SOLVABILITY OF A COUPLED SYSTEM OF URYSOHN-STIELTJES INTEGRAL EQUATIONS

M. M. A. AL-FADEL

Abstract. In this paper, we study the existence of continuous solutions \(x, y \in C(I) \) of the coupled system of Urysohn-Stieltjes integral equations

\[
\begin{align*}
 x(t) &= p_1(t) + \lambda_1 \int_0^1 f_1(t, s, x(s), y(s)) \, ds \, g_1(t, s), \quad t \in I \\
 y(t) &= p_2(t) + \lambda_2 \int_0^1 f_2(t, s, x(s), y(s)) \, ds \, g_2(t, s), \quad t \in I.
\end{align*}
\]

1. Introduction and Preliminaries

The Volterra-Stieltjes integral equations and Urysohn-Stieltjes integral equations have been studied by J. Banaś and some other authors (see [1]-[9] and [14]-[16]). Consider the Urysohn-Stieltjes integral equation

\[
 x(t) = p(t) + \int_0^1 f(t, s, x(s)) \, ds \, g(t, s), \quad t \in [0, 1].
\]

J. Banaś (see [3]) proved the existence of at least one solution \(x \in C(I) \) to the equation (1), where \(g : I \times I \to R \) is nondecreasing in the second argument on \(I \) and the symbol \(ds \) indicates the integration with respect to \(s \).

For the definition, background and properties of the Stieltjes integral we refer to Banaś [1]. However, the coupled system of integral equations have been studied, recently, by some authors (see [11]-[12],[13]).

In this paper, we generalize this result for the coupled system of Urysohn-Stieltjes
The functions f_i of the coupled system of nonlinear integral equations of Urysohn-Stieltjes type (2) are continuous on I, $x, y, s, t, u \in R^2$.

\[T(x,y)(t) = (T_1 x(t), T_2 y(t)) \]

where

\[T_1 x(t) = p_1(t) + \lambda_1 \int_0^1 f_1(t,s,x(s)) \, d_s g_1(t,s), \quad t \in I \]

\[T_2 y(t) = p_2(t) + \lambda_2 \int_0^1 f_2(t,s,x(s)) \, d_s g_2(t,s), \quad t \in I \]

in the Banach space $C(I)$.

2. Existence of solutions

In this section we study the existence of continuous solutions $x, y \in C(I)$ for the coupled system of nonlinear integral equations of Urysohn-Stieltjes type (2). Now we formulate assumptions under which coupled system (2) has at least one classical solution in $C(I)$.

\begin{enumerate}
\item $p_i \in C(I), \quad \lambda_i \in R, \quad i = 1, 2.$
\item $f_i : I \times I \times R^2 \to R, \quad (i = 1, 2)$ is continuous on I, $\forall x, y \in R^2, \quad t \in I$ such that there exist continuous functions $k_i : I \times I \to I$ and two positive constants b_i such that:

\[| f_i(t,s,x,y) | \leq k_i(t,s) + b_i \max \{ |x|, |y| \} \]

for $t, s \in I$ and $x, y \in R$.

\item $g_i : I \times I \to R, \quad i = 1, 2$ and for all $t_1, t_2 \in I$ with $t_1 < t_2$, the functions $s \to g_i(t_2, s) - g_i(t_1, s)$ is nondecreasing on I.

\item $g_i(0,s) = 0$ for any $s \in I, \quad i = 1, 2$.

\item The functions $t \to g_i(t,t)$ and $t \to g_i(t,0)$ are continuous on I, $i = 1, 2$.

\end{enumerate}

Put $\mu = \sup_t | g_i(t,1) | + \sup_t | g_i(t,0) |$ on I.

Now, let X be the Banach space of all ordered pairs (x,y), $x, y \in C(I)$ with the norm

\[\|(x,y)\|_X = \max \{ \|x\|_{C(I)}, \|y\|_{C(I)} \} \]

where

\[\|x\| = \sup_{t \in I} | x(t) |, \quad \|y\| = \sup_{t \in I} | y(t) | . \]

It is clear that $(X, \|(x,y)\|_X)$ is a Banach space.

