WEIGHTED SHARING OF Q-SHIFT
DIFFERENCE-DIFFERENTIAL POLYNOMIALS OF
MEROMORPHIC FUNCTIONS SHARING A SMALL FUNCTION

HARINA P. WAGHAMORE AND RAMYA MALIGI

Abstract. In this article, with the notion of weighted sharing we study the uniqueness problems of \(q \)-shift difference-differential polynomials of meromorphic functions sharing a small function \(a(z) \) with weight \(l \). Our result improves and generalizes a recent result of Renukadevi S. Dyavanal and Ashwini M. Hatikal.

1. Introduction and main results

Let \(f \) be a non-constant meromorphic function in the whole complex plane. We shall use the following standard notations of the value distribution theory: \(T(r, f), N(r, f), N(r, f, m(r, f)), \) (see [17]). The notation \(S(r, f) \) is defined to be any quantity satisfying \(S(r, f) = o(T(r, f)) \) as \(r \to \infty, r \not\in E \), where \(E \) is a set of positive real number of finite linear measure, not necessarily the same at each occurrence. A meromorphic function \(a(z) \) is called a small function with respect to \(f(z) \) provided that \(T(r, a) = S(r, f) \). Suppose that \(f(z) - a(z) \) and \(g(z) - a(z) \) have the same zeros with same counting multiplicities (ignoring multiplicities), then we say that \(f \) and \(g \) share \(a(z) \) CM(IM).

Definition 1.[13] Let \(k \) be a non-negative integer or infinity. For \(a \in C \cup \{\infty\} \), we denote by \(E_k(a, f) \) the set of all \(a \)-points of \(f \), where an \(a \)-point of multiplicity \(m \) is counted \(m \) times if \(m \leq k \) and \(k + 1 \) times if \(m > k \). If \(E_k(a, f) = E_k(a, g) \), then we say that \(f \) and \(g \) share the value \(a \) with weight \(k \).

The definition implies that if \(f, g \) share a value \(a \) with weight \(k \), then \(z_0 \) is a zero of \(f - a \) with multiplicity \(m(\leq k) \) if and only if it is a zero of \(g - a \) with multiplicity \(m(\leq k) \); and \(z_0 \) is a zero of \(f - a \) with multiplicity \(m(> k) \) if and only if it is a zero of \(g - a \) with multiplicity \(n(> k) \), where \(m \) is not necessarily equal to \(n \).

We write \(f, g \) share \((a, l) \) to mean that \(f, g \) share the value ‘\(a \)’ with weight \(l \). Clearly if \(f, g \) share \((a, l) \), then \(f, g \) share \((a, p) \) for all integer \(p, 0 \leq p < k \). Also, we note that \(f, g \) share a value ‘\(a \)’ IM or CM, if and only if \(f, g \) share \((a, 0) \) or

2010 Mathematics Subject Classification. Primary 30D35.
Key words and phrases. Meromorphic function, Small function, Weighted Sharing, \(q \)-shift, Difference-Difference Polynomials.
Submitted May 10, 2018.
(a, ∞), respectively.

Definition 2. [2] We denote and define order of \(f(z) \) by

\[
\rho(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}
\]

If a non-constant meromorphic function \(f(z) \) is of zero order, then \(\rho(f) = 0 \).

Recently difference polynomials in the complex plane \(\mathbb{C} \) become a subject of great interest among the researcher around the world. With the development of difference analogue of Nevanlinna theory [see [3], [4], [5], [6]], a large number of papers have focused on value distribution and uniqueness of difference polynomials.

In 2014, X.M. Li, H.X. Yi and W.L. Li [7] proved the following theorem on uniqueness of difference polynomials of meromorphic functions sharing a small function.

Theorem 1. Let \(f \) and \(g \) be two transcendental meromorphic function of finite order, let \(\alpha \neq 0 \) be an entire function such that \(\rho(\alpha) < \rho(f) \), let \(\eta \) be a non-zero complex number and let \(n \) and \(m \) be two positive integers such that \(n \geq m + 12 \) and \(m \geq 2 \). Suppose \(f^n(z)(f^m(z) - 1)f(z + \eta) - \alpha(z) \) and \(g^n(z)(g^m(z) - 1)g(z + \eta) - \alpha(z) \) share \(0, \infty \) CM. Then \(f(z) = tg(z) \), where \(t \) is a constant satisfying \(t^m = 1 \).

Further, K.Y. Zhang and H.X. Yi [19] extended the result of X.M. Li, H.X. Yi and W.L. Li [7] and proved the theorem on uniqueness of product of differential-difference polynomials of entire functions as in the following theorem.

Theorem 2. Let \(f(z) \) and \(g(z) \) be transcendental entire functions of finite order, \(\alpha(z) \neq 0 \) be a common small function with respect to both \(f \) and \(g \), let \(c_j \) \((j = 1, 2, \ldots, d)\) be distinct finite complex numbers and \(n \), \(m \), \(d \) and \(v_j \) \((j = 1, 2, \ldots, d)\) are non-negative integers. If \(n \geq 4k - m + \sigma + 9 \) and the differential-difference polynomial \((f^n(z)(f(z) - 1)^m \prod_{j=1}^d f(z + c_j)^{v_j}(k)) \) and \((g^n(z)(g(z) - 1)^m \prod_{j=1}^d g(z + c_j)^{v_j}(k)) \) share \(\alpha(z) \) CM, then \(f \equiv g \).

