# GENERATING FUNCTIONS K-FIBONACCI AND K-JACOBSTHAL NUMBERS AT NEGATIVE INDICES 

ALI BOUSSAYOUD, SOUHILA BOUGHABA AND MOHAMED KERADA


#### Abstract

In this paper, we calculate the generating functions by using the concepts of symmetric functions. Although the methods cited in previous works are in principle constructive, we are concerned here only with the question of manipulating combinatorial objects, known as symmetric operators. The proposed generalized symmetric functions can be used to find explicit formulas of the $k$-Fibonacci and $k$ - Jacobsthal numbers at negative indices and of the Chebychev polynomials of first and second kinds.


## 1. Introduction and Preliminaries

Fibonacci numbers and their generalizations have many interesting properties and applications to almost every field of science and art (e.g., see [12]). Fibonacci numbers $F_{n}$ are defined by the recurrence relation

$$
\left\{\begin{array}{c}
F_{0}=1, F_{1}=1 \\
F_{n+1}=F_{n}+F_{n-1}, n \geq 1
\end{array}\right.
$$

There exist a lot of properties about Fibonacci numbers. In particular, there is a beautiful combinatorial identity to Fibonacci numbers [13]

$$
F n=\left[\begin{array}{c}
\left.\frac{n-1}{2}\right]  \tag{1}\\
i=0
\end{array}\binom{n-i-1}{i}\right.
$$

From (1), Falcon [14] introduced the incomplete Fibonacci numbers $F_{n}(s)$. They are defined by

$$
F_{n}(s)={ }_{j=0}^{s}\binom{n-j-1}{j}, 0 \leq s \leq\left[\frac{n-1}{2}\right] ; n=0,1,2, . .
$$

On the other hand, many kinds of generalizations of Fibonacci numbers have been presented in the literature. In particular, a generalization is the $k$-Fibonacci

[^0]Numbers. For any positive real number $k$, the $k$-Fibonacci sequence, say $\left(F_{n, k}\right)_{n \in \mathbb{N}}$, is defined recurrently by [14]

$$
\left\{\begin{array}{c}
F_{k, 0}=1, F_{k, 1}=1 \\
F_{k, n+1}=k F_{k, n}+F_{k, n-1}, n \geq 1
\end{array}\right.
$$

In [13], $k$-Fibonacci numbers were found by studying the recursive application of two geometrical transformations used in the four-triangle longest-edge (4TLE) partition. These numbers have been studied in several papers; see [13, 14].

For any positive real number $k$, the $k$-Jacobsthal Numbers, say $\left(J_{n, k}\right)_{n \in \mathbb{N}}$, is defined recurrently by [11]

$$
\left\{\begin{array}{c}
J_{k, 0}=0, J_{k, 1}=1 \\
J_{k, n+1}=k J_{k, n}+2 J_{k, n-1}, n \geq 1
\end{array}\right.
$$

If $k=1$, we have the classical Jacobsthal numbers appears: $J_{0}=0, J_{1}=1$ and $J_{n+1}=J_{n}+2 J_{n-1}$ for $n \geq 1$.

In this contribution, we shall define a new useful operator denoted by $\delta_{p_{1} p_{2}}$ for which we can formulate, extend and prove new results based on our previous ones $[1,5,7]$. In order to determine generating functions of the product of $k$-Fibonacci and $k$-Jacobsthal numbers at negative indices and Chebychev polynomials of first and second kind, we combine between our indicated past techniques and these presented polishing approaches.

In order to render the work self-contained we give the necessary preliminaries tools; we recall some definitions and results.

