{ \begin{array}{c} \frac{1}{h_r} \sum_{k \in I_r} z_k &, z_k \geq 1 \\ 2\left(\frac{1}{h_r} \sum_{k \in I_r} z_k\right)^{\lambda} &, z_k < 1 \end{array} \right\} \\ \text{If } \frac{1}{h_r} \sum_{k \in I_r} \left[M\left(\left|\frac{x_k}{y_k} - L\right|/\rho\right)\right]^{p_k} \geq \varepsilon \text{ then} \\ &\left\{ \begin{array}{c} \frac{1}{h_r} \sum_{k \in I_r} \left[M\left(\left|\frac{x_k}{y_k} - L\right|/\rho\right)\right]^{t_k} \geq \varepsilon \\ \frac{1}{h_r} \sum_{k \in I_r} \left[M\left(\left|\frac{x_k}{y_k} - L\right|/\rho\right)\right]^{t_k} \geq \left(\frac{\varepsilon}{2}\right)^{1/\lambda} &, z_k < 1 \end{array} \right\} \end{split}$$

Hence $\left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} \left[M(\left| \frac{x_k}{y_k} - L \right| / \rho) \right]^{p_k} \ge \varepsilon \right\}$

84

EJMAA-2018/6(2)

$$\subseteq \left\{ r \in N; \frac{1}{h_r} \sum_{k \in I_r} \left[M(\left| \frac{x_k}{y_k} - L \right| / \rho) \right]^{t_k} \ge \min\left\{ \varepsilon, \left(\frac{\varepsilon}{2} \right)^{1/\lambda} \right\} \right\} \in I.$$

$$I(N^{(M,p)})$$

Thus we have $x \stackrel{I(N_{\theta})}{\sim} y$.

4. Acknowledgement

The work is supported by the Presidency of Scentific Research Projects of Yuzuncu Yil University (No:KONGRE-2015/136) and it was presented at VII International Conference; "Mathematical Analysis, Differential Equations and their Applications" (MADEA-7).

References

- [1] M. Basarir and S. Altundag, On Δ -lacunary statistical asymptotically equivalent sequences, Filomat, 22(1), 161-172, 2008.
- [2] T. Bilgin, (f, p)-Asymptotically Lacunary Equivalent Sequences with respect to the ideal I, Journal of Applied Mathematics and Physics, Vol.3, 1207-1217, 2015.
- [3] M.Karakuş and T. Bilgin, On The Space of Asymptotically Lacunary Equivalent Sequences Obtained From an Orlicz Function, Scholars Journal of Research in Mathematics and Computer Science, Vol.2, No 1,109-116, 2017.
- [4] P.Das, E. Savas and S. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24, 1509–1514, 2011.
- [5] A.R Freedman, J.J.Sember, M Raphel, Some Cesaro-type summability spaces, Proc.London Math. Soc., 37(3), 508-520, 1978.
- [6] P.Kostyrko, T. Salat, and W. Wilczynski, I-convergence, Real Anal. Exchange.26(2), 669–686, 2001.
- [7] M. Marouf, Asymptotic equivalence and summability, Int.J. Math. Math. Sci., Vol.16(4),755-762, 1993.
- [8] Orlicz W., Uber Raume L^M , Bull. Int. Acad. Polon. Sci., Ser A, 93–107, 1936.
- [9] R.F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math., Vol.36(1), 149-153, 2003.
- [10] R.F. Patterson and E. Savas, On asymptotically lacunary statistically equivalent sequences, Thai J. Math. 4(2), 267-272, 2006.
- [11] E. Savas and H.Gumus, A generalization on I-asymptotically lacunary statistical equivalent sequences, Journal of Inequalities and Applications, 2013(270),1-9, 2013.

T. Bilgin

FACULTY OF EDUCATION, YUZUNCU YIL UNIVERSITY, VAN, TURKEY *E-mail address*: tbilgin@yu.edu.tr