In 2015, F.H. Liu and H.X. Yi [9] improved the previous results by considering uniqueness problems on product of difference polynomials of meromorphic functions.

Theorem 3. Let \(f(z) \) and \(g(z) \) be non-constant meromorphic functions satisfying \(\rho(f) < \infty \), \(\rho(g) < \infty \). \(f(z) \) and \(g(z) \) share \(\infty \) IM. \(\alpha(z) \neq 0 \) is an entire function satisfying \(\rho(\alpha) < \rho(f) \), \(m \), \(n \), \(s \), \(\mu_j \) \((j = 1, 2, \ldots, s)\) are non-negative integers, \(\sigma = \sum_{j=1}^s \mu_j \), \(c_j \) \((j = 1, 2, \ldots, s)\) are non-zero complex constants. \(F(z) = f^n(f^m - 1) \prod_{j=1}^s f(z + c_j)^{\mu_j}, G(z) = g^n(g^m - 1) \prod_{j=1}^s g(z + c_j)^{\mu_j} \) share \(\alpha, \infty \) CM. If \(n \geq m + 2s + 3\sigma + 7 \) we get \(f(z) = tg(z) \), where \(t \) is a constant satisfying \(t^m = 1 \).

Recently, R. S. Dyavanal and A. M. Hattikal [2] investigated the uniqueness of difference polynomials of meromorphic functions sharing a small function \(a(z) \) with counting multiplicity.

Theorem 4. Let \(f \) and \(g \) be two non-constant meromorphic functions of zero order and \(a(z) \) is a small function with respect to both \(f \) and \(g \). Let \(n \geq m + 3\lambda + 2d + 7 \) be a positive integer, where \(m \), \(d \), \(\lambda = \sum_{j=1}^d s_j \) for \(j = 1, 2, \ldots, d \) are finite positive integers such that \(d < \lambda \). Let \(q_j, c_j \) \((j = 1, 2, \ldots, d)\) are distinct non-zero complex
constants. If
\[f^n(z)(f(z) - 1)^m \prod_{j=1}^{d} f(q_jz + c_j)^{s_j} \]
and
\[g^n(z)(g(z) - 1)^m \prod_{j=1}^{d} g(q_jz + c_j)^{s_j} \]
share \(a(z) \) CM, \(f \) and \(g \) share \(\infty \) IM, then

(1) if \(m \geq 2 \), then either \(f = tg \) for a constant \(t \) such that \(t^d = 1 \) where \(d = GCD(n + m + \lambda, n + m + \lambda - 1, \ldots, n + m + \lambda - i, \ldots, n + \lambda) \) or \(f \) and \(g \) satisfy the algebraic equation \(R(f, g) \equiv 0 \), where
\[
R(w_1, w_2) = w_1^n(w_1 - 1)^m \prod_{j=1}^{d} w_1(q_jz + c_j)^{s_j} - w_2^n(w_2 - 1)^m \prod_{j=1}^{d} w_2(q_jz + c_j)^{s_j}
\]
(2) if \(m = 1 \), then \(f = tg \) for a constant \(t \) such that \(t^d = 1 \) where \(d = GCD(n + \lambda, n + 1 + \lambda) \).

In this paper, we define a \(q \)-shift difference product of meromorphic function \(f(z) \) as follows.
\[
F(z) = (f^n(z)P(f) \prod_{j=1}^{d} f(q_jz + c_j)^{s_j})^{(k)} \tag{1}
\]
\[
F_1(z) = f^n(z)P(f) \prod_{j=1}^{d} f(q_jz + c_j)^{s_j} \tag{2}
\]
where \(q_j, c_j \ (j = 1, 2, \ldots, d) \) are distinct non-zero complex constants, \(n, d, k, \lambda, s_j \ (j = 1, 2, \ldots, d) \) be positive integers, \(\lambda = \sum_{j=1}^{d} s_j \). Let \(P(z) = a_m z^m + a_{m-1} z^{m-1} + \ldots + a_0 \) is a non-zero polynomial of degree \(m \) and \(\Gamma_0 = m_1 + m_2 \), where \(m_1 \) is the number of the simple zero of \(P(z) \) and \(m_2 \) is the number of multiple zeros of \(P(z) \).

Here, we used the idea of weighted sharing values to extend the above results for meromorphic functions.