Definition $1[7]$ Let $B$ and $P$ be any two alphabets. We define $S_{n}(B-P)$ by the following form

$$
\begin{equation*}
\frac{\Pi_{p \epsilon P}(1-p t)}{\Pi_{b \epsilon B}(1-b t)}=\sum_{n=0}^{\infty} S_{n}(B-P) t^{n} \tag{2}
\end{equation*}
$$

with the condition $S_{n}(B-P)=0$ for $n<0$.
Corollary 1 [3] Taking $B=\{0,0, \ldots, 0\}$ in (2) gives

$$
\Pi_{p \in P}(1-p t)=\sum_{n=0}^{\infty} S_{n}(-P) t^{n}
$$

Equation (2) can be rewritten in the following form

$$
{ }_{n=0}^{\infty} S_{n}(B-P) t^{n}=\left(\begin{array}{c}
\infty \\
n=0
\end{array} S_{n}(B) t^{n}\right) \times\left(\begin{array}{c}
\infty \\
n=0
\end{array} S_{n}(-P) t^{n}\right)
$$

where

$$
S_{n}(B-P)={ }_{j=0}^{n} S_{n-j}(-P) S_{j}(B)
$$

Definition 2 [6] Given a function $f$ on $\mathbb{R}^{n}$, the divided difference operator is defined as follows

$$
\partial_{p_{i} p_{i+1}}(f)=\frac{f\left(p_{1}, \cdots, p_{i}, p_{i+1}, \cdots p_{n}\right)-f\left(p_{1}, \cdots p_{i-1}, p_{i+1,} p_{i}, p_{i+2} \cdots p_{n}\right)}{p_{i}-p_{i+1}}
$$

Definition 3 The symmetrizing operator $\delta_{e_{1} e_{2}}^{k}$ is defined by

$$
\delta_{p_{1} p_{2}}^{k}\left(g\left(p_{1}\right)\right)=\frac{p_{1}^{k} g\left(p_{1}\right)-p_{2}^{k} g\left(p_{2}\right)}{p_{1}-p_{2}} \text { for all } k \in \mathbb{N}
$$

Proposition $1[7]$ Let $P=\left\{p_{1}, p_{2}\right\}$ an alphabet, we define the operator $\delta_{p_{1} p_{2}}^{k}$ as follows

$$
\delta_{p_{1} p_{2}}^{k} g\left(p_{1}\right)=S_{k-1}\left(p_{1}+p_{2}\right) g\left(p_{1}\right)+p_{2}^{k} \partial_{p_{1} p_{2}} g\left(p_{1}\right), \text { for all } k \in \mathbb{N}
$$

Proposition 2 [1] The relations

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
F_{k,-n} & =(-1)^{n+1} F_{k, n} \\
\text { 2) } J_{k,-n} & =(-1)^{n+1} J_{k, n}
\end{aligned}, ~={ }^{2}
\end{aligned}
$$

hold for all $n \geq 0$.

## 2. Theorem and Proof

In our main result, we will combine all these results in a unified way such that they can be considered as a special case of the following Theorem.

Theorem 1 Given two alphabets $P=\left\{p_{1}, p_{2}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, we have

$$
\begin{equation*}
\underset{n=0}{\infty} S_{n}(B) \partial_{p_{1} p_{2}}\left(p_{1}^{n+1}\right) t^{n}=\frac{S_{0}(-B)-p_{1} p_{2} S_{2}(-B) t^{2}-p_{1} p_{2} S_{3}(-B) S_{1}(P) t^{3}}{\left(\sum_{n=0}^{\infty} S_{n}(-B) p_{1}^{n} t^{n}\right)\left(\sum_{n=0}^{\infty} S_{n}(-B) p_{2}^{n} t^{n}\right)} \tag{3}
\end{equation*}
$$

with $S_{0}(-B)=1, S_{2}(-B)=b_{1} b_{2}+b_{1} b_{3}+b_{2} b_{3}, S_{3}(-B)=b_{1} b_{2} b_{3}$.
Proof. Let $\sum_{n=0}^{\infty} S_{n}(B) t^{n}$ and $\sum_{n=0}^{\infty} S_{n}(-B) t^{n}$ be two sequences such that $\sum_{n=0}^{\infty} S_{n}(B) t^{n}=\frac{1}{\sum_{n=0}^{\infty} S_{n}(-B) t^{n}}$. On one hand, since $g\left(p_{1}\right)=\sum_{n=0}^{\infty} S_{n}(B) p_{1}^{n} t^{n}$ and $g\left(p_{2}\right)=$ $\sum_{n=0}^{\infty} S_{n}(B) p_{2}^{n} t^{n}$, we have

