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GLOBAL ATTRACTING SET AND STABILITY FOR STOCHASTIC

INTEGRO-DIFFERENTIAL EQUATIONS

DIEM DANG HUAN

Abstract. This article is concerned with existence, global attracting set and stability of mild

solutions for a class of neutral stochastic integro-differential equations. The partial differential

equations (PDEs) are driven by a fractional Brownian motion with Hurst index H ∈ ( 1
2
, 1) in

Hilbert spaces. Existence theorems are proved via Banach fixed point theorem and resolvent

operator theory for integro-differential equations. The global attracting set is obtained by

integral inequalities. In addition, sufficient conditions for exponentially stability in mean square

of the mild solution are presented.

1. Introduction

Fractional Brownian motion (fBm) was originally defined and studied by Kolmogorov [25]

within a Hilbert space framework and has become a very important tool in modern probability

and statistical modeling. FBm is a family of centered Gaussian processes with continuous sample

paths indexed by the Hurst parameter H ∈ (0, 1). Often fBm is equivalently presented as an

integral of a deterministic kernel with respect to an ordinary Brownian motion. In fact, there

exist at least two such kernels: Mandelbrot-Van Ness kernel with infinite support and Molchan-

Golosov kernel with compact support. FBm is a self-similar process with stationary increments

and has a long-memory when H > 1
2 . For H < 1

2 the increments are negatively correlated and for

H = 1
2 the increments are independent i.e., the ordinary Brownian motion case. These significant

properties make fBm a natural candidate as a model for noise in a wide variety of physical

phenomena, such as mathematical finance, communication networks (see [9, 34] for example).

Despite of all these properties, when H ̸= 1
2 fBm is neither semi-martingale nor a Markov process.

Hence the traditional tools of Itô stochastic calculus can not be applied effectively in studying

solution of equations driven by fBm. Therefore, it is crucial to study stochastic analysis with

respect to fBm and related problems. The following is a good set of relevant references: Biagini
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et al. [1] as well as Mishura [32] and the references [3, 10]. On the other hand, there has been

intense interest in neutral stochastic partial differential equations and integro-differential equations

with resolvent operators. Such interest has created an active research area with applications in

physics, chemistry, biology, medicine, economics, etc. ([17, 19, 20, 21, 22, 28] for example).

Moreover, the existence, global attracting set and stability of solutions for neutral stochastic partial

functional differential equation in infinite dimensional spaces with delays have been extensively

studied ([6, 23, 24, 29, 30, 31]). However, results on stochastic PDEs and integro-differential

equations with delay driven by fBm are scarce. Ferrante and Rovira [11] established existence and

uniqueness of solutions to delayed stochastic differential equations with fBm for H > 1
2 . Caraballo

el al. [5] studied existence and exponential behavior of solutions to stochastic delay evolution

equations with an fBm. Boufoussi and Hajji [2] presented existence, uniqueness and stability

analysis of solutions for neutral stochastic functional differential equations driven by a fBm in a

Hilbert space. More recently, Caraballo and Diop [4] investigated the existence and uniqueness

of solutions to neutral stochastic delay partial functional integro-differential equations driven by

an fBm with Hurst index H > 1
2 . Their results extended similar ones in [2] to neutral integro-

differential type equation. Our objective is to prove similar theorems regarding existence, global

attracting set and stability of mild solutions for a class of neutral stochastic integro-differential

equations under fBm in Hilbert space:


d[x(t) + f(t, x(t− r(t)))]

= A[x(t) +
∫ t
0
K(t− s)x(s)ds]dt+ g(t, x(t− ρ(t)))dt+ h(t)dBH(t)

t ∈ J := [0, T ]

x0(t) = φ(t) ∈ CF0
0 ([−τ, 0],L2(Ω,H)), −τ ≤ t ≤ 0, τ > 0, a.s.,

(1.1)

where the state x(·) takes values in a separable real Hilbert space H and A : D(A) ⊂ H → H is the

infinitesimal generator of an resolvent family {R(t)}t≥0. We note that K(t) : D(K(t)) ⊂ H → H
is a bounded linear operator; BH is a fractional Brownian motion in a separable real Hilbert space

K; and r, ρ : J → [0, τ ] are continuous functions. The mappings f, g : J ×H → H, h : J → L0
2 are

appropriate functions to be specified later. We study existence, global attracting set and stability

of mild solution of (1.1) via fixed point theorem and theory of analytic resolvent operators for

integro-differential equations. We primarily rely on techniques using strongly continuous family

of operators {R(t), t ≥ 0} defined on the Hilbert space H. The resolvent operator is similar to

the semi-group operator for abstract differential equations in Banach spaces. Since the resolvent

operator does not satisfy all semi-group properties (see [7, 27]), we attempt to apply the theory

of analytic resolvent operators proposed by Grimmer [14], Grimmer and Pritchard [15].

In Section 2, we recall briefly the notations, concepts and basic results about the fBm and de-

terministic integro-differential equations. In Section 3, we present the main results on existence,

global attracting set and stability of mild solutions for (1.1).
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2. Preliminaries

This section presents some basic concepts, notations, relevant definitions and lemmas. For more

details, see [1, 14, 15, 32, 33].

