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M-POLYNOMIAL AND DEGREE-BASED TOPOLOGICAL

INDICES OF GRAPHS

B. BASAVANAGOUD AND PRAVEEN JAKKANNAVAR

Abstract. For a graph G, the M-polynomial is defined as M(G;x, y) =∑
i≤j

mij(G)xiyj , where mij , (i, j ≥ 1), is the number of edges uv of G such

that dG(u) = i and dG(v) = j. The topological indices play an important role

in determining physico-chemical properties of chemical graphs, among them

the degree-based topological indices can be easily driven from an algebraic
expression corresponding to the chemical graphs called M-polynomial. In this

note, we first compute M−polynomial of some special graphs. Further, we de-

rive some degree-based topological indices of these graphs from their respective
M−polynomial.

1. Introduction

Throughout this paper, by a graph G = (V,E) we mean a simple, undirected,
finite graph of order n and size m. Let V (G) and E(G) denote the vertex set and an
edge set, respectively. The degree dG(v) of a vertex v ∈ V (G) is the number of edges
incident to it in G. Let {v1, v2, ..., vn} be the vertices of G and let dvi = dG(vi).
The line graph [13] L(G) of a graph G is a graph whose vertex set is one-to-one
correspondence with the edge set of the graph G and two vertices of L(G) are
adjacent if and only if the corresponding edges are adjacent in G. The subdivision
graph [13] S(G) of a graph G is the graph obtained by inserting a new vertex onto
each edge of G. The product [9, 13] G ×H of graphs G and H has the vertex set
V (G×H) = V (G)×V (H) and (a, x)(b, y) is an edge of G×H if and only if [a = b
and xy ∈ E(H)] or [x = y and ab ∈ E(G)]. The corona [9, 13] G ◦ H of graphs
G and H is a graph obtained from G and H by taking one copy of G and |V (G)|
copies of H and then joining by an edge each vertex of the ith copy of H is named
(H, i) with the ith vertex of G. The join [13] G1 +G2 of two graphs G1 and G2 is
the graph obtained from G1 and G2 by joining every vertex of G1 to all vertices of
G2. For undefined graph theoretic terminologies and notions, refer to [13, 15, 23].

It is always interesting to find some properties of graphs which are invariant.
Topological indices and polynomials are foremost among them. Over the last decade
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there are numerous research papers devoted to topological indices and polynomials.
Several topological indices have been defined in the literature. For details of topo-
logical indices one can refer to [7, 16]. For different topological indices and their
applications one can refer to [1, 2, 3, 10, 11, 12]. The general form of degree-based
topological index of a graph is given by

TI(G) =
∑

e=uv∈E(G)

f(dG(u), dG(v))

where f = f(x, y) is a function appropriately chosen for the computation. Table 1
gives the standard topological indices defined by f(x, y).

There are many graph polynomials too [4, 25]. The Hosoya polynomial is the
most well-known polynomial which plays a vital role in determining distance-based
topological indices such as Wiener index [24], hyper Wiener index [4] of graphs. The
M−polynomial [5] is one among other algebraic polynomials which was introduced
in 2015 and useful in determining many degree-based topological indices (listed in
Table 1) [7, 16]. Recently, the study of M−polynomial are reported in [18, 19, 20].

Definition 1. [5] If G is a graph, then M − polynomial of G is defined as

M(G;x, y) =
∑
i≤j

mij(G)xiyj , (1.1)

where mij , (i, j ≥ 1), is the number [6] of edges uv in G such that dG(u) = i and
dG(v) = j.

Table 1. Operations to Derive degree-based topological indices
from M−polynomial [5].

Notation Topological Index f(x, y) Derivation from M(G;x, y)

M1(G) First Zagreb x+ y (Dx +Dy)(M(G;x, y))|x=y=1

M2(G) Second Zagreb xy (DxDy)(M(G;x, y))|x=y=1

mM2(G) Second modified Zagreb 1
xy (SxSy)(M(G;x, y))|x=y=1

SD(G) Symmetric division index x2+y2

xy (DxSy +DySx)(M(G;x, y))|x=y=1

H(G) Harmonic 2
x+y 2SxJ(M(G;x, y))|x=1

In(G) Inverse sum index xy
x+y SxJDxDy(M(G;x, y))|x=1

where Dx = x∂f(x,y)∂x , Dy = y ∂f(x,y)∂y , Sx =
∫ x
0
f(t,y)
t dt, Sy =

∫ y
0
f(x,t)
t dt and

J(f(x, y)) = f(x, x) are the operators.

2. M-polynomial of some special Graphs

Proposition 2.1. The M -polynomial of a path, a cycle, a complete graph, a com-
plete bipartite graph, a wheel, a star and a double star are as follows:
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(i) For a path Pn of order n, we have

M(Pn;x, y) = 2xy2 + (n− 3)x2y2.