$$
\begin{aligned}
\delta_{p_{1} p_{2}} g\left(p_{1}\right) & =\delta_{p_{1} p_{2}}\left(\sum_{n=0}^{\infty} S_{n}(B) p_{1}^{n} t^{n}\right) \\
& =\frac{p_{1} \sum_{n=0}^{\infty} S_{n}(B) p_{1}^{n} t^{n}-p_{2} \sum_{n=0}^{\infty} S_{n}(B) p_{2}^{n} t^{n}}{p_{1}-p_{2}} \\
& =\sum_{n=0}^{\infty} S_{n}(B)\left(\frac{p_{1}^{n+1}-p_{2}^{n+1}}{p_{1}-p_{2}}\right) t^{n} \\
& =\sum_{n=0}^{\infty} S_{n}(B) \partial_{p_{1} p_{2}}\left(p_{1}^{n+1}\right) t^{n}
\end{aligned}
$$

which is the right-hand side of (3). On the other part, since

$$
g\left(p_{1}\right)=\frac{1}{\sum_{n=0}^{\infty} S_{n}(-B) p_{1}^{n} t^{n}}
$$

we have

$$
\begin{aligned}
\delta_{p_{1} p_{2}} g\left(p_{1}\right) & =\frac{p_{1} \prod_{b \in B}\left(1-b p_{2}\right) t-p_{2} \prod_{b \in B}\left(1-b p_{1} t\right)}{\left(p_{1}-p_{2}\right)\left(\sum_{n=0}^{\infty} S_{n}(-B) p_{1}^{n} t^{n}\right)\left(\sum_{n=0}^{\infty} S_{n}(-B) p_{2}^{n} t^{n}\right)} . \\
\text { Using the fact that } & : \sum_{n=0}^{\infty} S_{n}(-B) p_{1}^{n} t^{n}=\prod_{b \in B}\left(1-b p_{1} t\right), \text { then } \\
\delta_{p_{1} p_{2}} g\left(p_{1}\right) & =\frac{\sum_{n=0}^{\infty} S_{n}(-B) \frac{p_{1} p_{2}^{n}-p_{2} p_{1}^{n}}{p_{1}-p_{2}} t^{n}}{\left(\sum_{n=0}^{\infty} S_{n}(-B) p_{1}^{n} t^{n}\right)\left(\sum_{n=0}^{\infty} S_{n}(-B) p_{2}^{n} t^{n}\right)} \\
& =\frac{S_{0}(-B)-p_{1} p_{2} S_{2}(-B) t^{2}-p_{1} p_{2} S_{3}(-B) S_{1}(P) t^{3}}{\left(\sum_{n=0}^{\infty} S_{n}(-B) p_{1}^{n} t^{n}\right)\left(\sum_{n=0}^{\infty} S_{n}(-B) p_{2}^{n} t^{n}\right)} .
\end{aligned}
$$

This completes the proof.

## 3. On the Generating Functions of Some Numbers and Polynomials

We now derive new generating functions of the products of some well-known numbers and polynomials. Indeed, we consider Theorem 1 in order to derive $k$-Fibonacci and $k$-Jacobsthal numbers at negative indices and Tchebychev polynomials of first and second kind.