Let (H, ∥ · ∥H, ⟨·, ·⟩) and (K, ∥ · ∥K, ⟨·, ·⟩) be two real separable Hilbert spaces, with their vector

norms and inner products respectively. We denote by L(K;H) the set of all linear bounded

operators from K into H under the usual operator norm ∥·∥. Let (Ω,F , {Ft}t∈J ,P) be a complete

filtered probability space satisfying the usual condition (i.e., it is continuous from the right and

F0 contains all P-null sets). Denote {BH(t)}t∈J an fBm to the filtration {Ft}t∈J .

Definition 2.1. An one-dimensional fBm with Hurst parameter H ∈ (0, 1) is a centered Gaussian

process βH = {βH(t)}t∈J with covariance function

R(t, s) = E[βH(t)βH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H).

We note that β
1
2 is a standard Brownian motion. It is known that βH(t) with H ∈ ( 12 , 1) has

the following Volterra representation:

βH(t) =

∫ t

0

KH(t, s)dβ(s), (2.1)

where β = {β(t)}t∈J is a Wiener process and the Volterra kernel KH(t, s) is given by

KH(t, s) = cHs
1
2−H

∫ t

0

(u− s)H− 3
2uH− 1

2 du

where

cH =

√
H(2H − 1)

B(2− 2H,H − 1
2 )

with B(·, ·) being the Beta function for t > s. We put KH(t, s) = 0 if t ≤ s.

For the deterministic function φ ∈ L2(J), the fractional Wiener integral of φ with respect to

βH is defined by ∫
J

φ(s)dβH(s) =

∫
J

K∗
Hφ(s)dβ(s),

where

K∗
Hφ(s) =

∫ T

s

φ(r)
∂K

∂r
(r, s)dr.

We assume that there exists a complete orthonormal system {ek}k≥1 in K, a sequence of

nonnegative real numbers λk such that Qek = λkek, k = 1, 2, ..., where Q ∈ L(K;H) with finite

trace tr(Q) =
∑∞
k=1 λk < ∞. We define the infinite dimensional fractional Brownian motion on

K with covariance Q as
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BH(t) =

∞∑
k=1

√
λkekβ

H
k (t),

where βHk are real, independent fBm’s. This process is a K-valued Gaussian starting from 0 with

zero mean and covariance:

E⟨BH(t), x⟩⟨BH(s), y⟩ = R(t, s)⟨Q(x), y⟩ ∀x, y ∈ K, ∀t, s ∈ J.

Let L0
2 = L2(Q

1
2K;H) be the space of all Hilbert-Schmidt operators from Q

1
2K into H with the

inner product ⟨a, b⟩L0
2
= Tr[aQb∗], where b∗ is the adjoint of the operator b.

Definition 2.2. The fractional Wiener integral of Ψ : J → L0
2 with respect to Q-fBm is defined

by ∫ t

0

Ψ(s)dBH(s) =
∞∑
n=1

∫ t

0

√
λnΨ(s)endβ

H
n (s) (2.2)

=
∞∑
n=1

∫ t

0

√
λnK

∗
H(Ψen)dβn(s)

where βn is the standard Brownian motion used to present βHn as in (2.1).

We have the following inequality which is instrumental to prove our results.

Lemma 2.1. ([2], Lemma 2) If Ψ : J → L0
2 satisfies

∫
J
∥Ψ(s)∥2L0

2
ds < ∞ then the above sum in

(2.2) is well defined as a H-valued random variable, and we have

E
∥∥∥Ψ(s)dBH(s)

∥∥∥2 ≤ 2Ht2H−1

∫ t

0

∥Ψ(s)∥2L0
2
ds.

To access existence, global attracting set and stability of mild solutions for (1.1), we need to

introduce partial integro-differential equations and resolvent operators.

Let X,Z be two Banach spaces such that ∥z∥Z := ∥Az∥X + ∥z∥X for all z ∈ Z; A and K(t) be

closed linear operators on X and satisfy the following assumptions:

(H1) The operator A : D(A) ⊆ X → X is the infinitesimal generator of a strongly continuous

semigroup on X.

(H2) For all t ≥ 0, K(t) : D(K(t)) ⊆ X → X is a closed linear operator, D(A) ⊆ D(K(t)), and

K(t) ∈ L(Z,X). For any z ∈ Z, the map t→ K(t)z is bounded, differentiable and the derivative

t→ dK(t)z
dt is uniformly continuous and bounded on J.

Remark 2.1. We observe that in many applications K(·) is a scalar or an appropriate matrix,

so (H2) is satisfied there.

By Theorem 2.3 in [14], we see that (H1) and (H2) imply the following integro-differential

abstract Cauchy problem

dx(t)

dt
= A

[
x(t) +

∫ t

0

K(t− s)x(s)ds
]
, x(0) = x0 ∈ X, (2.3)

has an associated resolvent operator of bounded linear operators (R(t))t∈J on X.
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Definition 2.3. A one-parameter family of bounded linear operator (R(t))t∈J on X is called a

resolvent operator of (2.3) if the following conditions are satisfied.

