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PARTIAL SUMS OF 7- CONFLUENT HYPERGEOMETRIC
FUNCTION

AMIT SONI AND DEEPAK BANSAL

ABSTRACT. In the present investigation, T-confluent hypergeometric function
with their normalization are considered. In this paper, we will study the ratio
of a function of the form (4) to its sequence of partial sums (1 ®7(b; ¢; 2))n = 2+

EE;; Z 11:5212? Zk+1 . We will determine the lower bounds for # {%} ,

(o] (b)) (197 (bie:2)) (18] (bies2)),
R HEED)) %{(@m;c;z)); and <14>;<b;c;z>>'}'

1. INTRODUCTION

Let H denote the class of analytic functions f defined in the open unit disk D =
{z € C: |z|] < 1} and A denote the subclass of H, which are normalized by the
condition f(0) =0 = f/(0) — 1 and have representation of the form

o0
z):z+2anz", z e D. (1)
n=2
It is well known that the series

(i)=Y D2 2)

n=0

in which c is neither zero nor a negative integer is convergent for all finite z. Here
(b),, denotes the Pochhammer (or Appell) symbol which is defined by

(b) = 1, (n=0)
e bb+1)...(b+n—1), (n € N).
The Pochhammer symbol is related to the gamma functions by the relation
I'(b+n)
(D) = —r757
I'(b)

where b is neither zero nor a negative integer. The function 11 (b;¢; z) is known
as a confluent hypergeometric function for more details one can refer [7]. In 1999
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Virchenko [11] introduced 7-confluent hypergeometric function which is defined by
(see also [12]):

I'(b) T(c+ ) n!’

6T (b5 2) = I'(c) Z I'(b+1n)z 3)

(7> 0,R(c) > R(b) >0)
For 7 =1,

107 (b5 ¢;2) = 11(b; 5 2).
As the function 1¢7 (b, ¢; z) does not belong to the family A, thus it is natural to
consider the following normalization of function 1¢7 (b, ¢; ) in D:

197 (b;¢52) = zl(bf(b C'z)
ro+r(n—-1) =2z"

- —~ Tlc+7(n—1)) (n— 1! @)

For the present investigation we will study 197 (b, ¢; z) for real values of b and ¢
satisfying ¢ > b > 0 only.

If f, g are analytic functions in D, then f is said to be subordinate to g, written
as f(z) < g(z) (z € D), if there exists an analytic function w with w(0) = 0 and
lw(z)| <1 (z € D) such that f(z) = g(w(z)). In particular, if g is univalent in D,
then we have the following equivalence:

f(z) <g(z) <= [f(0)=g(0) and f(D)C g(D).

For more details one can refer [4]. In the present paper, we will study the ratio of
a function of the form (4) to its sequence of partial sums

- b+ kr) 2kt
(1®1(b;c;z)n*2 FC+k‘T il *erZbkz (5)
~ (k+DI(b+ k) 2" & k
(@7 (b;¢; 2)), Zl G k'_1+;(k+1)bkz, (6)
(1®7(b;¢;2))o = z and (18] (b; ¢;2)) = 1. (7)

We will determine lower bounds for # {&M} , R { (112{;((%22;))))” } , R { ((fgg ((l?; :Zz)))),

3

1 b;c;z))n

and R {%} . For various known results concerning with partial sums of
analytic univalent functions one can refer the works of Bansal and Orhan [1], Caglar
and Deniz [2], Choi [3], Orhan and Yagmur [5], Owa et. al [6], Sheil-Small [8], Sil-
verman [9] and Silvia [10].

To prove main results we need following Lemma:

Lemma 1. If 7 > 0 and ¢ > b > maxz{2 — 7,0} then,

T o 2I'(c)
127 (b; ¢ 2)] < ) (z € D) (®)
and
L@ (bcz)<1+121£$; (: € D). (9)
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Proof. To prove this lemma, we use the following inequalities

n 2 n—3
— < | = Vn>4
(n—1)! 3
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I'(c+7(n—1)) > T'(b+7(n—1)) (for 7 > 0, ¢ > b > maz{2—7,0} and n € {2,3,4...})

and n! > 2"~1 for all n € N. Using (4), we have

oo

17 (b;c;2)] < |Z|+F

(b) 'T(c+7(n—

I
—_
_l’_
'1‘*—,1
—
SO
S— | —
| e
3 3
HMS [
[V} (3o}
7 N\
N =
N——
3
|
[\
| I

Similarly

12T (bic;2)| < 1+

2. MAIN RESULTS

Theorem 1. If 7 >0, ¢ > b > max{2 — 7,0} and I'(b) > 2I'(c), then

st |2 (- Te) ¢<P

(1@7(b;c;2))n I'(b)
%{ 07 (b 3 2) } Z Ty +2r D)

and

Proof. Tt is easy to see from (8) of Lemma 1 that

= I'(b) + 2I'(c)
14+ ; b < 7F(b)

which is equivalent to

2T nIT'(b)(c+ ™)

To prove 10, we have to show that

I'(c) 1 Frb+7(n—-1)), .,
2 oy D)

') < _ I(er(b+7n)
© kz::lbk <1 (Where by = ) .