Case 1: Replacing $p_{2}$ by $\left(-p_{2}\right)$ and assuming that $p_{1} p_{2}=1, p_{1}-p_{2}=k$ in Theorem 1, we have the following theorem

Theorem 2 [4] We have the following a generating function of both $k$-Fibonacci numbers at negative indices and symmetric functions in several variables as

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) F_{k,-n} t^{n}=\frac{k S_{3}(-B) t^{3}-S_{2}(-B) t^{2}-1}{3_{i=1}^{3}\left(1+k b_{i} t-b_{i}^{2} t^{2}\right)} \tag{4}
\end{equation*}
$$

Corollary 2 If $k=1$ in the relationship (4) we have [4]

$$
\sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) F_{-n} t^{n}=\frac{b_{1} b_{2} b_{3} t^{3}-\left(b_{1} b_{2}+b_{1} b_{3}+b_{2} b_{3}\right) t^{2}-1}{\prod_{i=1}^{3}\left(1+b_{i} t-b_{i}^{2} t^{2}\right)}
$$

which representing a new generating function of Fibonacci numbers at negative indices and symmetric functions in several variable.

Setting $b_{3}=0$ and replacing $b_{2}$ by $\left(-b_{2}\right)$ in (4), and assuming $b_{1}-b_{2}=k$; $b_{1} b_{2}=1$; we deduce the following theorems.

Theorem 3 [4] For $n \in \mathbb{N}$, the generating function of the product of $k$-Fibonacci numbers and $k$-Fibonacci numbers at negative indices is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{k, n} F_{k,-n} t^{n}=\frac{t^{2}-1}{1+k^{2} t-2\left(k^{2}+1\right) t^{2}+k^{2} t^{3}+t^{4}} \tag{5}
\end{equation*}
$$

Corollary 3 If $k=1$ in the relationship (5) we have [4]

$$
\sum_{n=0}^{\infty} F_{n} F_{-n} t^{n}=\frac{t^{2}-1}{1+t-4 t^{2}+t^{3}+t^{4}}
$$

which representing a new generating function of the product of Fibonacci numbers and Fibonacci numbers at negative indices.

Theorem $4 \quad[1]$ For $n \in \mathbb{N}$, the new generating function of the product of $k$-Fibonacci numbers at negative indices is given by

$$
\sum_{n=0}^{\infty} F_{k,-n}^{2} t^{n}=\frac{1-t^{2}}{1-k^{2} t-2\left(k^{2}+1\right) t^{2}-k^{2} t^{3}+t^{4}}
$$

Case 2: Replacing $p_{2}$ by $\left(-p_{2}\right)$ and assuming that $p_{1} p_{2}=2, p_{1}-p_{2}=k$ in Theorem 1, we have the following theorem

Theorem 5 We have the following a new generating function of both $k$ Jacobsthal numbers at negative indices and symmetric functions in several variables as

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{n-1}\left(b_{1}+b_{2}+b_{3}\right) J_{k,-n} t^{n}=\frac{2 k S_{3}(-B) t^{4}-2 S_{2}(-B) t^{3}-t}{3} 3 \tag{6}
\end{equation*}
$$

Corollary 4 If $k=1$ in the relationship (6) we get

$$
\sum_{n=0}^{\infty} S_{n-1}\left(b_{1}+b_{2}+b_{3}\right) J_{-n} t^{n}=\frac{2 S_{3}(-B) t^{4}-2 S_{2}(-B) t^{3}-t}{{\underset{i=1}{3}}_{3}\left(1+b_{i} t-2 b_{i}^{2} t^{2}\right)}
$$

which representing a new generating function of the product of Jacobsthal numbers at negative indices and symmetric functions in several variables.

Setting $b_{3}=0$ and replacing $b_{2}$ by $\left(-b_{2}\right)$ in (6), and assuming $b_{1}-b_{2}=k$; $b_{1} b_{2}=2$; we deduce the following theorem.

Theorem 6 For $n \in \mathbb{N}$, the new generating function of the product of $k$ Jacobsthal numbers and $k$-Jacobsthal numbers at negative indices is given

$$
\begin{equation*}
\sum_{n=0}^{\infty} J_{k, n} J_{k,-n} t^{n}=\frac{4 t^{3}-t}{1+k^{2} t-4\left(k^{2}+1\right) t^{2}+4 k t^{3}+16 t^{4}} \tag{7}
\end{equation*}
$$

Corollary 5 In the special case $k=1$ identity (7) gives

$$
\sum_{n=0}^{\infty} J_{n} J_{-n} t^{n}=\frac{4 t^{3}-t}{1+t-8 t^{2}+4 t^{3}+16 t^{4}}
$$

which representing a new generating function of the product of Jacobsthal numbers and Jacobsthal numbers at negative indices.