(a) R(0) = I (the identity operator on X);

(b) For all u ∈ X, R(t)u is continuous for t ∈ J ;

(c) R(t) ∈ L(Z), t ∈ J . For x ∈ D(A), R(·)x ∈ C(J ;D(A)) ∩ C1(J ;X), and

dR(t)x

dt
= A

[
R(t)x+

∫ t

0

K(t− s)R(s)xds
]
,

dR(t)x

dt
= R(t)Ax+

∫ t

0

R(t− s)AK(s)xds, for t ∈ J.

Motivated by Grimmer [14], we can give the mild solution for the integro-differential equation

dx(t)

dt
= A

[
x(t) +

∫ t

0

K(t− s)x(s)ds
]
+ κ(t), x(0) = x0 ∈ X

if x satisfies the following variation of constants formula:

x(t) = R(t)x0 +

∫ t

0

R(t− s)κ(s)ds, for t ∈ J,

where κ : J → X is a continuous function.

If 0 ∈ ρ(A) (the resolvent set of operator A), then it is possible to define the fractional power

Aα, for 0 < α ≤ 1, as a closed linear operator on its domain D(Aα). Furthermore, the subspace

D(Aα) is dense in X and the expression ∥x∥α = ∥Aαx∥α, x ∈ D(Aα) defines a norm in D(Aα).

Denote the space (D(Aα), ∥ · ∥α) by Hα, then the following properties are well known (Pazy [33]).

Lemma 2.2. Under the above conditions, the following properties hold:

(a) If Aα : Hα → Hα, then Hα is a Banach space for 0 < α ≤ 1;

(b) If the resolvent operator of A is compact, then the injection Hβ ↪→ Hα is continuous and

compact for 0 < α ≤ β;

(c) For every 0 < α ≤ 1 there exists Mα > 0 such that

∥AαR(t)∥ ≤Mαt
−αe−λt, t > 0, λ > 0.

In other words, for the resolvent operator R(t) we have the following property.

Lemma 2.3. (Lemma 2.2 [12]) AR(t) is continuous for t > 0 in the uniform operator topology

of L(X).

We need the following lemma by Govindan [13].

Lemma 2.4. (Lemma 4.1[13]) Let A be the infinitesimal generator of an analytic semigroup of

bounded linear operators {R(t), t ≥ 0} in X. For any stochastic process F : R+ → X which is

strongly measurable with
∫ T
0
E∥AαF (t)∥2dt <∞, T ∈ (0,∞), the following inequality holds:

E
∥∥∥∫ t

0

AR(t− s)F (s)ds
∥∥∥2 ≤

M2
1−αΓ(2α− 1)

λ2α−1

∫ t

0

e−λ(t−s)E∥AαF (t)∥2ds,

provided that α ∈ ( 12 , 1), where Γ(·) is the Gamma function.
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Definition 2.4. Denote the space CT := C([−τ, T ],L2(Ω,H))-formed by all continuous functions

from [−τ, T ] into L2(Ω,H)) such that for all x ∈ CT ,

∥x∥2CT
:= sup

t∈[−τ,T ]

E∥x(t)∥2.

Then CT with the above norm is a Banach space.

Let CF0
0 ([−τ, 0],L2(Ω,H)), (CFt

0 ([−τ, 0],L2(Ω,H))) denote the family of all bounded F0 (Ft)-
measurable, C0-valued random variables φ, satisfying ∥φ∥2C0

< ∞. Motivated by Long [29], we

offer the following definition.

Definition 2.5. The set G ⊂ L2(Ω,H) is called a global attracting set of (1.1), if for any initial

value φ ∈ CF0
0 ([−τ, 0],L2(Ω,H)), the solution xt(0, φ) converges to G as t→ ∞. That is,

dist
(
xt(0, φ), G

) t → +∞−−−−−→ 0,

where

dist(ϕ,G) = inf
ψ∈G

sup
s∈[−τ,0]

E(∥ϕ(s)− ψ(s)∥)

for ϕ ∈ CF0
0 ([−τ, 0],L2(Ω,H)).

Definition 2.6. The mild solution of (1.1) is said to be exponentially stable in mean square if

there exists a pair of positive constants λ > 0 and M ≥ 1 such that for any solution xt(0, φ) with

the initial value φ ∈ CF0
0 ([−τ, 0],L2(Ω,H)),

E∥xt(0, φ)∥2 ≤M∥φ∥2C0
e−λt, t ≥ 0.

The following is the definition of a mild solution for (1.1).