Theorem 5. Let \(f \) and \(g \) be two non-constant meromorphic functions of zero order and \(a(z) \) is a small function with respect to both \(f \) and \(g \). If \(F \) and \(G \) share \((a(z), l) \), where \(l, n \) are positive integers; \(f \) and \(g \) share \(\infty \) IM with the conditions of \(n \) as below

(i) \(n > 3k + 2\Gamma_0 - m + kd + \lambda + 3d + 7 \), when \(l \geq 2 \)
(ii) \(n > 4k + \frac{5k\lambda}{2} - m + \frac{3kd}{2} + \frac{3\lambda}{2} + 7d + 8 \), when \(l = 1 \)
(iii) \(n > 9k + 5\Gamma_0 - m + 4kd + 4\lambda + 6d + 13 \), when \(l = 0 \) then one of the following cases hold:

1) \(f \equiv tg \) for a constant \(t \) such that \(t^l = 1 \), where \(l = GCD\{n + \lambda_0 + \lambda, n + \lambda_1 + \lambda, \ldots, n + \lambda_m + \lambda\} \) and
\[
\lambda_i = \begin{cases} i, & a_i \neq 0 \\ m, & a_i = 0 \end{cases} \quad i = 0, 1, \ldots, m.
\]
2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$R(w_1, w_2) = w_1^n P(w_1) \prod_{j=1}^{d} w_1(z + c_j)^{s_j} - w_2^n P(w_2) \prod_{j=1}^{d} w_2(z + c_j)^{s_j}.$$

Remark 1. When $k = 0$ and $\Gamma_0 = m_1 + m_2 = m$ in Theorem 5, then Theorem 5 improves and generalize Theorem 3 and Theorem 4.

Remark 2. When $k = 0$, $\Gamma_0 = m_1 + m_2 = m$, $\lambda = 1$ and $d = 1$ in Theorem 5, then Theorem 5 reduces to Theorem 1.

Corollary. Let f and g be two non-constant entire functions of zero order and $a(z)$ is a small function with respect to both f and g. If F and G share $(a(z), l)$, where l, n are positive integers; f and g share ∞ IM with the conditions of n as below

(i) $n \geq 2k - m + 2\Gamma_0 + \lambda + 5$, when $l \geq 2$

(ii) $n \geq \frac{5k}{2} + \frac{5\lambda}{2} + \frac{3\lambda}{2} - m + \frac{11}{2}$, when $l = 1$

(iii) $n \geq 5k + 5\Gamma_0 + 4\lambda - m + 8$, when $l = 0$ then conclusion of Theorem 5 holds.

2. Some Lemmas

Lemma 1.[18] Let $f(z)$ be a non-constant meromorphic function, and $a_n(\neq 0), a_{n-1}, ..., a_0$ be small functions with respect to f. Then

$$T(r, a_nf^n + a_{n-1}f^{n-1} + ... + a_1f + a_0) = nT(r, f) + S(r, f)$$

Lemma 2.[16] Let $f(z)$ be a non-constant meromorphic function of zero order, and let c and q be two non-zero complex numbers. Then

$$T(r, f(qz + c)) = T(r, f(z)) + S(r, f),$$

on a set of logarithmic density 1.

Lemma 3.[8] Let f be a meromorphic function with zero order and c and q be two non-zero complex numbers. Then

$$N \left(r, \frac{1}{f(qz + c)} \right) \leq N \left(r, \frac{1}{f(z)} \right) + S(r, f)$$

$$N(r, f(qz + c)) \leq N \left(r, \frac{1}{f(z)} \right) + S(r, f)$$

outside of a possible exceptional set E with finite logarithmic measure.

Lemma 4.[10] Let $f(z)$ be a non-constant meromorphic function and p, k be positive integers. Then

$$N_p \left(r, \frac{1}{f^{(k)}} \right) \leq T(r, f^{(k)}) - T(r, f) + N_{p+k} \left(r, \frac{1}{f} \right) + S(r, f), \quad (3)$$

$$N_p \left(r, \frac{1}{f^{(k)}} \right) \leq kN(r, f) + N_{p+k} \left(r, \frac{1}{f} \right) + S(r, f). \quad (4)$$

Lemma 5.[1] Let F, G be two nonconstant meromorphic functions sharing $(1, 2), (\infty, 0)$ and $H \neq 0$. Then

(i) $T(r, F) \leq N_2(r, 0; F) + N_2(r, 0; G) + N_2(r, \infty; F) + N_2(r, \infty; G) + N_2(r, \infty; F, G)$
\[m(r, 1; G) - N_E^3(r, 1; F) - N_L(r, 1; G) + S(r, F) + S(r, G);\]

(ii) \[T(r, G) \leq N_2(r, 0; F) + N_2(r, 0; G) + \frac{3}{2} N(r, \infty; F) + N(r, \infty; G) + \frac{1}{2} N(r, 0; F) + \frac{1}{2} N(r, 0; G) + S(r, F) + S(r, G);\]

Lemma 6.[12] Let \(F, G \) be two nonconstant meromorphic functions sharing \((1, 1), (\infty, 0)\) and \(H \neq 0 \). Then

(i) \[T(r, F) \leq N_2(r, 0; F) + N_2(r, 0; G) + 3 N(r, \infty; F) + 2 N(r, \infty; G) + 2 N(r, 0; F) + N(r, 0; G) + S(r, F) + S(r, G);\]