2 [ ()

1—z

(13)
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Using definition of subordination, and putting the values of 1 @7 (b; ¢; 2) and (1 @7 (b; ¢; 2) ),
we have

1+ 3 bz + ORES'S byz*
kZ::I 20(e) k:zn:+1 _ ltu(z)
1+ > by 2k 1—w(z)
k=1
Our assertion 10 is true if we show that w(0) = 0 and |w(z)| < 1 provided z € D.
Simplifying for w(z), we get

k=n-+1

provided

Z’“L Z b < 1. (14)

k n+1
It suffices to show that the left hand side of (14) is bounded above by left hand side
of (12), which is equivalent to

(;F((bc)) - 1> ;bk >0,

This is true as I'(b) > 2I'(c).
To prove the result (11), we write
L) +2T(c) [27(b;62)),  T(b) _1+w()
2T (c) 197 (b;¢;2) L(b)+2I(c)] 1—w(z)
Substituting the values of 1 ®7(b; ¢;2) and (1] (b; ¢; 2))y and simplifying for w(z),
we have

- n by . 0 .
242 beob — DO 57 pok
k=1 k=n-+1
Obviously w(0) = 0 and
O NG SE

2I(¢) P

r'(b) =
Q*QZb e X b

as (14) is true for I'(b) > 2T'(c). O

lw(z) < <1 (15)
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Theorem 2. If 7 > 0, ¢ > b > max{2 — 7,0} and 2I'(b) > 11I'(¢), then

(1P (b; ¢; 2)) 2I(b) — 11T(¢)
%{m¢uma@m}2 SO 16)

and

(07 (bic: ), 21 (b)
%{uﬁuaaay}22mw+1ww>“em> a7)

Proof. Tt is easy to see from (9) of Lemma 1 that
2I'(b) + 11T(c)

1+ ;bk(k +1) < 2T (0)

o0

which is equivalent to

2T I'(e)T'(b+7n
2 F( Zbk (k+1) <1 (where b, = F(ZS)L'F(M) (18)
To prove (16), we have to show that
2 00) [ (P1(kez)  (2D(b) — 11T (c) 1+z2
e G | e 19)

Using definition of subordination, and putting the values of 1 ®7(b; ¢; z) and (18] (b; ¢; 2) )n,
we have

14 3 bplk+ 1)zF 4+ 250 S (b4 )b 2k
k; ( ) 11T(c) k:En:—s-l( ) :1+w(z)

L4 3 (k+ Dbzt 1—w()
k=1

Our assertion (10) is ture if we show that w(0) = 0 and |w(z)| < 1 provided z € D.
Simplifying for w(z), we get
218 S (k+ 1)byst

k=n-+1

242 (h+1)bezk + Z1d > (k+ 1)bgzk
k=1

w(z) =

Obviously w(0) = 0 and

[w(2)] < e <1
2-2 z (k+1be — Z18 X (k+1)b
=1 k=n+1
provided
];(k+1)bk+ﬁr—kz (k+ 1)by, < 1. (20)

It suffices to show that the left hand side of (20) is bounded above by left hand side
of (18), which is equivalent to

(b)
=7 >
(lch )Zb’“ 0
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This is true in view of hypothesis.
To prove the result (17), we write

2I'(b) 4+ 11T(c) [ (1T (b;¢;2) 14 w(z)
11T(c) (127 (b; ¢; 2) F(b —|— 11F( V)] 1—w(z)
Substituting the values of (1 87 (b; ¢; z) and (197 (b; ¢; 2))!, and simplifying for w(z),
we have
—(1+ %F(ig)k_z 1 (k + )bk
we) = — o & -
2425 (k+ 1)bpzk + (1 -20¢ g) S (k+ 1)byzk
k=1 k=n-+1
Obviously w(0) = 0 and
A+ ) 3 (k+ Dbt
()] < —— - = <12
223 (k+1)bypzk — (121 oo 1) S (k4 )byt
k=1 k=n+1
as (20) is true under the hypothesis.
O
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