Definition 2.7. An Ft-adapted stochastic process x : [−τ, T ] → H, 0 < T < +∞ is called a mild

solution of (1.1) on [−τ, T ] if x0(·) = φ ∈ CF0
0 ([−τ, 0],L2(Ω,H)) on [−τ, 0] a.s., and for each

s ∈ [0, T ) the function AR(t− s)f(s, x(s− r(s))) is integrable such that:

(i) x(·) ∈ C([−τ, T ],L2(Ω,H));

(ii) For arbitrary t ∈ J , x(t) satisfies the following integral equation:

x(t) = R(t)[φ(0) + f(0, φ(−r(0)))]− f(t, x(t− r(t))) (2.4)

−
∫ t

0

AR(t− s)f(s, x(s− r(s)))ds

−
∫ t

0

AR(t− s)

∫ s

0

K(s− ξ)f(ξ, x(ξ − r(ξ)))dξds

+

∫ t

0

R(t− s)g(s, x(s− ρ(s)))ds+

∫ t

0

R(t− s)h(s)dBH(s), P− a.s..
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For existence, global attracting set and stability of the mild solution to (1.1), we impose the

following assumptions throughout.

(H3) There exist positive constants C, Mk, M1−α such that for all t ∈ J,

(i) ∥R(t)∥ ≤ C, ∥K(t)∥ ≤Mk;

(ii) ∥A1−αR(t)∥ ≤ M1−α

t1−α .

(H3∗) There exist positive constants Mk, λ, M such that for all t ∈ J,

(i) ∥K(t)∥ ≤Mk;

(ii) ∥R(t)∥ ≤Me−λt.

(H4) For f : J ×H → H, there exist constants α ∈ ( 12 , 1), Mf , Lf > 0 such that the function f(·)
is Hα-valued and satisfies for all t ∈ J , ν1, ν2 ∈ H,

(i) ∥Aαf(t, ν1)−Aαf(t, ν2)∥ ≤Mf∥ν1 − ν2∥;
(ii) ∥Aαf(t, ν1)∥2 ≤ Lf (∥ν1∥2 + 1).

(H5) The function g : J ×H → H satisfies the following conditions: there exist positive constants

Mg, Lg such that for all t ∈ J , ν1, ν2 ∈ H,
(i) ∥g(t, ν1)− g(t, ν2)∥ ≤Mg∥ν1 − ν2∥;
(ii) ∥g(t, ν1)∥2 ≤ Lg(∥ν1∥2 + 1).

(H6) The function Aαf is continuous in the quadratic mean sense: for all ν ∈ C(J,L2(Ω,H)),

lim
t→s

E∥Aαf(t, ν(t))−Aαf(s, ν(s))∥2 = 0.

(H7) The function h : J → L0
2 satisfies the following conditions:

(i)
∫ T
0
∥h(s)∥2L0

2
<∞;

(ii)
∫ T
0
eλs∥h(s)∥2L0

2
<∞, for some λ > 0.

3. Main Theorems

In this section, we prove theorems for existence, global attracting set and stability of mild

solutions for a class of neutral stochastic integro-differential equations under fractional Brownian

motion.

We first obtain the following existence theorem.

Theorem 3.1. Assume that (H1)− (H7)(i) hold. If

4
[
M2
f

(
∥A−α∥2 +

T 2α+1M2
1−α

2α− 1
[1 + TM2

k ]
)
+ T 2M2

gC
2
]
< 1, (3.1)

then there exists a unique mild solution to (1.1) on [−τ, T ].

Proof. We consider the space ΥT = {x ∈ CT : x(s) = φ(s), s ∈ [−τ, 0]}. ΥT is a closed subset

of CT endowed with the norm ∥ · ∥CT
and define the operator Π : ΥT → ΥT by (Πx)(t) = φ(t) for

t ∈ [−τ, 0] and

(Πx)(t) =R(t)[φ(0) + f(0, φ(−r(0)))]− f(t, x(t− r(t)))

−
∫ t

0

AR(t− s)f(s, x(s− r(s)))ds
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−
∫ t

0

AR(t− s)

∫ s

0

K(s− ξ)f(ξ, x(ξ − r(ξ)))dξds

+

∫ t

0

R(t− s)g(s, x(s− ρ(s)))ds+

∫ t

0

R(t− s)h(s)dBH(s), t ∈ J,

It suffices to show that the operator Π has a unique fixed point in ΥT . For this purpose, we use

the Banach fixed point theorem and prove the existence by two steps.

Step 1. Π2 is continuous on J in the L2(Ω,H)-sense. Let t ∈ (0, T ) and |ϵ| be sufficiently small.

Then for any fixed x ∈ CT , we have

∥∥(Πx)(t+ ϵ)− (Πx)(t)
∥∥

≤
∥∥R(t+ ϵ)−R(t)[φ(0) + f(0, φ(−r(0)))]

∥∥
+
∥∥f(t+ ϵ, x(t+ ϵ− r(t+ ϵ)))− f(t, x(t− r(t)))

∥∥
+
∥∥∥∫ t+ϵ

0

AR(t+ ϵ− s)f(s, x(s− r(s)))ds−
∫ t

0

AR(t− s)f(s, x(s− r(s)))ds
∥∥∥

+
∥∥∥∫ t+ϵ

0

AR(t+ ϵ− s)

∫ s

0

K(s− ξ)f(ξ, x(ξ − r(ξ)))dξds

−
∫ t

0

AR(t− s)

∫ s

0

K(s− ξ)f(ξ, x(ξ − r(ξ)))dξds
∥∥∥

+
∥∥∥∫ t+ϵ

0

R(t+ ϵ− s)g(s, x(s− ρ(s)))ds−
∫ t

0

R(t− s)g(s, x(s− ρ(s)))ds
∥∥∥

+
∥∥∥∫ t+ϵ

0

R(t+ ϵ− s)h(s)dBH(s)−
∫ t

0

R(t− s)h(s)dBH(s)
∥∥∥

:=
6∑
k=1

Qk(ϵ).