Theorem 7 For $n \in \mathbb{N}$, the new generating function of the product of $k$ Jacobsthal numbers at negative indices is given by

$$
\sum_{n=0}^{\infty} J_{k,-n}^{2} t^{n}=\frac{4 t^{3}-t}{1-k^{2} t-4\left(k^{2}+1\right) t^{2}-4 k t^{3}+16 t^{4}}
$$

Case 3: Replacing $p_{1}$ by $2 p_{1}$ and $p_{2}$ by $\left(-2 p_{2}\right)$, and assuming that $4 p_{1} p_{2}=-1$ in Theorem 1, we have the following a new generating function of the product
of Chebychev polynomials of second kind and the symmetric functions in several variables, as follows for $y=p_{1}-p_{2}$,

$$
\sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) U_{n}(-y) t^{n}=\frac{1-S_{2}(-B) t^{2}-2 y S_{3}(-B) t^{3}}{3_{i=1}^{3}\left(1+2 b_{i} y t+b_{i}^{2} t^{2}\right)}
$$

Theorem 8 The new generating function of the product of Chebychev polynomials of first kind and the symmetric functions in several variables as
$\sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) T_{n}(-y) t^{n}=\frac{1+y S_{1}(-B) t+S_{2}(-B)\left(2 y^{2}-1\right) t^{2}+S_{3}(-B)\left(4 y^{3}+y\right) t^{3}}{3}$.
Proof. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) T_{n}(-y) t^{n}= & \sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right)\left(S_{n}\left(\left[2 p_{1}\right]+\left[-2 p_{2}\right]\right)\right. \\
& -y S_{n-1}\left(\left(\left[2 p_{1}\right]+\left[-2 p_{2}\right]\right)(-t)^{n}\right. \\
= & \sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) S_{n}\left(\left(\left[2 p_{1}\right]+\left[-2 p_{2}\right]\right)(-t)^{n}\right. \\
& -y \sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) S_{n-1}\left(\left(\left[2 p_{1}\right]+\left[-2 p_{2}\right]\right)(-t)^{n}\right. \\
= & \sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) U_{n}(-y) t^{n} \\
& -\frac{y}{2\left(p_{1}+p_{2}\right)} \sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right)\left(\left[2 p_{1}\right]^{n}-\left[-2 p_{2}\right]^{n}\right)(-t)^{n}
\end{aligned}
$$

Since

$$
\sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right)(-t)^{n}=\frac{1}{b \in B(1+b t)}
$$

Therfore

$$
\begin{aligned}
\sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) T_{n}(-y) t^{n} & =\sum_{n=0}^{\infty} S_{n}\left(b_{1}+b_{2}+b_{3}\right) U_{n}(-y) t^{n}-\frac{y}{2\left(p_{1}+p_{2}\right)}\left[\frac{1}{b \in B\left(1-2 p_{1} b t\right)}-\frac{1}{b \in B\left(1+2 p_{2} b t\right)}\right. \\
& =\frac{1+y S_{1}(-B) t+S_{2}(-B)\left(2 y^{2}-1\right) t^{2}+S_{3}(-B)\left(4 y^{3}+y\right) t^{3}}{3}
\end{aligned}
$$

This completes the proof.

- Let $b_{3}=0$, by making the following restrictions: $p_{1}-p_{2}=k, p_{1} p_{2}=1$, $4 b_{1} b_{2}=-1$, and by replacing $\left(b_{1}-b_{2}\right)$ by $2\left(b_{1}-b_{2}\right)$ in (3.1), we get a new generating function, involving the product of $k$-Fibonacci numbers at negative indices with Chebychev polynomial of second kind as follows

$$
\sum_{n=0}^{\infty} S_{n}\left(2 b_{1}+\left[-2 b_{2}\right]\right) S_{n}\left(p_{1}+\left[-p_{2}\right]\right) t^{n}=\frac{1+t^{2}}{1+2 k\left(b_{1}-b_{2}\right) t-\left(4\left(b_{1}-b_{2}\right)^{2}+\left(k^{2}+2\right)\right) t^{2}+2 k\left(b_{1}-b_{2}\right) t^{3}+t^{4}}
$$

Thus we conclude with the following theorem.