(ii) For a cycle Cn of order n, we have

M(Cn;x, y) = nx2y2.

(iii) For a complete graph of order n, we have

M(Kn;x, y) =

(
n

2

)
xn−1yn−1.

(iv) For a complete bipartite graph Ka,b of order a+ b, we have

M(Ka,b;x, y) = abxayb.

(v) For a wheel Wn of order n+ 1, we have

M(Wn;x, y) = nx3y3 + nx3yn.

(vi) For a star Sn of order n+ 1, we have

M(Sn;x, y) = nxyn.

(vii) For a double star Sa,b of order a+ b+ 2, we have

M(Sa,b;x, y) = axya+1 + bxyb+1 + xa+1yb+1.

Definition 2. The vertex splitting graph [22] S′(G) of a graph G is obtained from
G by adding for each vertex v of G a new vertex v′ so that v′ is adjacent to every
vertex that is adjacent to v.

Theorem 2.2. If G is a graph of order n and size m with the M -polynomial
M(G;x, y) =

∑
i≤j

mij(G)xiyj, then

M(S′(G);x, y) =
∑
i≤j

mij(S
′(G))xiyj =

∑
i≤j

mij(G)x2iy2j +
∑
a≤b

mab(G)xayb,

where mab(G) =

{
mij(G) for a = i, b = 2j and i 6= j,
2mij(G) for a = i, b = 2j and i = j.

Proof. By definition of vertex splitting graph, we have the degree of the original
vertices of G in S′(G) is twice the degree of that vertex in G while the degree of the
duplicates of those vertices are the same as the degree of corresponding vertices in
G. Therefore, we have the following:

m2i2j(S
′(G)) = mij(G) and mab(G) =

{
mij(G) for a = i, b = 2j and i 6= j,
2mij(G) for a = i, b = 2j and i = j.

Thus, we get the desired result by substituting these values in Eq. (1.1). �

Definition 3. The edge splitting graph [14] LS(G) of a graph G is a graph with
vertex set E(G) ∪ E1(G) with two vertices adjacent if they correspond to adjacent
edges of G or one corresponds to an element ei

′ of E1(G) and the other to an
element ej of E(G) where ej ∈ N(ei).
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Theorem 2.3. If G is a graph of order n and size m with the M -polynomial
M(G;x, y) =

∑
i≤j

mij(G)xiyj, then

M(LS(G);x, y) =
∑
i≤j

mij(LS(G))xiyj =
∑
i≤j

mij(L(G))x2iy2j+
∑
a≤b

mab(L(G))xayb,

where mab(L(G)) =

{
mij(L(G)) for a = i, b = 2j and i 6= j,
2mij(L(G)) for a = i, b = 2j and i = j.

Proof. By definition of edge splitting graph, we have the degree of the original
vertex of L(G) in LS(G) is twice the degree of that edge vertex in L(G) while the
degree of the duplicates of those vertices are the same as the degree of corresponding
vertices in L(G). Therefore, we have the following:

m2i2j(LS(G)) = mij(L(G)) and mab(L(G)) =

{
mij(L(G)) for a = i, b = 2j and i 6= j,
2mij(L(G)) for a = i, b = 2j and i = j.

Thus, we get the desired result by substituting these values in Eq. (1.1). �

Definition 4. The shadow graph [9] D2(G) of a connected graph G is constructed
by taking two copies of G, say G′, G′′ and joining each vertex v′ in G′ to the
neighbors of the corresponding vertex v′′ in G′′.

Theorem 2.4. If G is a graph of order n and D2(G) is the shadow graph of G,
then

M(D2(G);x, y) =
∑
i≤j

4mij(G)x2iy2j .

Proof. Let D2(G) be the shadow graph of a graph G of order n which has 2n vertices
and 4m edges. Then we have by definition of shadow graph dD2(G)(v

′) = 2dG(v)
for each v′ ∈ V (D2(G)) corresponds to v ∈ V (G). Thus,

|E{2i,2j}| = |uv ∈ E(D2(G)) : du = 2i and dv = 2i|
= 2|u′v′ ∈ E(G′) : du′ = i and dv′ = j|+ 2|u′′v′′ ∈ E(G′′) : du′′ = i and dv′′ = j|
= 2mij(G) + 2mij(G)

= 4mij(G).

Thus, the M − polynomial of D2(G) is

M(D2(G);x, y) =
∑
i≤j

mij(D2(G))xiyj =
∑
i≤j

4mij(G)x2iy2j .