From strong continuity of R(t), we conclude

lim
ϵ→0

[R(t+ ϵ)−R(t)][φ(0) + f(0, φ(−r(0)))] = 0.

By (H3) we obtain

∥[R(t+ ϵ)−R(t)][φ(0) + f(0, φ(−r(0)))]∥ ≤ 2C∥φ(0) + f(0, φ(−r(0)))∥ ∈ L2(Ω).

Subsequently the Lebesgue dominated theorem implies that

lim
ϵ→0

E∥Q1(ϵ)∥2 = 0.

Since the operator A−α is bounded, we have

E∥Q2(ϵ)∥2 ≤ ∥A−α∥2E∥Aαf(t+ ϵ, x(t+ ϵ− r(t+ ϵ)))−Aαf(t, x(t− r(t)))∥2.
Based on (H6), we conclude that
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lim
ϵ→0

E∥Q2(ϵ)∥2 = 0.

Now, we consider Q3(ϵ). Without loss of generality, we assume that ϵ > 0 (the case ϵ < 0 is quite

similar). We have

Q3(ϵ) ≤
∥∥∥∫ t

0

[A1−αR(t+ ϵ− s)−A1−αR(t− s)]Aαf(s, x(s− r(s)))ds
∥∥∥

+
∥∥∥∫ t+ϵ

t

[A1−αR(t+ ϵ− s)Aαf(s, x(s− r(s)))ds
∥∥∥

:= Q31(ϵ) +Q32(ϵ).

Apply Hölder inequality on Q31(ϵ) we get

E∥Q31(ϵ)∥2 ≤ tE

∫ t

0

∥∥[A1−αR(t+ ϵ− s)−A1−αR(t− s)]Aαf(s, x(s− r(s)))
∥∥2ds.

By Lemma 2.3, for each s ∈ [0, t], we have

lim
ϵ→0

[A1−αR(t+ ϵ− s)−A1−αR(t− s)]Aαf(s, x(s− r(s))) = 0.

By (H3), (H4), we obtain

∥[A1−αR(t+ ϵ− s)−A1−αR(t− s)]Aαf(s, x(s− r(s)))∥

≤M1−α
(
(t+ ϵ− s)α−1 + (t− s)α−1

)
∥Aαf(s, x(s− r(s)))∥ ∈ L2([0, t]× Ω).

Again, Lebesgue dominated theorem implies that

lim
ϵ→0

E∥Q31(ϵ)∥2 = 0.

Moreover, by Hölder’s inequality and (H3), (H4), we obtain

E∥Q32(ϵ)∥2 ≤
LfM

2
1−α

2α− 1
ϵ2α

∫ T

0

(E∥x(s− r(s))∥2 + 1)ds
ϵ → 0−−−→ 0.

Therefore,

lim
ϵ→0

E∥Q3(ϵ)∥2 = 0.

Similarly, to estimate Q4(ϵ) we assume that ϵ > 0.

Q4(ϵ) ≤
∥∥∥∫ t

0

[A1−αR(t+ ϵ− s)−A1−αR(t− s)]

∫ s

0

K(s− ξ)Aαf(s, x(s− r(s)))dξds
∥∥∥

+
∥∥∥∫ t+ϵ

t

[A1−αR(t+ ϵ− s)

∫ s

0

K(s− ξ)Aαf(s, x(s− r(s)))dξds
∥∥∥

:= Q41(ϵ) +Q42(ϵ).
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By Hölder inequality, we get

E∥Q41(ϵ)∥2

≤ tE

∫ t

0

∥∥[A1−αR(t+ ϵ− s)−A1−αR(t− s)]

∫ s

0

K(s− ξ)Aαf(s, x(s− r(s)))dξ
∥∥2ds.

By Lemma 2.3, for each s ∈ [0, t], we have

lim
ϵ→0

[A1−αR(t+ ϵ− s)−A1−αR(t− s)]

∫ s

0

K(s− ξ)Aαf(s, x(s− r(s)))dξ = 0.

From (H3), (H4), we obtain

∥[A1−αR(t+ ϵ− s)−A1−αR(t− s)]

∫ s

0

K(s− ξ)Aαf(s, x(s− r(s)))dξ∥

≤ tMkM1−α
(
(t+ ϵ− s)α−1 + (t− s)α−1

)
∥Aαf(s, x(s− r(s)))∥ ∈ L2([0, t]× Ω).