(ii) \[T(r, G) \leq N_2(r, 0; F) + N_2(r, 0; G) + 3 N(r, \infty; F) + 2 N(r, \infty; G) + N(r, 0; F) + 2 N(r, 0; G) + S(r, F) + S(r, G).\]

Lemma 7.[12] Let \(F, G \) be two nonconstant meromorphic functions sharing \((1, 0), (\infty, 0)\) and \(H \neq 0 \). Then

(i) \[T(r, F) \leq N_2(r, 0; F) + N_2(r, 0; G) + 3 N(r, \infty; F) + 2 N(r, \infty; G) + 2 N(r, 0; F) + N(r, 0; G) + S(r, F) + S(r, G);\]

(ii) \[T(r, G) \leq N_2(r, 0; F) + N_2(r, 0; G) + 3 N(r, \infty; F) + 2 N(r, \infty; G) + N(r, 0; F) + 2 N(r, 0; G) + S(r, F) + S(r, G).\]

Lemma 8. Let \(f(z) \) and \(g(z) \) be two nonconstant meromorphic functions, let \(n, k \) be two positive integers with \(n > k + m + 2 \lambda + d + 2 \) and \(a(z) (\neq 0, \infty) \) be a small function with respect to \(f \) and \(g \) and let \(P(z) = a_m z^m + a_{m-1} z^{m-1} + \ldots + a_1 z + a_0 \), where \(a_0, a_1, \ldots, a_{m-1}, a_m \) are complex constants. If

\[(f^n(z)P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{s_j})^{(k)}(g^n(z)P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{s_j})^{(k)} \equiv a^2,\]

\(f \) and \(g \) share \(\infty \) IM, then \(P(z) \) is reduced to a nonzero monomial, that is \(P(z) = a_i z^i \neq 0 \) for some \(i = 0, 1, 2, \ldots, m \).

Proof. If \(P(z) \) is not reduced to a nonzero monomial, then without loss of generality, we assume that \(P(z) = a_m z^m + a_{m-1} z^{m-1} + \ldots + a_1 z + a_0 \), where \(a_0 (\neq 0), a_1, \ldots, a_{m-1}, a_m (\neq 0) \) are complex constants. By hypothesis of Lemma 8, we know that either both \(f \) and \(g \) are transcendental meromorphic functions or they are both rational functions. Since \(f \) and \(g \) share \(\infty \) IM, the poles of \(f \) and \(g \) are finite. Similarly \(f \) and \(g \) has finitely many zeros.

Case 1. If \(f \) and \(g \) are transcendental meromorphic functions. Let \(f = h e^{\beta} \), where \(\beta \) is a non-constant entire function and \(h(z) \) is a nonzero rational function. Thus, by induction on \(k \), we get

\[
(a_f f^{i+n} \prod_{j=1}^{d} f(q_j z + c_j)^{s_j})^{(k)} = P_i(\beta', \beta'', \ldots, \beta^{(k)}), \sum s_j \beta'(q_j z + c_j), \ldots, \]

\[
\sum s_j \beta^{(k)}(q_j z + c_j), h, h', \ldots, h^{(k)}, \sum s_j h(q_j z + c_j), \sum s_j h'(q_j z + c_j), \ldots, \]

\[
\sum s_j h^{(k)}(q_j z + c_j)e^{(i+n)\beta(z)+\sum_{j=1}^{d} s_j \beta(q_j z + c_j)}
\]

where, \(P_i (i = 1, 2, \ldots, m) \) are difference-differential polynomials with coefficients as rational functions in \(h(z) \) and \(\sum s_j h(z + c_j) \) or its derivatives.
Notice that
\[P_0(\beta', \beta'', \ldots, \beta^{(k)}), \sum s_j \beta'(q_j z + c_j), \ldots, \sum s_j \beta^{(k)}(q_j z + c_j), h, h', \ldots, h^{(k)}, \]
\[\sum s_j h(q_j z + c_j), \sum s_j h'(q_j z + c_j), \ldots, \sum s_j h^{(k)}(q_j z + c_j), \ldots, P_m(\beta', \beta'', \ldots, \beta^{(k)}), \]
\[\sum s_j \beta'(q_j z + c_j), \ldots, \sum s_j \beta^{(k)}(q_j z + c_j), h, h', \ldots, h^{(k)}, \sum s_j h(q_j z + c_j), \]
\[\sum s_j h'(q_j z + c_j), \ldots, \sum s_j h^{(k)}(q_j z + c_j) \neq 0. \]
Since \(\beta(z) \) is an entire function,
\[T(r, \beta'(z)) = m(r, \beta'(z)) = m \left(r, \left(\frac{e^{\beta(z)}}{\beta'(z)} \right) \right) = S(r, f). \]
Thus, we obtain
\[T(r, \beta^{(k)}(z)) \leq T(r, \beta') + S(r, f) = S(r, f) \text{ for } j = 1, 2, \ldots, k, \]
and
\[T(r, \sum s_j \beta'(q_j z + c_j)) = m(r, \sum s_j \beta'(q_j z + c_j)) + N(r, \sum s_j \beta'(q_j z + c_j)) \]
\[= m(r, \sum s_j \beta'(q_j z + c_j)) \]
\[= m \left(r, \left(\frac{e^{\sum s_j \beta(q_j z + c_j)}}{e^{\beta'(z)}} \right) \right) = S(r, f). \]
Therefore
\[T(r, \sum s_j \beta^{(k)}(q_j z + c_j)) \leq T(r, \sum s_j \beta'(q_j z + c_j)) + S(r, f) = S(r, f) \text{ for } j = 1, 2, \ldots, k, \]
which is a contradiction.