�

Corollary 2.5. If G is an r-regular graph of order n and size m, then

M(D2(G);x, y) = 4mx2ry2r

Definition 5. For a graph G = (V (G), E(G), the Mycielskian [21] µ(G) of G is
a graph with vertex set consisting the disjoint union V (G) ∪ V ′(G) ∪ {u}, where
V ′(G) = {x′ : x ∈ V (G)}, and the edge set E(G) ∪ {x′y : xy ∈ E(G)} ∪ {x′u : x′ ∈
V ′(G)}.
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Figure 1. The graph G with its vertex splitting graph S′(G), line
splitting graph Ls(G), shadow graph D2(G) and Mycielskian µ(G).

Theorem 2.6. If G is a graph of order n and size m with the M -polynomial
M(G;x, y) =

∑
i≤j

mij(G)xiyj, then

M(µ(G);x, y) =
∑
i≤j

mij(G)x2iy2j +
∑
a′≤b′

ma′b′(G)xa
′
yb

′
,

where a′ = min{a, b}, b′ = max{a, b}, and for i′ = min{i, j}, j′ = max{i, j}

ma′b′(G) =

 mi′j′(G) if a = i+ 1, b = 2j and i 6= j,
2mi′j′(G) if a = i+ 1, b = 2j and i = j,
|{v : dv = i}| if a = i+ 1, b = n for i = 1, 2, ..., n− 1.

Proof. By definition of mycielskian of a graph, we have the degree of the original
vertices of G in µ(G) is twice the degree of that vertex in G, the degree dµ(G)(v

′
i) =

dG(vi) + 1 of the duplicates v′i of vi ∈ V (G) and the degree of the vertex u ∈ µ(G)
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is n. Therefore, we have the following:

m2i2j(µ(G)) = mij(G)

and

ma′b′(G) =

 mi′j′(G) if a = i+ 1, b = 2j and i 6= j,
2mi′j′(G) if a = i+ 1, b = 2j and i = j,
|{v : dv = i}| if a = i+ 1, b = n for i = 1, 2, ..., n− 1.

Thus, we get the desired result by substituting these values in Eq. (1.1). �

Corollary 2.7. If M -polynomial of Mycielskian of a graph G is

M(µ(G);x, y) =
∑
i≤j

mij(G)x2iy2j +
∑
a′≤b′

ma′b′(G)xa
′
yb

′
,

then

M1(µ(G)) = 2
∑
i≤j

(i+ j)mij(G) +
∑
a′≤b′

(a′ + b′)ma′b′(G),

M2(µ(G)) = 4
∑
i≤j

ijmij(G) +
∑
a′≤b′

a′b′ma′b′(G),

mM2(µ(G)) =
1

4

∑
i≤j

mij(G)

ij
+
∑
a′≤b′

ma′b′(G)

a′b′
,

SD(µ(G)) =
∑
i≤j

(i2 + j2)mij(G)

ij
+
∑
a′≤b′

(a′2 + b′2)ma′b′(G)

a′b′
,

H(µ(G)) =
∑
i≤j

ijmij(G)

(i+ j)
+ 2

∑
a′≤b′

a′b′ma′b′(G)

(a′ + b′)
,

In(µ(G)) =
∑
i≤j

ij(i+ j)mij(G) +
∑
a′≤b′

a′b′(a′ + b′)ma′b′(G).

Proof. We get the desired results by applying the appropriate operators to M -
polynomial of µ(G). �

Definition 6. [8] Let P3 be the 3-vertex tree rooted at one its terminal vertices.
See Fig. 2. For k = 2, 3, ... construct the rooted tree Bk by identifying the roots of
k copies of P3. The vertex obtained by identifying the roots of P3-trees is the root
of Bk. The illustrative structure of the rooted tree Bk is depicted in Fig. 2

Definition 7. [8] Let d be an integer and β1, β2, ..., βd be rooted trees as specified
in Definition 6, i.e., β1, β2, ..., βd ∈ {B2, B3, ...}. A Kragujevac tree Tk is a tree
possessing a vertex of degree d, adjacent to the roots of β1, β2, ..., βd. This vertex is
said to be the central vertex of Tk. The subgraphs β1, β2, ..., βd are the branches of
Tk. Note that, some (or all) branches of Tk may be mutually isomorphic.

Theorem 2.8. If Tk is a Kragujevac tree with β1, β2, ..., βd ∈ {B2, B3, ...} branches,
then

M(Tk;x, y) =
∑
i≥2

ikixy
2 +

∑
i≥2

ikix
2yi+1 +

∑
i≥2

kix
dyi+1,

where ki = |{βi : βi is a branch of Tk such that βi = Bi}| for i ≥ 2.
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Figure 2. The rooted trees Bk’s and the Kragujevac tree Tk.

Proof. By definition of Kragujevac tree Tk, we have
∑
i≥2

iki vertices of degree 1,∑
i≥2

iki vertices of degree 2 and ki vertices of degree i + 1. Therefore, the edge

partition of Tk is given as follows:

|E{1,2}| = |uv ∈ E(Tk) : du = 1 and dv = 2| =
∑
i≥2

iki,

|E{2,i+1}| = |uv ∈ E(Tk) : du = 2 and dv = i+ 1| = iki,

|E{d,i+1}| = |uv ∈ E(Tk) : du = d and dv = i+ 1| = ki.