Theorem 9 We have the following a new generating function of the product of $k$-Fibonacci numbers at negative indicesand Chebychev polynomials of second kind as

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{k,-n} U_{n}\left(b_{1}-b_{2}\right) t^{n}=\frac{1+t^{2}}{1-2 k\left(b_{1}-b_{2}\right) t-\left(4\left(b_{1}-b_{2}\right)^{2}-\left(k^{2}+2\right)\right) t^{2}+2 k\left(b_{1}-b_{2}\right) t^{3}+t^{4}} \tag{8}
\end{equation*}
$$

Corollary 6 If $k=1$ in the relationship (8) we get

$$
\sum_{n=0}^{\infty} F_{-n} U_{n}\left(b_{1}-b_{2}\right) t^{n}=\frac{1+t^{2}}{1-2\left(b_{1}-b_{2}\right) t+\left(3-4\left(b_{1}-b_{2}\right)^{2}\right) t^{2}+2\left(b_{1}-b_{2}\right) t^{3}+t^{4}}
$$

which represents a new generating function, involving the product of Fibonacci numbers at negative indices with Chebychev polynomial of second kind.

Theorem 10 For $n \in \mathbb{N}$, The new generating function of the product of $k$-Fibonacci numbers at negative indices and Chebychev polynomials of first kind as

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{k,-n} T_{n}\left(b_{1}-b_{2}\right) t^{n}=-\frac{1+k\left(b_{1}-b_{2}\right) t+\left(1-2\left(b_{1}-b_{2}\right)^{2}\right) t^{2}}{1+2 k\left(b_{1}-b_{2}\right) t-\left(4\left(b_{1}-b_{2}\right)^{2}-\left(k^{2}+2\right)\right) t^{2}-2 k\left(b_{1}-b_{2}\right) t^{3}+t^{4}} \tag{9}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} F_{k, n} T_{n}\left(b_{1}-b_{2}\right)(-t)^{n} & =\sum_{n=0}^{\infty} F_{k, n}\left(S_{n}\left(2 b_{1}+\left[-2 b_{2}\right]\right)-\left(b_{1}-b_{2}\right) S_{n-1}\left(2 b_{1}+\left[-2 b_{2}\right]\right)\right)(-t)^{n} \\
& =\sum_{n=0}^{\infty} F_{k, n} S_{n}\left(2 b_{1}+\left[-2 b_{2}\right]\right)(-t)^{n}-\left(b_{1}-b_{2}\right) \sum_{n=0}^{\infty} F_{k, n} S_{n-1}\left(2 b_{1}+\left[-2 b_{2}\right]\right)(-t)^{n} \\
& =\sum_{n=0}^{\infty} F_{k, n} U_{n}\left(b_{1}-b_{2}\right)(-t)^{n}-\frac{\left(b_{1}-b_{2}\right)}{2\left(b_{1}+b_{2}\right)} \sum_{n=0}^{\infty} F_{k, n}\left(\left(2 b_{1}\right)^{n}-\left(-2 b_{2}\right)^{n}\right)(-t)^{n}
\end{aligned}
$$

Since

$$
\sum_{n=0}^{\infty} F_{k,-n} t^{n}=\frac{1}{t^{2}-k t+1}, \quad(\text { see }[1])
$$