\textbf{Case 2.} If \(f \) and \(g \) are rational functions, then \(a \) is a nonzero constant, thus \(f \) and \(g \) have no zeros and no poles, which is impossible. Since \(f \) and \(g \) are not constants.

The above two Cases imply that \(P(z) \) is reduced to a nonzero monomial, namely, \(P(z) = a_i z^i \neq 0 \) for some \(i \in \{0, 1, \ldots, m\} \).

\subsection*{3. Proof of Theorem 5.}
Let \(F^* = \frac{F}{\alpha(z)} \) and \(G^* = \frac{G}{\alpha(z)} \). From the hypothesis we have \(F(z) \) and \(G(z) \) share \((a(z), l)\) and \(f, g \) share \(\infty \) IM. It follows that \(F^* \) and \(G^* \) share 1CM and \(\infty \) IM. We now discuss the following two cases separately.

\textbf{Case 1.} We assume that \(H \neq 0 \). Now we consider the following three subcases.

\textbf{Subcase 1.} Suppose that \(l \geq 2 \). Then using Lemma 5 we obtain
\[T(r, F) \leq T(r, F^*) + S(r, F) \]
\[\leq N_2(r, 0; F^*) + N_2(r, 0; G^*) + N(r, \infty; F^*) + N(r, \infty; G^*) + N_*(r, \infty; F^*, G^*) \]
\[- m(r, 1; G^*) - N_2^*(r, 1; F^*) - N_2^*(r, 1; G^*) + S(r, F^*) + S(r, G^*) \]
\[\leq N_2(r, 0; F) + N_2(r, 0; G) + N(r, \infty; F) + N(r, \infty; G) + N_*(r, \infty; F, G) \]
\[+ S(r, F) + S(r, G). \]
Let a contradiction with the fact that \(n > \) from (6). Similarly, we have for
\[
\text{Equation not clearly visible.}
\]
By using (3) and (4), we have
\[
T(r, F) \leq T(r, F_1) + N_{k+2}(r, 0; F_1) + kN(r, \infty; G_1) + N_{k+2}(r, 0; G_1) + 2N(r, \infty; F) + N(r, \infty; G) + S(r, F) + S(r, G).
\]
Similarly, we have for \(T(r, g) \),
\[
(n + m + \lambda)T(r, f) \leq (k + \Gamma_0 + 2d + \lambda + 4)T(r, f) + (2k + \Gamma_0 + \lambda + kd + d + 3)T(r, g) + S(r, f) + S(r, g).
\]
Similarly, we have for \(T(r, g) \),
\[
(n + m + \lambda)T(r, g) \leq (k + \Gamma_0 + 2d + \lambda + 4)T(r, g) + (2k + \Gamma_0 + \lambda + kd + d + 3)T(r, f) + S(r, f) + S(r, g)
\]
from (8) and (9), we have
\[
(n + m + \lambda)[T(r, f) + T(r, g)] \leq (3k + 2\Gamma_0 + 2\lambda + kd + 3d + 7)[T(r, f) + T(r, g)] + S(r, f) + S(r, g),
\]
a contradiction with the fact that \(n > 3k + 2\Gamma_0 - m + kd + \lambda + 3d + 7 \).