Theorem 1. Let the assumptions (i)-(v) be satisfied, then the coupled system (2) has at least one classical solution in X.

Proof: Define the operator T by

\[T(x,y)(t) = (T_1 x(t), T_2 y(t)) \]

where

\[T_1 x(t) = p_1(t) + \lambda_1 \int_0^1 f_1(t,s,u(s)) \, d_s g_1(t,s) \]

\[T_2 y(t) = p_2(t) + \lambda_2 \int_0^1 f_2(t,s,u(s)) \, d_s g_2(t,s) \]

and $u = (x, y)$.

For every $u \in X, \quad t \in I, \quad f_i(t,\cdot,u(\cdot)) \quad (i = 1, 2)$ is continuous on I. Observe that
Assumptions (iii) and (iv) imply that the function \(s \to g(t, s) \) is nondecreasing on the interval \(I \), for any fixed \(t \in I \). Indeed, putting \(t_2 = t, t_1 = 0 \) in (iii) and keeping in mind (iv), we obtain the desired conclusion. From this observation, it follows immediately that, for every \(t \in I \), the function \(s \to g(t, s) \) is of bounded variation on \(I \). It follows, \(f_i(t, s, x(s), y(s)) \) are Riemann-Stieltjes integrable on \(I \) with respect to \(s \to g_i(t, s) \). Thus \(T_i \) make sense.

We will prove a few results concerning the continuity and compactness of these operators in the space of continuous functions. We denoted \(K := \max\{k_i(t, s) : t, s \in I, i = 1, 2\} \), and we define the set \(U \) by

\[
U := \{u = (x, y) \in \mathbb{R}^2 : \|(x, y)\|_X \leq r, r = \frac{\|p_i\| + \lambda K \mu}{1 - \lambda b_1 \mu}\}
\]

Also, let us denote

\[
\theta(\epsilon) = \sup\{\|f_1(t_2, s, u) - f_1(t_1, s, u)\|, \|f_2(t_2, s, u) - f_2(t_1, s, u)\| : t_1, t_2 \in I,
\quad |t_2 - t_1| \leq \epsilon, u \in \mathbb{R}^2\}.
\]

The remainder of the proof will be given in four steps.

Step 1: The operator \(T \) transforms from \(X \) into \(X \).
For \(u = (x, y) \in U \), for all \(\epsilon > 0, \delta > 0 \) and for each \(t_1, t_2 \in I \), \(t_1 < t_2 \) such that \(|t_2 - t_1| < \delta \), then

\[
|T_1x(t_2) - T_1x(t_1)| \leq |p_1(t_2) - p_1(t_1)| + |\lambda_1 \int_0^1 f_1(t_2, s, x(s), y(s)) \, ds g_1(t_2, s)|
\]

\[
- |\lambda_1 \int_0^1 f_1(t_1, s, x(s), y(s)) \, ds g_1(t_1, s)| \leq |p_1(t_2) - p_1(t_1)|
\]

\[
+ |\lambda_1 \int_0^1 f_1(t_2, s, x(s), y(s)) \, ds g_1(t_2, s) - \lambda_1 \int_0^1 f_1(t_1, s, x(s), y(s)) \, ds g_1(t_1, s)|
\]

\[
+ |\lambda_1 \int_0^1 f_1(t_1, s, x(s), y(s)) \, ds g_1(t_2, s) - \lambda_1 \int_0^1 f_1(t_1, s, x(s), y(s)) \, ds g_1(t_1, s)|
\]

\[
\leq |p_1(t_2) - p_1(t_1)|
\]

\[
+ |\lambda_1 \int_0^1 [f_1(t_1, s, x(s), y(s)) - f_1(t_1, s, x(s), y(s))] \, ds g_1(t_2, s)|
\]

\[
+ |\lambda_1 \int_0^1 f_1(t_1, s, x(s), y(s)) \, ds (g_1(t_2, s) - g_1(t_1, s))|
\]

\[
\leq |p_1(t_2) - p_1(t_1)|
\]

