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PARTIAL SUMS OF τ- CONFLUENT HYPERGEOMETRIC

FUNCTION

AMIT SONI AND DEEPAK BANSAL

Abstract. In the present investigation, τ -confluent hypergeometric function
with their normalization are considered. In this paper, we will study the ratio
of a function of the form (4) to its sequence of partial sums (1Φτ
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1. Introduction

Let H denote the class of analytic functions f defined in the open unit disk D =
{z ∈ C : |z| < 1} and A denote the subclass of H, which are normalized by the
condition f(0) = 0 = f ′(0)− 1 and have representation of the form

f(z) = z +
∞∑

n=2

anz
n, z ∈ D. (1)

It is well known that the series

1ϕ1(b; c; z) =
∞∑

n=0

(b)nz
n

(c)n n!
(2)

in which c is neither zero nor a negative integer is convergent for all finite z. Here
(b)n denotes the Pochhammer (or Appell) symbol which is defined by

(b)n :=

{
1, (n = 0)
b(b+ 1)...(b+ n− 1), (n ∈ N).

The Pochhammer symbol is related to the gamma functions by the relation

(b)n =
Γ(b+ n)

Γ(b)
,

where b is neither zero nor a negative integer. The function 1ϕ1(b; c; z) is known
as a confluent hypergeometric function for more details one can refer [7]. In 1999
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Virchenko [11] introduced τ -confluent hypergeometric function which is defined by
(see also [12]):

1ϕ
τ
1(b; c; z) =

Γ(c)

Γ(b)

∞∑
n=0

Γ(b+ τn)zn

Γ(c+ τn) n!
, (3)

(τ > 0,ℜ(c) > ℜ(b) > 0)

For τ = 1,

1ϕ
τ
1(b; c; z) = 1ϕ1(b; c; z).

As the function 1ϕ
τ
1(b, c; z) does not belong to the family A, thus it is natural to

consider the following normalization of function 1ϕ
τ
1(b, c; z) in D:

1Φ
τ
1(b; c; z) = z1ϕ

τ
1(b, c; z)

= z +
Γ(c)

Γ(b)

∞∑
n=2

Γ(b+ τ(n− 1))

Γ(c+ τ(n− 1))

zn

(n− 1)!
. (4)

For the present investigation we will study 1Φ
τ
1(b, c; z) for real values of b and c

satisfying c ≥ b > 0 only.
If f, g are analytic functions in D, then f is said to be subordinate to g, written

as f(z) ≺ g(z) (z ∈ D), if there exists an analytic function w with w(0) = 0 and
|w(z)| ≤ 1 (z ∈ D) such that f(z) = g(w(z)). In particular, if g is univalent in D,
then we have the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(D) ⊂ g(D).

For more details one can refer [4]. In the present paper, we will study the ratio of
a function of the form (4) to its sequence of partial sums
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= 1 +
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(1Φ
τ
1(b; c; z))0 = z and (1Φ

τ
1(b; c; z))

′
0 = 1. (7)

We will determine lower bounds for ℜ
{
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and ℜ
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′
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}
. For various known results concerning with partial sums of

analytic univalent functions one can refer the works of Bansal and Orhan [1], Çağlar
and Deniz [2], Choi [3], Orhan and Yağmur [5], Owa et. al [6], Sheil-Small [8], Sil-
verman [9] and Silvia [10].
To prove main results we need following Lemma:

Lemma 1. If τ > 0 and c ≥ b > max{2− τ, 0} then,

|1Φτ
1(b; c; z)| ≤ 1 +

2Γ(c)

Γ(b)
(z ∈ D) (8)

and
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1(b; c; z)

′| ≤ 1 +
11

2

Γ(c)

Γ(b)
(z ∈ D). (9)
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Proof. To prove this lemma, we use the following inequalities

n

(n− 1)!
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2
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∀ n ≥ 4

Γ(c+τ(n−1)) ≥ Γ(b+τ(n−1)) (for τ > 0, c ≥ b > max{2−τ, 0} and n ∈ {2, 3, 4...})
and n! ≥ 2n−1 for all n ∈ N. Using (4), we have
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�

2. Main results

Theorem 1. If τ > 0, c ≥ b > max{2− τ, 0} and Γ(b) ≥ 2Γ(c), then

ℜ
{

1Φ
τ
1(b; c; z)
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1(b; c; z))n

}
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Proof. It is easy to see from (8) of Lemma 1 that
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To prove 10, we have to show that
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Using definition of subordination, and putting the values of 1Φ
τ
1(b; c; z) and (1Φ

τ
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Our assertion 10 is true if we show that w(0) = 0 and |w(z)| < 1 provided z ∈ D.
Simplifying for w(z), we get
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It suffices to show that the left hand side of (14) is bounded above by left hand side
of (12), which is equivalent to(

Γ(b)

2Γ(c)
− 1

) n∑
k=1

bk ≥ 0.

This is true as Γ(b) ≥ 2Γ(c).
To prove the result (11), we write
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.

Substituting the values of 1Φ
τ
1(b; c; z) and (1Φ

τ
1(b; c; z))n and simplifying for w(z),

we have
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as (14) is true for Γ(b) ≥ 2Γ(c). �
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Theorem 2. If τ > 0, c ≥ b > max{2− τ, 0} and 2Γ(b) ≥ 11Γ(c), then
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Proof. It is easy to see from (9) of Lemma 1 that
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Our assertion (10) is ture if we show that w(0) = 0 and |w(z)| < 1 provided z ∈ D.
Simplifying for w(z), we get
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It suffices to show that the left hand side of (20) is bounded above by left hand side
of (18), which is equivalent to(
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This is true in view of hypothesis.
To prove the result (17), we write

2Γ(b) + 11Γ(c)

11Γ(c)

[
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n
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∞∑
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as (20) is true under the hypothesis.
�
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[2] M. Çağlar and E. Deniz, Partial sums of the normalized Lommel functions, Math. Ineq. Appl.
18(3) (2015), 1189–1199.

[3] J. H. Choi, Univalent functions with positive coefficients involving a certain fractional integral
operator and its partial sums, Frac. Calc. Appl. Anal. 1(1998), 311–318.

[4] S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, New
York-Basel, Marcel Dekker, 2000.
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