Subcase 2. Let \(l = 1 \). Then using (6) and Lemma 6 we obtain
\[
T(r, F) \leq T(r, F^*) + S(r, F)
\]
\[
\leq N_2(r, 0; F^*) + N_2(r, 0; G^*) + \frac{3}{2}N(r, \infty; F^*) + N(r, \infty; G^*) + N^*(r, \infty; F^*, G^*) + \frac{1}{2}N(r, 0; F) + S(r, F^*) + S(r, G^*)
\]
\[
\leq N_2(r, 0; F) + N_2(r, 0; G) + \frac{3}{2}N(r, \infty; F) + \frac{5}{2}N(r, \infty; F) + \frac{5}{2}N(r, 0; F) + \frac{1}{2}N(r, 0; F) + \frac{1}{2}N(r, 0; F) + S(r, F) + S(r, G).
\]
Using (10), (3) and (4), we have
\[T(r, F) \leq T(r, F) - T(r, F_1) + N_{k+2}(r, 0; F_1) + kN(r, \infty; G_1) + N_{k+2}(r, 0; G_1) + S(r, f) + S(r, g) \]
\[+ \frac{5}{2}N(r, \infty; F_1) + \overline{N}(r, \infty; G_1) + \frac{1}{2}[k\overline{N}(r, \infty; F_1) + N_{k+1}(r, 0; F_1)] \]
\[+ T(r, F_1) \leq N_{k+2}(r, 0; f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{n_j}) + k\overline{N}(r, \infty; g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{n_j})
+ N_{k+2}(r, 0; g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{n_j}) + \frac{5}{2}N(r, \infty; f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{n_j})
+ \overline{N}(r, \infty; g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{n_j}) + \frac{1}{2}[k\overline{N}(r, \infty; f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{n_j})
+ N_{k+1}(r, 0; f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{n_j})] + S(r, f) + S(r, g) \]
\[(n + m + \lambda)T(r, f) \leq (2k + \frac{3\Gamma_0}{2} + \frac{3\lambda}{2} + \frac{kd}{2} + \frac{5d}{2} + 5)T(r, f) + (2k + \Gamma_0 + d + \lambda) \]
\[+ kd + 3)T(r, g) + S(r, f) + S(r, g). \] (11)
Similarly, we have for \(T(r, g) \),
\[(n + m + \lambda)T(r, g) \leq (2k + \frac{3\Gamma_0}{2} + \frac{3\lambda}{2} + \frac{kd}{2} + \frac{5d}{2} + 5)T(r, g) + (2k + \Gamma_0 + d + \lambda) \]
\[+ kd + 3)T(r, f) + S(r, f) + S(r, g) \] (12)
from (11) and (12), we have
\[(n + m + \lambda)[T(r, f) + T(r, g)] \leq (4k + \frac{5\Gamma_0}{2} + \frac{5\lambda}{2} + \frac{3kd}{2} + \frac{7d}{2} + 8)[T(r, f) + T(r, g)]
+ S(r, f) + S(r, g), \]
a contradiction with the fact that \(n > 4k + \frac{5\Gamma_0}{2} - m + \frac{3kd}{2} + \frac{3\lambda}{2} + \frac{7d}{2} + 8. \)

Subcase 3. Let \(l = 0 \). Then using (6) and Lemma 7 we obtain
\[T(r, F) \leq T(r, F^*) + S(r, F) \]
\[\leq N_2(r, 0; F^*) + N_2(r, 0; G^*) + 3\overline{N}(r, \infty; F^*) + 2\overline{N}(r, \infty; G^*) + \overline{N}_*(r, \infty; F^*, G^*)
+ 2\overline{N}(r, 0; F^*) + \overline{N}(r, 0; G^*) + S(r, F^*) + S(r, G^*) \leq N_2(r, 0; F) + N_2(r, 0; G) + 3\overline{N}(r, \infty; F) + 2\overline{N}(r, \infty; G) + \overline{N}_*(r, \infty; F, G)
+ 2\overline{N}(r, 0; F) + \overline{N}(r, 0; G) + S(r, F) + S(r, G). \] (13)
We now assume that Case 2.

\[T(r, F) \leq T(r, F) - T(r, F_1) + N_{k+2}(r, 0; F_1) + kN(r, \infty; G_1) + N_{k+2}(r, 0; G_1) + 4N(r, \infty; F_1) \]
\[+ 2N(r, \infty; G_1) + 2[kN(r, \infty; F_1) + N_{k+1}(r, 0; F_1)] + kN(r, \infty; G_1) + N_{k+1}(r, 0; G_1) \]
\[+ S(r, F) + S(r, G) \]

\[T(r, F_1) \leq N_{k+2}(r, 0; f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{s_j}) + kN(r, \infty; g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{s_j}) \]
\[+ N_{k+2}(r, 0; g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{s_j}) + 4N(r, \infty; f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{s_j}) \]
\[+ 2N(r, \infty; g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{s_j}) + 2[kN(r, \infty; f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{s_j}) \]
\[+ N_{k+1}(r, 0; f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{s_j})] + kN(r, \infty; g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{s_j}) \]
\[+ N_{k+1}(r, 0; g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{s_j}) + S(r, f) + S(r, g) \]

\[(n + m + \lambda)T(r, f) \leq (5k + 3\Gamma_0 + 3\lambda + 2kd + 4d + 8)T(r, f) + (4k + 2\Gamma_0 + 2kd) \]
\[+ 2\lambda + 2d + 5)T(r, g) + S(r, f) + S(r, g). \]

Similarly, we have for \(T(r, g) \),

\[(n + m + \lambda)T(r, g) \leq (5k + 3\Gamma_0 + 3\lambda + 2kd + 4d + 8)T(r, g) + (4k + 2\Gamma_0 + 2kd) \]
\[+ 2\lambda + 2d + 5)T(r, f) + S(r, f) + S(r, g) \]

from (14) and (15), we have

\[(n + m + \lambda)[T(r, f) + T(r, g)] \leq (9k + 5\Gamma_0 + 4kd + 5\lambda + 6d + 13)[T(r, f) + T(r, g)] \]
\[+ S(r, f) + S(r, g), \]

a contradiction with the fact that \(n > 9k + 5\Gamma_0 - m + 4kd + 4\lambda + 6d + 13 \).