Thus, the M − polynomial of Tk is

M(Tk;x, y) =
∑
i≤j

mij(Tk)xiyj =
∑
i≥2

ikixy
2 +

∑
i≥2

ikix
2yi+1 +

∑
i≥2

kix
dyi+1.

�

Corollary 2.9. If M -polynomial of Kragujevac tree Tk is

M(Tk;x, y) =
∑
i≥2

ikixy
2 +

∑
i≥2

ikix
2yi+1 +

∑
i≥2

kix
dyi+1,
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then

M1(Tk) =
∑
i≥2

(i2 + 7i+ d+ 1)ki,

M2(Tk) =
∑
i≥2

(2i2 + (4 + d)i+ d)ki,

mM2(Tk) =
∑
i≥2

(i2 + 5i+ 2d)

2(i+ 1)
ki,

SD(Tk) =
∑
i≥2

(7i2 + 13i+ 2d+ 2)

2(i+ 1)
ki,

H(Tk) =
∑
i≥2

(2i3 + 2(d+ 7)i2 + 6(2d+ 3)i+ 18)

3(i+ 3)(d+ i+ 1)
ki,

In(Tk) =
∑
i≥2

(8i3 + (11d+ 20)i2 + 12(2d+ 1)i+ 9d)

3(i+ 3)(d+ i+ 1)
ki.

Proof. We get the desired results by applying the appropriate operators on M -
polynomial of Tk. �

The definitions of the special graphs used in this paper can be found in [9]. In this
section, we obtain M− polynomials of some special graphs. We also derive some
topological indices (mentioned in section 1) of these graphs from the respective M−
polynomials.

Definition 8. The book graph Bm = Sm×P2 is a graph with 2(m+1) vertices and
(3m+ 1) edges, where Sm is a star of order (m+ 1) and P2 is a path of length one.

Theorem 2.10. If Bm is a book graph of order 2(m+ 1) and size (3m+ 1), then

M(Bm;x, y) = mx2y2 + 2mx2ym+1 + xm+1ym+1.

Proof. The book graph Bm has 2(m + 1) vertices and (3m + 1) edges. The edge
set of Bm can be partitioned as,

|E{2,2}| = |uv ∈ E(Bm) : du = 2 and dv = 2| = m,

|E{2,m+1}| = |uv ∈ E(Bm) : du = 2 and dv = m+ 1| = 2m,

|E{m+1,m+1}| = |uv ∈ E(Bm) : du = m+ 1 and dv = m+ 1|
= |E(Bm)− |E{2,2}| − |E{2,m+1}| = 1.

Thus, the M − polynomial of Bm is
M(Bm;x, y) =

∑
i≤j

mij(Bm)xiyj = mx2y2 + 2mx2ym+1 + xm+1ym+1.

�
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Corollary 2.11. If M -polynomial of the book graph Bm is M(Bm;x, y) = mx2y2+
2mx2ym+1 + xm+1ym+1, then

M1(Bm) = 2(m2 + 6m+ 1),

M2(Bm) = 5m2 + 10m+ 1,

mM2(Bm) =
m3 + 6m2 + 5m+ 4

4(m2 + 2m+ 1)
,

SD(Bm) =
m3 + 4m2 + 9m+ 2

m+ 1
,

H(Bm) =
m3 + 12m2 + 13m+ 6

2(m2 + 4m+ 3)
,

In(Bm) =
11m2 + 18m+ 3

2(m+ 3)
.

Proof. We have, the M -polynomial of the book graph Bm as

M(Bm;x, y) = mx2y2 + 2mx2ym+1 + xm+1ym+1.

Therefore,

Dx = x
∂f(x, y)

∂x
= 2mx2y2 + 4mx2ym+1 + (m+ 1)xm+1ym+1,

Dy = y
∂f(x, y)

∂y
= 2mx2y2 + 2m(m+ 1)x2ym+1 + (m+ 1)xm+1ym+1,

Sx =

∫ x

0

f(t, y)

t
dt =

m

2
x2y2 +mx2ym+1 +

1

(m+ 1)
xm+1ym+1,

Sy =

∫ y

0

f(x, t)

t
dt =

m

2
x2y2 +

2m

(m+ 1)
x2ym+1 +

1

(m+ 1)
xm+1ym+1,

J(f(x, y)) = f(x, x) = mx4 + 2mxm+3 + x2(m+1).