By Lebesgue dominated theorem, we see that

lim
ϵ→0

E∥Q41(ϵ)∥2 = 0.

In the same fashion by Hölder’s inequality and (H3), (H4), we obtain

E∥Q42(ϵ)∥2 ≤
tLfM

2
kM

2
1−α

2α− 1
ϵ2α

∫ T

0

(E∥x(s− r(s))∥2 + 1)ds
ϵ → 0−−−→ 0.

Hence

lim
ϵ→0

E∥Q4(ϵ)∥2 = 0.

The computation of Q3(ϵ) also leads to

lim
ϵ→0

E∥Q5(ϵ)∥2 = 0.

Finally,

Q6(ϵ) ≤
∥∥∥∫ t

0

[R(t+ ϵ− s)−R(t− s)]h(s)dBH(s)
∥∥∥

+
∥∥∥∫ t+ϵ

t

R(t+ ϵ− s)h(s)dBH(s)
∥∥∥

:= Q61(ϵ) +Q62(ϵ).

Lemma 2.1 implies that

E∥Q61(ϵ)∥2 ≤ 2Ht2H−1

∫ t

0

∥[R(t+ ϵ− s)−R(t− s)]h(s)∥2L0
2
d(s).

Based on strong continuity of R(t), for each s ∈ [0, t] the following limit holds.

lim
ϵ→0

∥[R(t+ ϵ− s)−R(t− s)]h(s)∥2L0
2
= 0
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By (H3) and Lebesgue dominated theorem, we have

∥[R(t+ ϵ− s)−R(t− s)]h(s)∥2L0
2
≤ 2C2∥h(s)∥2L0

2
∈ L1(J, ds).

and

lim
ϵ→0

E∥Q61(ϵ)∥2 = 0.

Applying Lemma 2.1 to Q62(ϵ) we obtain

E∥Q62(ϵ)∥2 ≤ 2HC2ϵ2H−1

∫ t+ϵ

t

∥h(s)∥2L0
2
d(s)

ϵ → 0−−−→ 0.

From the above estimates we see that

lim
ϵ→0

E
∥∥(Πx)(t+ ϵ)− (Πx)(t)

∥∥2 = 0.

This concludes Step 1. We notice that the function t→ (Πx)(t) is continuous on J in the L2-sense.

Step 2. Since Π2 is a contraction mapping in ΥT with some small enough T < T , let x, y ∈ ΥT .

By (H3), (H4), (H5) and Hölder’s inequality, for all t ∈ J we have

E
∥∥(Πx)(t)− (Πy)(t)

∥∥2
≤ 4E

∥∥f(t, x(t− r(t)))− f(t, y(t− r(t)))
∥∥2

+4E
∥∥∥∫ t

0

AR(t− s)[f(s, x(s− r(s)))− f(s, y(s− r(s)))]ds
∥∥∥2

+4E
∥∥∥∫ t

0

AR(t− s)

∫ s

0

K(s− ξ)[f(ξ, x(ξ − r(ξ)))− f(ξ, y(ξ − r(ξ)))]dξds
∥∥∥2

+4E
∥∥∥∫ t

0

R(t− s)[g(s, x(s− ρ(s)))− g(s, y(s− ρ(s)))]ds
∥∥∥2

≤ 4∥A−α∥2M2
fE∥x(s− r(s))− y(s− r(s))∥2

+
4T 2αM2

fM
2
1−α

2α− 1

∫ t

0

E∥x(s− r(s))− y(s− r(s))∥2ds

+
4T 2α+1M2

fM
2
kM

2
1−α

2α− 1

∫ t

0

E∥x(s− r(s))− y(s− r(s))∥2ds

+4TM2
gC

2

∫ t

0

E∥x(s− ρ(s))− y(s− ρ(s))∥2ds.

Taking supremum over t we obtain

∥(Πx)− (Πy)
∥∥2
CT

≤ 4
[
M2
f

(
∥A−α∥2 +

T 2α+1M2
1−α

2α− 1
[1 + TM2

k ]
)
+ T 2M2

gC
2
]
∥x− y∥2CT

.

By (3.1), Π is a contractive mapping on ΥT . So, applying Banach fixed point principle we conclude

that there exists a unique fixed point, which is a mild solution of (1.1) on [−τ, T ]. This procedure
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can be repeated to extend the solution to the entire interval [−τ, T ] in finitely many steps. Thus

we have completed the proof of Theorem 3.1.

Next we establish global attracting set and stability of mild solutions to neutral stochastic

integro-differential equations under fractional Brownian motion.

Theorem 3.2. Assume that f(t, 0) = 0, ∥g(t, 0)∥ ≤ Cg, where Cg ≥ 0, t ∈ J , the assumptions

(H1), (H2), (H3⋆), (H4)(i), (H5)(i), (H7)(ii) hold and that

Λ̂ := 6∥A−α∥2M2
f + 6

[M2
1−αM

2
fΓ(2α− 1)

λ2α
(M2

kT + 1) + 2sgn(Cg)
M2M2

g

λ2

]
< 1. (3.2)

Then set G = {x(t) ∈ L2(Ω,H) : E∥x(t)∥2 ≤ ∆̂

1−Λ̂
} is a global attracting set of (1.1), where

∆̂ :=
12M2C2

g

λ2 .