Case 2. We now assume that \(H \equiv 0 \). Then

\[\left(\frac{F^{*\prime\prime}}{F^{*\prime}} - \frac{2F^{*\prime}}{F^{*} - 1} \right) - \left(\frac{G^{*\prime\prime}}{G^{*\prime}} - \frac{2G^{*\prime}}{G^{*} - 1} \right) = 0. \]

Integrating both sides of the above equality twice we get

\[\frac{1}{F^{*} - 1} = \frac{A}{G^{*} - 1} + B, \]

where \(A(\neq 0) \) and \(B \) are constants. From (16) it is obvious that \(F^{*}, G^{*} \) share the value 1CM and hence they share the value 1 with weight 2, and therefore, \(n > 3k + 2\Gamma_0 - m + kd + \lambda + 3d + 7 \). We now discuss the following three subcases separately.
Subcase 4. Suppose that $B \neq 0$ and $A = B$. Then from (16) we obtain

$$\frac{1}{F^* - 1} = \frac{BG^*}{G^* - 1}. \quad (17)$$

If $B = -1$, then from (17) we obtain

$$F^* G^* = 1,$$

i.e.,

$$(f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{(k)}(g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{(k)}) = a^2(z),$$

which is a contradiction by Lemma 8.

If $B \neq -1$, from (17), we have $\frac{1}{F^*} = \frac{BG^*}{(1+B)G^* - 1}$ and so $\mathcal{N}\left(r, \frac{1}{1+B}; G^*\right) = \mathcal{N}(r, 0; F^*)$.

Using (3), (4) and the Second fundamental theorem of Nevanlinna, we deduce that

$$T(r, G) \leq T(r, G^*) + S(r, G)$$

$$\leq \mathcal{N}(r, 0; G^*) + \mathcal{N}\left(r, \frac{1}{1+B}; G^*\right) + \mathcal{N}(r, \infty; G^*) + S(r, G)$$

$$\leq \mathcal{N}(r, 0; G^*) + \mathcal{N}(r, 0; G^*) + \mathcal{N}(r, \infty; G^*) + S(r, G)$$

$$\leq \mathcal{N}(r, 0; F) + \mathcal{N}(r, 0; G) + \mathcal{N}(r, \infty; G) + S(r, G). \quad (18)$$

Using (18), Lemma 4 we have

$$T(r, G) \leq k\mathcal{N}(r, \infty; F_1) + N_{k+1}(r, 0; F_1) + T(r, G) - T(r, G_1) + N_{k+1}(r, 0; G_1)$$

$$+ \mathcal{N}(r, \infty; G_1) + S(r, g)$$

$$(n + m + \lambda)T(r, g) \leq (2k + \Gamma_0 + kd + d + \lambda - 3)T(r, f) + (k + \Gamma_0 + d + \lambda + 2)T(r, g)$$

$$+ S(r, f) + S(r, g).$$

Similarly,

$$(n + m + \lambda)T(r, f) \leq (2k + \Gamma_0 + kd + d + \lambda + 1)T(r, g) + (k + \Gamma_0 + d + \lambda + 2)T(r, f)$$

$$+ S(r, f) + S(r, g).$$

Thus we obtain

$$(n + m - 3k - 2\Gamma_0 - kd - d + \lambda - 3)[T(r, f) + T(r, g)] \leq S(r, f) + S(r, g),$$

a contradiction with $n > 3k + 2\Gamma_0 - m + kd + \lambda + 3d + 7$.

Subcase 5. Let $B \neq 0$ and $A \neq B$. Then from (17) we get $F^* = \frac{(B+1)G^* - (B-A+1)}{BG^* + (A-B)}$ and so $\mathcal{N}\left(r, \frac{B-A+1}{B}; G^*\right) = \mathcal{N}(r, 0; F^*)$. Proceeding in a manner similar to Subcase 4 we can arrive at a contradiction.

Subcase 6. Let $B = 0$ and $A \neq 0$. Then from (17) we get $F^* = \frac{G + A - 1}{A}$ and $G = AF - (A - 1)$. If $A \neq 1$, it follows that $\mathcal{N}\left(r, \frac{A-1}{A}; F^*\right) = \mathcal{N}(r, 0; G^*)$ and $\mathcal{N}(r, 1 - A; G^*) = \mathcal{N}(r, 0; F^*)$. Using the similar arguments as in Subcase 4 we obtain a contradiction. Thus $A = 1$ which implies $F^* = G^*$, and therefore,

$$(f^n P(f) \prod_{j=1}^{d} f(q_j z + c_j)^{(k)}) \equiv (g^n P(g) \prod_{j=1}^{d} g(q_j z + c_j)^{(k)}$$
Let $n > 0$. Similarly, we get
\[
\frac{f^n(z)P(f) \prod_{j=1}^d f(q_j z + c_j)^{s_j}}{R(z)} = \frac{g^n(z)P(g) \prod_{j=1}^d g(q_j z + c_j)^{s_j}}{R(z)} + 1.
\]