Thus, we get

M1(Bm) = (Dx +Dy)(M(Bm;x, y))|x=y=1 = 2(m2 + 6m+ 1),

M2(Bm) = (DxDy)(M(Bm;x, y))|x=y=1 = 5m2 + 10m+ 1,

mM2(Bm) = (SxSy)(M(Bm;x, y))|x=y=1 =
m3 + 6m2 + 5m+ 4

4(m2 + 2m+ 1)
,

SD(Bm) = (DxSy +DySx)(M(Bm;x, y))|x=y=1 =
m3 + 4m2 + 9m+ 2

m+ 1
,

H(Bm) = 2SxJ(M(Bm;x, y))|x=1 =
m3 + 12m2 + 13m+ 6

2(m2 + 4m+ 3)
,

In(Bm) = SxJDxDy(M(Bm;x, y))|x=1 =
11m2 + 18m+ 3

2(m+ 3)
.

�

Definition 9. The Ladder Ln = Pn × P2 is a graph of order 2n and size (3n− 2),
where Pn and P2 are two paths of length (n− 1) and 1, respectively.

Theorem 2.12. If Ln is a ladder, then

M(Ln;x, y) = 2x2y2 + 4x2y3 + (3n− 8)x3y3.
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Figure 3. Plot of M -polynomial of the book graph B10

Proof. The ladder Ln has 2n vertices and (3n − 2) edges. The edge set of Ln can
be partitioned as,

|E{2,2}| = |uv ∈ E(Ln) : du = 2 and dv = 2| = 2,

|E{2,3}| = |uv ∈ E(Ln) : du = 2 and dv = 3| = 4,

|E{3,3}| = |uv ∈ E(Ln) : du = 3 and dv = 3|
= |E(Ln)− |E{2,2}| − |E{2,3}| = 3n− 8.

Thus, the M − polynomial of Ln is
M(Ln;x, y) =

∑
i≤j

mij(Ln)xiyj = 2x2y2 + 4x2y3 + (3n− 8)x3y3. �

Corollary 2.13. If the M -polynomial of the ladder Ln is M(Ln;x, y) = 2x2y2 +
4x2y3 + (3n− 8)x3y3, then

M1(Ln) = 2(9n− 10),

M2(Ln) = 27n− 40,

mM2(Ln) =
6n+ 5

18
,

SD(Ln) =
2(9n− 5)

3
,

H(Ln) =
15n− 1

15
,

In(Ln) =
45n− 52

10
.

Proof. We have, the M -polynomial of the ladder Ln as

M(Ln;x, y) = 2x2y2 + 4x2y3 + (3n− 8)x3y3.
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Figure 4. Plot of M -polynomial of the ladder L10

Therefore,

Dx = x
∂f(x, y)

∂x
= 4x2y2 + 8x2y3 + 3(3n− 8)x3y3,

Dy = y
∂f(x, y)

∂y
= 4x2y2 + 12x2y3 + 3(3n− 8)x3y3,

Sx =

∫ x

0

f(t, y)

t
dt = x2y2 + 2x2y3 +

(3n− 8)

3
x3y3,

Sy =

∫ y

0

f(x, t)

t
dt = x2y2 +

4

3
x2y3 +

(3n− 8)

3
x3y3,

J(f(x, y)) = f(x, x) = 2x4 + 4x5 + (3n− 8)x6.

Thus, we get

M1(Ln) = (Dx +Dy)(M(Ln;x, y))|x=y=1 = 2(9n− 10),

M2(Ln) = (DxDy)(M(Ln;x, y))|x=y=1 = 27n− 40,

mM2(Ln) = (SxSy)(M(Ln;x, y))|x=y=1 =
6n+ 5

18
,

SD(Ln) = (DxSy +DySx)(M(Ln;x, y))|x=y=1 =
2(9n− 5)

3
,

H(Ln) = 2SxJ(M(Ln;x, y))|x=1 =
15n− 1

15
,

In(Ln) = SxJDxDy(M(Ln;x, y))|x=1 =
45n− 52

10
.

�

The surfaces in Figures 3 and 4 are plotted by using Mathematica. These sur-
faces are obtained by M -polynomial of the respective graph which shows different
behaviours for different parameters m,n, x and y.
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Definition 10. A planar grid Pm × Pn, is a graph obtained by the product of two
paths Pm and Pn of lengths (m− 1) and (n− 1), respectively.

Theorem 2.14. If Pm × Pn is a planar grid, then

M(Pm×Pn;x, y) = 8x2y3+2(m+n−6)x3y3+2(m+n−4)x3y4+(2mn−5m−5n+12)x4y4.