To prove Theorem 3.2 we state the following integral inequality which is sharper than the one

established by Chen [8] and is more effective for studying neutral systems.

Lemma 3.1. Let z : R+ → R+ be Borel measurable. Assume that (i) z(t) is a solution of the

integral inequality

z(t) ≤

{
∥ϕ∥Ce−γt + c1 supϑ∈[−τ,0] z(t+ ϑ) + c2

∫ t
0
e−γ(t−s) supϑ∈[−τ,0] z(s+ ϑ)ds+∆, t ∈ J,

ϕ(t), t ∈ [−τ, 0],

where ϕ(t) ∈ C([−τ, 0],R+)-the family of all continuous R+-valued functions ϕ defined on [−τ, 0]
with the norm ∥ϕ∥C := sup−τ≤s≤0 ∥ϕ(s)∥; γ > 0; c1, c2, ∆ are nonnegative constants; (ii) ∥ϕ∥C ≤
L for some positive L and Λ := c1 +

c2
γ < 1.

Then there exist constants λ ∈ (0, γ) and Lz ≥ L such that for all t ∈ J ,

z(t) ≤ Lze
−λt +

∆

1− Λ
,

where λ and Lz satisfy

Λλ := c1e
λτ +

c2e
λτ

γ − λ
< 1, Lz ≥

L

1− Λλ
or c2 ̸= 0, Λλ ≤ 1 and

Lz ≥
(γ − λ)

[
L− c2∆

γ(1−Λ)

]
c2eλτ

.

Proof. Lemma 3.1 is a consequence of Lemma 3.1 in Long el al. [30]. �

Proof of Theorem 3.2. From (2.4) for t ∈ J , we get

E∥x(t)∥2 ≤ 6E∥R(t)[φ(0) + f(0, φ(−r(0)))]∥2 + 6E∥f(t, x(t− r(t)))∥2 (3.3)

+6E
∥∥∥∫ t

0

AR(t− s)f(s, x(s− r(s)))ds
∥∥∥2

+6E
∥∥∥∫ t

0

AR(t− s)

∫ s

0

K(s− ξ)f(ξ, x(ξ − r(ξ)))dξds
∥∥∥2
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+6E
∥∥∥∫ t

0

R(t− s)g(s, x(s− ρ(s)))ds
∥∥∥2 + 6E

∥∥∥∫ t

0

R(t− s)h(s)dBH(s)
∥∥∥2

=: 6

6∑
i=1

Si.

By (H3⋆)(ii), (H4)(i), it follows that

S1 ≤ 2M2
[
E∥φ∥2 + ∥A−α∥2M2

fE∥φ(−r(0))∥2
]
e−2λt (3.4)

≤ 2M2(1 + ∥A−α∥2M2
f )∥φ∥2C0

e−λt.

From (H4)(i), ones easily has

S2 ≤ ∥A−α∥2M2
fE∥x(t− r(t))∥2 ≤ ∥A−α∥2M2

f sup
−τ≤ξ≤0

E∥x(t+ ξ)∥2. (3.5)

By Lemma 2.4 and (H4)(i), we have

S3 ≤
M2

1−αM
2
fΓ(2α− 1)

λ2α−1

∫ t

0

e−λ(t−s) sup
−τ≤ξ≤0

E∥x(s+ ξ)∥2ds. (3.6)

From (H3⋆)(i), (H4)(i) and Lemma 2.4, we obtain

S4 ≤
M2

1−αM
2
fM

2
kTΓ(2α− 1)

λ2α−1

∫ t

0

e−λ(t−s) sup
−τ≤ξ≤0

E∥x(s+ ξ)∥2ds. (3.7)

By (H5)(i) and Hölder’s inequality, we get

S5 ≤ E
(∫ t

0

∥R(t− s)g(s, x(s− ρ(s)))∥ds
)2

≤ E
(∫ t

0

Me−λ(t−s)[Mg∥x(s− ρ(s))∥+ g(s, 0)]ds
)2

≤ 2sgn(Cg)
M2M2

g

λ

∫ t

0

e−λ(t−s) sup
−τ≤ξ≤0

E∥x(s+ ξ)∥2ds+
2M2C2

g

λ2
, (3.8)

where sgn(·) is the sign function defined on R.
From Lemma 2.1 and (H3⋆)(ii), we obtain

S6 ≤ 2M2Ht2H−1

∫ t

0

e−2λ(t−s)∥h(s)∥2L0
2
ds

≤
[
2M2Ht2H−1

∫ t

0

eλs∥h(s)∥2L0
2
ds
]
e−λt.

Therefore, (H7)(ii) ensures the existence of a positive constant C = ∥φ∥2C0
such that for all t ∈ J ,

2M2Ht2H−1

∫ t

0

eλs∥h(s)∥2L0
2
ds ≤ ∥φ∥2C0

.