By the second fundamental theorem, we have
\[
T \left(r, \frac{f^n(z)P(f) \prod_{j=1}^d f(q_j z + c_j)^{s_j}}{R} \right) \leq \mathcal{N} \left(r, \frac{f^n(z)P(f) \prod_{j=1}^d f(q_j z + c_j)^{s_j}}{R(z)} \right) \\
+ \mathcal{N} \left(r, \frac{R(z)}{f^n(z)P(f) \prod_{j=1}^d f(q_j z + c_j)^{s_j}} \right) + \mathcal{N} \left(r, \frac{R(z)}{g^n(z)P(g) \prod_{j=1}^d g(q_j z + c_j)^{s_j}} \right) + S(r, f)
\]

\[(n + m + \lambda)T(r, f) \leq (2 + \Gamma_0 + 2d)T(r, f) + (\Gamma_0 + d + 1)T(r, g) + S(r, f) + S(r, g).
\]

Similarly, we get
\[(n + m + \lambda)T(r, g) \leq (2 + \Gamma_0 + 2d)T(r, g) + (\Gamma_0 + d + 1)T(r, f) + S(r, f) + S(r, g).
\]

So
\[(n + m + \lambda)[T(r, f) + T(r, g)] \leq (2\Gamma_0 + 3d + 3)[T(r, f) + T(r, g)] + S(r, f) + S(r, g).
\]

Which is contradiction to $n > 2\Gamma_0 - m + 3d - \lambda + 3$. Thus, we get $R(z) \equiv 0$ and hence
\[
f^n(z)P(f) \prod_{j=1}^d f(q_j z + c_j)^{s_j} = g^n(z)P(g) \prod_{j=1}^d g(q_j z + c_j)^{s_j}.
\]

\[
f^n(a_m f^m + a_{m-1} f^{m-1} + \ldots + a_1 f + a_0) \prod_{j=1}^d f(q_j z + c_j) = g^n(a_m g^m + a_{m-1} g^{m-1} + \ldots + a_1 g + a_0) \prod_{j=1}^d g(q_j z + c_j)
\]

Let $h = \frac{f}{g}$. If h is constant then substituting $f = gh$ and
\[
\prod_{j=1}^d f(q_j z + c_j)^{s_j} = \prod_{j=1}^d g(q_j z + c_j)^{s_j} h(q_j z + c_j)^{s_j}
\]

in above equation, we deduce
\[
\prod_{j=1}^d g(z + c_j)^{s_j} [a_m g^{n+m}(h^{n+m+\lambda} - 1) + a_{m-1} g^{n+m-1}(h^{n+m+\lambda-1} - 1) + \ldots + a_0 g^n(h^{n+\lambda} - 1)] \equiv 0,
\]

(19)
where a_m is a non-zero complex constant and $\prod_{j=1}^d g(q_j z + c_j)^{s_j} \neq 0$. Since g is nonconstant meromorphic function. Then, from (19), we have

$$a_m g \gamma^{m} (h^{n+m+\lambda}-1)+a_{m-1}g^{n+m-1}(h^{n+m+\lambda-1})+\ldots+a_0g^n(h^{n+\lambda-1}) \equiv 0. \quad (20)$$

If $a_m(\neq 0)$ and $a_{m-1} = a_{m-2} = \ldots = a_0 = 0$, then from (20) and g is nonconstant meromorphic function, we get $h^{n+m+\lambda} = 1$.

If $a_m(\neq 0)$ and there exists $a_j \neq 0 (i \in \{0, 1, 2, \ldots, m-1\})$. Suppose that $h^{n+m+\lambda} \neq 1$, from (20), we have $T(r, g) = S(r, g)$ which is contradiction with transcendental function g. Then $h^{n+m+\lambda} = 1$. Similar to this discussion, we can see that $h^{n+m+\lambda} = 1$ when $a_j \neq 0$ for some $j = 0, 1, 2, \ldots, m$.

Thus, we have $f \equiv tg$ for a constant t such that $t^l = 1$, where $l = \gcd\{n + \lambda_0 + \lambda, n + \lambda_1 + \lambda, \ldots, n + \lambda_m + \lambda\}$ and $\lambda_i (i = 0, 1, 2, \ldots, m)$ is stated as in Theorem 5.

Set $h = \frac{f}{g}$. If h is not a constant, from (20), we find that f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$R(w_1, w_2) = w_1^d P(w_1) \prod_{j=1}^d w_1(z + c_j)^{s_j} - w_2^d P(w_2) \prod_{j=1}^d w_2(z + c_j)^{s_j}.$$

4. ACKNOWLEDGEMENT

The author (RM) is greatful to the University Grants Commission (UGC), New Delhi, India for Supporting her research work by providing her with a National Fellowship for Higher Education (NFHE).

REFERENCES

HARINA P. WAGHAMORE
DEPARTMENT OF MATHEMATICS, JNANABHARATHI CAMPUS, BANGALORE UNIVERSITY, BENGALURU-560056, INDIA
E-mail address: harinapw@gmail.com

RAMYA MALIGI
DEPARTMENT OF MATHEMATICS, JNANABHARATHI CAMPUS, BANGALORE UNIVERSITY, BENGALURU-560056, INDIA
E-mail address: ramyamalgi@gmail.com