Proof. The planar grid Pm × Pn has mn vertices and (2mn −m − n) edges. The
edge set of Pm × Pn can be partitioned as,

|E{2,3}| = |uv ∈ E(Pm × Pn) : du = 2 and dv = 3| = 8,

|E{3,3}| = |uv ∈ E(Pm × Pn) : du = 3 and dv = 3| = 2(m+ n− 6),

|E{3,4}| = |uv ∈ E(Pm × Pn) : du = 3 and dv = 4| = 2(m+ n− 4),

|E{4,4}| = |uv ∈ E(Pm × Pn) : du = 4 and dv = 4|
= |E(Pm × Pn)− |E{2,3}| − |E{3,3}| − |E{3,4}| = 2mn− 5m− 5n+ 12.

Thus, the M − polynomial of Pm × Pn is

M(Pm × Pn;x, y) =
∑
i≤j

mij(Pm × Pn)xiyj

= 8x2y3 + 2(m+ n− 6)x3y3 + 2(m+ n− 4)x3y4 + (2mn− 5m− 5n+ 12)x4y4.

�

Definition 11. The prism Πn = Cn×P2 is a 3-regular graph of order 2n and size
3n, where Cn is cycle of order n and P2 is a path of length one.

Theorem 2.15. If Πn is a prism, then

M(Πn;x, y) = 3nx3y3.

Proof. Let prism Πn be a 3-regular graph having 2n vertices and 3n edges. The
edge partition of Πn is given by,

|E{3,3}| = |uv ∈ E(Πn) : du = 3 and dv = 3| = 3n.

Thus, the M − polynomial of the prism Πn is
M(Πn;x, y) =

∑
i≤j

mij(Πn)xiyj = 3nx3y3. �

Definition 12. The book graph with triangular pages Btm = P2 +mK1 is a graph
with (n+ 2) vertices and (2n+ 1) edges, where P2 is a path of length one and mK1

are the m isolated vertices.

Theorem 2.16. If Btm is a book graph with triangular pages having (n+2) vertices
and (2n+ 1) edges, then

M(Btm;x, y) = 2mx2ym+1 + xm+1ym+1.

Proof. Let Btm is a book graph with triangular pages having (n + 2) vertices and
(2n+ 1) edges. The edge partition of Btm is given by,

|E{2,m+1}| = |uv ∈ E(Btm) : du = 2 and dv = m+ 1| = 2m,

|E{m+1,m+1}| = |uv ∈ E(Btm) : du = m+ 1 and dv = m+ 1|
= |E(Btm)− |E{2,m+1}| = 1.

Thus, M(Btm;x, y) =
∑
i≤j

mij(B
t
m)xiyj = 2mx2ym+1 + xm+1ym+1. �
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Definition 13. The corona Pn ◦K1 of a path Pn of length (n− 1) with an isolated
vertex K1 is called a comb graph and the corona Pn ◦ 2K1 of a path Pn of length
(n− 1) with two isolated vertices 2K1 is called a double comb graph.

Theorem 2.17. If Pn ◦K1 is a comb graph, then

M(Pn ◦K1;x, y) = 2xy2 + (n− 2)xy3 + 2x2y3 + (n− 3)x3y3.

Proof. The comb graph Pn ◦K1 has 2n vertices and (2n− 1) edges. The edge set
of Pn ◦K1 can be partitioned as,

|E{1,2}| = |uv ∈ E(Pn ◦K1) : du = 1 and dv = 2| = 2,

|E{1,3}| = |uv ∈ E(Pn ◦K1) : du = 1 and dv = 3| = (n− 2),

|E{2,3}| = |uv ∈ E(Pn ◦K1) : du = 2 and dv = 3| = 2,

|E{3,3}| = |uv ∈ E(Pn ◦K1) : du = 3 and dv = 3|
= |E(Pn ◦K1)− |E{1,2}| − |E{1,3}| − |E{2,3}| = n− 3.

Thus, the M − polynomial of Pn ◦K1 is

M(Pn ◦K1;x, y) =
∑
i≤j

mij(Pn ◦K1)xiyj

= 2xy2 + (n− 2)xy3 + 2x2y3 + (n− 3)x3y3.

�

Theorem 2.18. If Pn ◦ 2K1 is a double comb graph, then

M(Pn ◦ 2K1;x, y) = 4xy3 + 2(n− 2)xy4 + 2x3y4 + (n− 3)x4y4.

Proof. The double comb graph Pn ◦ 2K1 has 3n vertices and (3n − 1) edges. The
edge set of Pn ◦ 2K1 can be partitioned as,

|E{1,3}| = |uv ∈ E(Pn ◦ 2K1) : du = 1 and dv = 3| = 4,

|E{1,4}| = |uv ∈ E(Pn ◦ 2K1) : du = 1 and dv = 4| = 2(n− 2),

|E{3,4}| = |uv ∈ E(Pn ◦ 2K1) : du = 3 and dv = 4| = 2,

|E{4,4}| = |uv ∈ E(Pn ◦ 2K1) : du = 4 and dv = 4|
= |E(Pn ◦ 2K1)− |E{1,3}| − |E{1,4}| − |E{3,4}| = n− 3.