Therefore
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S6 ≤ ∥φ∥2C0
e−λt. (3.9)

Combining (3.3)-(3.9), it follows that

E∥x(t)∥2 ≤ 6
[
2M2(1 + ∥A−α∥2M2

f ) + 1
]
∥φ∥2C0

e−λt

+ 6∥A−α∥2M2
f sup

−τ≤ξ≤0
E∥x(t+ ξ)∥2

+ 6
[M2

1−αM
2
fΓ(2α− 1)

λ2α−1
(M2

kT + 1) + 2sgn(Cg)
M2M2

g

λ

]
×
∫ t

0

e−λ(t−s) sup
−τ≤ξ≤0

E∥x(s+ ξ)∥2ds+
12M2C2

g

λ2
. (3.10)

Define

ĉ := 6
[
2M2(1 + ∥A−α∥2M2

f ) + 1
]
,

ĉ1 := 6∥A−α∥2M2
f ,

ĉ2 := 6
[M2

1−αM
2
fΓ(2α− 1)

λ2α−1
(M2

kT + 1) + 2sgn(Cg)
M2M2

g

λ

]
.

By (3.2), we know Λ̂ := ĉ1 +
ĉ2
λ < 1. Since φ ∈ CF0

0 ([−τ, 0],L2(Ω,H)), there exist L̂ ≥ 0, L̂z > 0,

and λ̂ ∈ (0, λ) such that

ĉ∥φ∥2C0
≤ L̂, Λ̂λ̂ := ĉ1e

λ̂τ +
ĉ2e

λ̂τ

λ− λ̂
≤ 1, L̂z ≥

(λ− λ̂)
[
L̂− ĉ2∆̂

λ(1−Λ̂)

]
ĉ2eλ̂τ

.

By Lemma 3.1, there exists a set G = {x(t) ∈ L2(Ω,H) : E∥x(t)∥2 ≤ ∆̂

1−Λ̂
} as a global attracting

set of (1.1). Thus Theorem 3.2 is proved.

Remark 3.1. It is interesting to compare our results with those by Caraballo and Diop [4]:
d[x(t) + f(t, x(t− r(t)))]

= A[x(t) + f(t, x(t− r(t)))]dt+
∫ t
0
K(t− s)[x(s) + f(s, x(s− r(s)))]dsdt

+g(t, x(t− ρ(t)))dt+ h(t)dBH(t), t ∈ J := [0, T ]

x0(·) = φ, −τ ≤ t ≤ 0, τ > 0.

We analyzed the solvability of (1.1) and presented the existence of mild solution of (1.1) under

stronger assumptions on the operator A. Thus, our work is a more natural extension of that by

Caraballo and Diop [4].

Remark 3.2. When K ≡ 0 the equation (1.1) reduces to the equation which is investigated by

Boufoussi and Hajji [2].

When K ≡ 0, f ≡ 0 the equation (1.1) reduces to the equation which investigated by Caraballo

el al. [5]. In order to obtain similar results, we assume that ρ : J → [0, τ ] is differentiable, and

there exists a positive ρ∗ such that for all t ∈ J :
∣∣ 1
1−ρ′(t)

∣∣ ≤ ρ∗. This improves the results obtained

by Boufoussi and Hajji [2], Caraballo el al. [5].
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Remark 3.3. In this article as well as those by Boufoussi and Hajji [2], Caraballo and Diop [4],

Caraballo el al. [5], the equation considered involves additive but not multiplicative noise. The

rational is from the following example:

dx(t) = µx(t)dt+ hx(t)dBH(t), x(0) = x0.

Then x(t) = x0e
µt−h2

2 t
2H+hBH (t)

is a unique solution of this equation. We easily calculate for all

t ∈ J ,

E∥x(t)∥2 = x20e
2µt+h2t2H .

Hence, x(t) does not → 0 in mean square for all µ and h.

Remark 3.4. Differential equations with impulsive conditions constitute an important field of re-

search due to their numerous applications in ecology, medicine biology, electrical engineering, and

other areas of science. There has been a significant development in impulsive theory especially in

the area of impulsive differential equation with fixed moments (see the monograph by Lakshmikan-

tham et al. [26]). However, in addition to stochastic effects, impulsive effects likewise exist in real

systems. Therefore, it is necessary and important to consider the existence, global attracting set

and stability of mild solutions for a class of neutral stochastic integro-differential equations under

fractional Brownian motion and impulsive effects. The approach outlined in this article can be

utilized in that direction.

Remark 3.5. Our article studies the properties of solution with finite delay. Besides impulsive

effects, the effect of infinite delay on state equations is also very popular. Properties of equations

with finite and infinite delays are completely different. For infinite delay, the properties of solutions

depend on the choice of the phase space which is proposed by Hale and Kato in Ref. [16]. For

the fundamental theory related to functional differential equations with infinite delay, see Ref.

[18]. Our technique in this article can be extended to study the existence, global attracting set and

stability of neutral stochastic integro-differential equations under fractional Brownian motion with

infinite delay.
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