Therfore

$$
\sum_{n=0}^{\infty} F_{k,-n} T_{n}\left(b_{1}-b_{2}\right) t^{n}=-\frac{1+k\left(b_{1}-b_{2}\right) t+\left(1-2\left(b_{1}-b_{2}\right)^{2}\right) t^{2}}{1+2 k\left(b_{1}-b_{2}\right) t-\left(4\left(b_{1}-b_{2}\right)^{2}-\left(k^{2}+2\right)\right) t^{2}-2 k\left(b_{1}-b_{2}\right) t^{3}+t^{4}}
$$

This completes the proof.
Corollary 7 In the special case $k=1$ identity (9) gives

$$
\sum_{n=0}^{\infty} F_{-n} T_{n}\left(b_{1}-b_{2}\right) t^{n}=\frac{1+\left(b_{1}-b_{2}\right) t+\left(1-2\left(b_{1}-b_{2}\right)^{2}\right) t^{2}}{1+2\left(b_{1}-b_{2}\right) t+\left(3-4\left(b_{1}-b_{2}\right)^{2}\right) t^{2}-2\left(b_{1}-b_{2}\right) t^{3}+t^{4}}
$$

which represents a new generating function, involving the product of Fibonacci numbers at negative indices with Chebychev polynomial of first kind.

## Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

## References

[1] A. Boussayoud, M. Kerada, N. Harrouche, On the k-Lucas numbers and Lucas Polynomials, Turkish Journal of Analysis and Number.5(3) 121-125, (2017).
[2] A. Boussayoud, A. Abderrezzak, On Some Identities and Generating Functions for Hadamard Product, Electron. J. Math. Analysis Appl.5(2), 89-97, (2017).
[3] A. Boussayoud, M. Bolyer, M. Kerada, On Some Identities and Symmetric Functions for lucas and pell numbers, Electron. J. Math. Analysis Appl. 5(1), 202-207, (2017).
[4] A. Boussayoud, Symmetric functions for k-Pell Numbers at negative indices, Tamap Journal of Mathematics and Statistics. 1ID20, 1-8, (2017).
[5] A. Boussayoud, On some identities and generating functions for Pell-Lucas numbers, Online.J. Anal. Comb. 12 1-10, (2017).
[6] A. Boussayoud, N. Harrouche, Complete Symmetric Functions and $k$ - Fibonacci Numbers, Commun. Appl. Anal. 20, 457-467, (2016).
[7] A. Boussayoud, M. Boulyer, M. Kerada, A simple and accurate method for determination of some generalized sequence of numbers, Int. J. Pure Appl. Math.108, 503-511, (2016).
[8] A. Boussayoud, A. Abderrezzak, M. Kerada, Some applications of symmetric functions, Integers. 15A\#48, 1-7, 2015.
[9] A. Boussayoud, M. Kerada, R. Sahali, Symmetrizing Operations on Some Orthogonal Polynomials, Int. Electron. J. Pure Appl. Math. 9, 191-199, 2015
[10] C. Bolat, H Kose, On the Properties of k-Fibonacci Numbers, Int. J. Contemp. Math. Sciences. 5, 1097-1105, (2010).
[11] D. Jhala, G.P.S. Rathore, K Sisodiya, Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes, Turkish Journal of Analysis and Number.2(4) 119-124, (2014).
[12] A.F Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci $Q$. 3, 161-176, (1965).
[13] S. Falcon, A. Plaza, On the Fibonacci $k$ - numbers, Chaos, Sulutions Ef Fractals. 32, 16151624, (2007).
[14] S. Falcon, A. Plaza, The $k$ - Fibonacci sequence and the Pascal 2-triangle, Chaos, Sulutions § Fractals. 33, 38-49, (2008).

Ali Boussayoud, LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

E-mail address: aboussayoud@yahoo.fr
Souhila Boughaba, Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

E-mail address: souhilaboughaba@gmail.com
Mohamed Kerada, LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

E-mail address: mkerada@yahoo.fr


[^0]:    2000 Mathematics Subject Classification. 05E05; 11B39.
    Key words and phrases. $k$-Fibonacci and $k$ - Jacobsthal numbers at negative indices; Generating functions; Symmetric functions.

    Submitted Dec. 10, 2017.