Thus, the M − polynomial of Pn ◦ 2K1 is

M(Pn ◦ 2K1;x, y) =
∑
i≤j

mij(Pn ◦ 2K1)xiyj

= 4xy3 + 2(n− 2)xy4 + 2x3y4 + (n− 3)x4y4.

�

Definition 14. A jelly fish J(m,n) is a graph obtained from a cycle C4 : uxvyu by
joining x and y with an edge and appending m pendant edges to u and n pendant
edges to v.

Theorem 2.19. If J(m,n) is a jelly fish graph, then

M(J(m,n);x, y) = mxym+2 + nxyn+2 + 2x3ym+2 + 2x3yn+2 + x3y3.
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Proof. The jelly fish graph J(m,n) has (4 +m+n) vertices and (5 +m+n) edges.
The edge set of J(m,n) can be partitioned as,

|E{1,m+2}| = |uv ∈ E(J(m,n)) : du = 1 and dv = m+ 2| = m,

|E{1,n+2}| = |uv ∈ E(J(m,n)) : du = 1 and dv = n+ 2| = n,

|E{3,m+2}| = |uv ∈ E(J(m,n)) : du = 3 and dv = m+ 2| = 2,

|E{3,n+2}| = |uv ∈ E(J(m,n)) : du = 3 and dv = n+ 2| = 2,

|E{3,3}| = |uv ∈ E(J(m,n)) : du = 3 and dv = 3|
= |E(J(m,n))− |E{1,m+2}| − |E{1,n+2}| − |E{3,m+2}| − |E{3,n+2}| = 1.

Thus, the M − polynomial of J(m,n) is

M(J(m,n);x, y) =
∑
i≤j

mij(J(m,n))xiyj

= mxym+2 + nxyn+2 + 2x3ym+2 + 2x3yn+2 + x3y3.

�

Definition 15. A butterfly graph Bym,n is obtained from two even cycles of the
same order n for n ≥ 3, sharing a common vertex with m pendant edges attached
at the common vertex.

Theorem 2.20. If Bym,n is a butterfly graph, then

M(Bym,n;x, y) = mxym+4 + 4x2ym+4 + (2n− 4)x2y2.

Proof. The butterfly graph Bym,n has (2n + m − 1) vertices and (2n + m) edges.
The edge set of Bym,n can be partitioned as,

|E{1,m+4}| = |uv ∈ E(Bym,n) : du = 1 and dv = m+ 4| = m,

|E{2,m+4}| = |uv ∈ E(Bym,n) : du = 2 and dv = m+ 4| = 4,

|E{2,2}| = |uv ∈ E(Bym,n) : du = 2 and dv = 2|
= |E(Bym,n)− |E{1,m+4}| − |E{2,m+4}| = 2n− 4.

Thus, the M − polynomial of Bym,n is

M(Bym,n;x, y) =
∑
i≤j

mij(Bym,n)xiyj

= mxym+4 + 4x2ym+4 + (2n− 4)x2y2.

�

Definition 16. The triangular snake [17] Tn is a graph obtained from the path Pn
of length (n− 1), by replacing each edge of the path by a triangle C3.

Theorem 2.21. If Tn is a triangular snake, then

M(Tn;x, y) = 2x2y2 + 2(n− 1)x2y4 + (n− 3)x4y4.

Proof. Let triangular snake Tn be a graph having (2n − 1) vertices and 3(n − 1)
edges. The edge partition of Tn is given by,

|E{2,2}| = |uv ∈ E(Tn) : du = 2 and dv = 2| = 2,

|E{2,4}| = |uv ∈ E(Tn) : du = 2 and dv = 4| = 2(n− 1),

|E{4,4}| = |uv ∈ E(Tn) : du = 4 and dv = 4|
= |E(Tn)| − |E{2,2}| − |E{2,4}| = n− 3.
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Thus, the M − polynomial of Tn is

M(Tn;x, y) =
∑
i≤j

mij(Tn)xiyj = 2x2y2 + 2(n− 1)x2y4 + (n− 3)x4y4.

�

Definition 17. The double triangular snake DTn is a graph consisting of two tri-
angular snakes that have a common path. i.e., a double triangular snake is obtained
from the path Pn : u1u2...un by joining ui and ui+1 to a new vertex vi, (1 ≤ i ≤ n−1)
and to a new vertex wi, (1 ≤ i ≤ n− 1).

Theorem 2.22. If DTn is a double triangular snake, then

M(DTn;x, y) = 4x2y3 + 4(n− 2)x2y6 + 2x3y6 + (n− 3)x6y6.