\[
+ |\lambda_1 \int_0^1 |f_1(t_2, s, x(s), y(s)) - f_1(t_1, s, x(s), y(s))| \, ds (\sqrt{z_0^s g_1(t_2, z)})
\]

\[
+ |\lambda_1 \int_0^1 |f_1(t_1, s, x(s), y(s))| \, ds (\sqrt{z_0^s [g_1(t_2, z) - g_1(t_1, z)]})
\]
As done above we can obtain

\[
T(u(t_2)) - T(u(t_1)) = T(x,y)(t_2) - T(x,y)(t_1)
= (T_1x(t_2), T_2y(t_2)) - (T_1x(t_1), T_2y(t_1))
= (T_1x(t_2) - T_1x(t_1), T_2y(t_2) - T_2y(t_1))
\]

Therefore, \(T \) maps \(X \) into \(X \).

Note that the set of values of \(Tu(t) \) for all \(u \in X \) is an equi-continuous subset of \(X \).

Step 2: The operator \(T \) map \(U \) into \(U \).
for \((x, y) \in U\), we have

\[
|T_1 x(t)| \leq |p_1(t)| + |\lambda_1 \int_0^1 f_1(t, s, x(s), y(s)) \, ds g_1(t, s)| \\
\leq |p_1(t)| + |\lambda_1 \int_0^1 f_1(t, s, x(s), y(s)) \, |ds| \left(\sup_{z=0}^t g_1(t, z) \right) \\
\leq \|p_1\| + \lambda \int_0^1 (k_1(t, s) + b_1(\max\{|x(s)|, |y(s)|\})) \, ds \left(\sup_{z=0}^t g_1(t, z) \right) \\
\leq \|p_1\| + \lambda \int_0^1 (k_1(t, s) + rb_1) \, ds g_1(t, s) \\
\leq \|p_1\| + \lambda (K + rb_1) \int_0^1 \, ds g_1(t, s) \\
\leq \|p_1\| + \lambda (K + rb_1)(g_1(t, 1) - g_1(t, 0)) \\
\leq \|p_1\| + \lambda (K + rb_1)\sup_t |g_1(t, 1)| + \sup_t |g_1(t, 0)| \\
\leq \|p_1\| + \lambda (K + rb_1)\mu
\]

Hence

\[
\|T_1 x\| \leq \|p_1\| + \lambda (K + rb_1)\mu.
\]

By a similar way can deduce that

\[
\|T_2 y\| \leq \|p_2\| + \lambda (K + rb_2)\mu.
\]

Therefore,

\[
\|Tu\| = \|T(x, y)\| = \|T_1 x, T_2 y\| = \max\{|\|T_1 x\|, \|T_2 y\|\} \leq r.
\]

Thus for every \(u = (x, y) \in U\), we have \(Tu \in U\) and hence \(TU \subset U\), (i.e \(T : U \rightarrow U\)). This means that the functions of \(TU\) are uniformly bounded on \(I\).

Step 3: The operator \(T\) is compact.

It is clear that the set \(U\) is nonempty, bounded, closed and convex, then according to Tychonoff’s theorem in topological products and Arzela-Ascoli theorem the compactness criteria \(T\) is compact.

Step 4: The operator \(T\) is continuous.

Firstly, we prove that \(T_1\) is continuous. Let \(\epsilon^* > 0\), the continuity of \(f_i\) yields \(\exists \delta = \delta(\epsilon^*)\) such that \(|f_i(t, s, x, y) - f_i(t, s, u, y)| < \epsilon^*\) whenever \(\|x - u\| \leq \delta\), thus if \(\|x - u\| \leq \delta\), we arrive at:

\[
|T_1 x(t) - T_1 u(t)| \leq |\lambda_1 \int_0^1 f_1(t, s, x(s), y(s)) \, ds g_1(t, s)| \\
- |\lambda_1 \int_0^1 f_1(t, s, u(s), y(s)) \, ds g_1(t, s)|
\]
\[\begin{align*}
&\leq |\lambda_1| \int_0^1 \Big| f_1(t,s,x(s),y(s)) - f_1(t,s,u(s),y(s)) \Big| \, ds \left(\sqrt{ \int_0^1 g_1(t,z) \, dz } \right) \\
&\leq \epsilon^* \lambda \int_0^1 ds \left(\sqrt{ \int_0^1 g_1(t,z) \, dz } \right) \\
&\leq \epsilon^* \lambda \int_0^1 ds g_1(t,s) \\
&\leq \epsilon^* \lambda \left[g_1(t,1) - g_1(t,0) \right] \\
&\leq \epsilon^* \lambda \left[\sup_{t \in I} |g_1(t,1)| + \sup_{t \in I} |g_1(t,0)| \right] \\
&\leq \epsilon^* \lambda \left[\sup_{t \in I} |g_1(t,1)| + \sup_{t \in I} |g_1(t,0)| \right] \leq \epsilon
\end{align*} \]

where \(\epsilon := \epsilon^* \lambda \mu \).

Therefore,
\[|T_1 x(t) - T_1 u(t)| \leq \epsilon. \]

This means that the operator \(T_1 \) is continuous.

By a similar way as done above we can prove that for any \(y, v \in C[0,T] \) and \(\| y - v \| < \delta \), we have
\[|T_2 y(t) - T_2 v(t)| \leq \epsilon. \]

Hence \(T_2 \) is continuous operator.

The operators \(T_i \) \((i = 1, 2)\) is continuous operator it imply that \(T \) is continuous operator.

Since all conditions of Schauder fixed point theorem are satisfied, then \(T \) has at least one fixed point \(u = (x, y) \in U \), which completes the proof. \(\blacksquare \)

In what follows, we provide some examples illustrating the above obtained results.

Example: Consider the functions \(g_i : I \times I \rightarrow R \) defined by the formula
\[g_1(t,s) = \begin{cases}
 t \ln \frac{t+s}{s}, & \text{for } t \in (0,1], \ s \in I, \\
 0, & \text{for } t = 0, \ s \in I.
\end{cases} \]
\[g_2(t,s) = t(t+s-1), \ t \in I. \]

It can be easily seen that the functions \(g_1(t,s) \) and \(g_2(t,s) \) satisfies assumptions (iii)-(v) given in Theorem 1, and \(g_1(t,s) \) is function of bounded variation but it is not continuous on \(I \). In this case, the coupled system of Urysohn-Stieltjes integral equations (2) has the form
\[x(t) = p_1(t) + \lambda_1 \int_0^t \frac{t}{t+s} f_1(t,s,x(s),y(s)) \, ds, \ t \in I \]
\[y(t) = p_2(t) + \lambda_2 \int_0^t t f_1(t,s,x(s),y(s)) \, ds, \ t \in I. \]

(3)

Also, consider the functions \(f_i : I \times I \times R^2 \rightarrow R \) defined by the formula
\[f_1(t,s,x,y) = t + s + x + y, \]
\[f_2(t,s,x,y) = t + s + x^2 - y^2. \]
Now, it can be easily seen that the functions f_1 and f_2 satisfies assumptions (ii) given in Theorem 1:

$$|f_1(t, s, x, y)| \leq |t + s + x + y|$$
$$\leq |t + s| + |x| + |y|$$
$$\leq 2T + 2 \max\{|x|, |y|\}$$

And

$$|f_2(t, s, x, y)| \leq |t + s + x^2 - y^2|$$
$$\leq |t + s| + |x^2 - y^2|$$
$$\leq 2T + |(x - y)(x + y)|$$
$$\leq 2T + 2 \max\{|x|, |y|\}$$

Hence, $k_i(t, s) = 2T$, and $b_i = 2$
Therefore, the functions f_i satisfies the assumption

$$|f_i(t, s, x, y)| \leq k_i(t, s) + b_i(\max\{|x|, |y|\}).$$

Therefore, the coupled system (3) has at least one solution $x, y \in C[0,1]$.

Acknowledgment
The author is grateful to the referee for a number of helpful suggestions to improve the paper.
Also grateful to Prof. H. A. H. Salem for his helps and comments.

References

M. M. A. AL-FADEL

Faculty of Science, Omar Al-Mukhtar University, Libya

E-mail address: najemeoe1234@gmail.com