Proof. Let double triangular snake DTn be a graph having (3n − 2) vertices and
5(n− 1) edges. The edge partition of DTn is given by,

|E{2,3}| = |uv ∈ E(DTn) : du = 2 and dv = 3| = 4,

|E{2,6}| = |uv ∈ E(DTn) : du = 2 and dv = 6| = 4(n− 2),

|E{3,6}| = |uv ∈ E(DTn) : du = 3 and dv = 6| = 2,

|E{6,6}| = |uv ∈ E(DTn) : du = 6 and dv = 6|
= |E(DTn)| − |E{2,3}| − |E{2,6}| − |E{3,6}| = n− 3.

Thus, the M − polynomial of DTn is

M(DTn;x, y) =
∑
i≤j

mij(DTn)xiyj = 4x2y3 + 4(n− 2)x2y6 + 2x3y6 + (n− 3)x6y6.

�

Definition 18. An irregular triangular snake ITn is a graph obtained from the
path Pn : u1u2...un with vertex set V (ITn) = V (Pn) ∪ {vi : 1 ≤ i ≤ n− 2} and the
edge set E(ITn) = E(Pn) ∪ {uivi, viui+2 : 1 ≤ i ≤ n− 2}.

Theorem 2.23. If ITn is an irregular triangular snake, then

M(ITn;x, y) = 2x2y2 + 4x2y3 + 2x3y4 + 2(n− 4)x2y4 + (n− 5)x4y4.

Proof. Let an irregular triangular snake ITn be a graph having 2(n − 1) vertices
and (3n− 5) edges. The edge partition of ITn is given by,

|E{2,2}| = |uv ∈ E(ITn) : du = 2 and dv = 2| = 2,

|E{2,3}| = |uv ∈ E(ITn) : du = 2 and dv = 3| = 4,

|E{2,4}| = |uv ∈ E(ITn) : du = 2 and dv = 4| = 2(n− 4),

|E{3,4}| = |uv ∈ E(ITn) : du = 3 and dv = 4| = 2,

|E{4,4}| = |uv ∈ E(ITn) : du = 4 and dv = 4|
= |E(ITn)| − |E{2,2}| − |E{2,3}| − |E{2,4}| − |E{3,4}| = n− 5.

Thus, the M − polynomial of ITn is

M(ITn;x, y) =
∑
i≤j

mij(ITn)xiyj = 2x2y2+4x2y3+2x3y4+2(n−4)x2y4+(n−5)x4y4.

�
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Definition 19. The alternate triangular snake A(Tn) is obtained from a path
v1v2...vn by joining vi and vi+1 (alternatively) to new vertex vi, that is, every al-
ternate edge of a path is replaced by C3.

Theorem 2.24. If A(Tn) is an alternate triangular snake, then

M(A(Tn);x, y) =

{
2x2y2 + nx2y3 + (n− 3)x3y3 if n is even,
xy3 + x2y2 + (n− 1)x2y3 + (n− 3)x3y3 if n is odd .

Proof. Let an alternate triangular snake A(Tn) be a graph having (n+bn2 c) vertices
and (n− 1 + bn2 c) edges. The edge partition of A(Tn) is given as follows:
If n is even, then there will be no pendant edge in A(Tn). Therefore, we have

|E{2,2}| = |uv ∈ E(A(Tn)) : du = 2 and dv = 2| = 2,

|E{2,3}| = |uv ∈ E(A(Tn)) : du = 2 and dv = 3| = n,

|E{3,3}| = |uv ∈ E(A(Tn)) : du = 3 and dv = 3|
= |E(A(Tn))| − |E{2,2}| − |E{2,3}| = n− 3.

If n is odd, then there will be a pendant edge in A(Tn). Therefore, we have

|E{1,3}| = |uv ∈ E(A(Tn)) : du = 1 and dv = 3| = 1,

|E{2,2}| = |uv ∈ E(A(Tn)) : du = 2 and dv = 2| = 1,

|E{2,3}| = |uv ∈ E(A(Tn)) : du = 2 and dv = 3| = n− 1,

|E{3,3}| = |uv ∈ E(A(Tn)) : du = 3 and dv = 3|
= |E(A(Tn))| − |E{1,3}| − |E{2,2}| − |E{2,3}| = n− 3.

Thus, the M − polynomial of A(Tn) is

M(A(Tn);x, y) =
∑
i≤j

mij(A(Tn))xiyj =

{
2x2y2 + nx2y3 + (n− 3)x3y3 if n is even,
xy3 + x2y2 + (n− 1)x2y3 + (n− 3)x3y3 if n is odd.

�

Definition 20. A double alternate triangular snake DA(Tn) consists of two alter-
nate triangular snakes that have a common path.

Theorem 2.25. Let DA(Tn) be a double alternate triangular snake. Then

M(DA(Tn);x, y) =

{
4x2y3 + (4

⌊
n
2

⌋
− 4)x2y4 + 2x3y4 + (n− 3)x4y4 if n is even,

xy4 + 2x2y3 + (4
⌊
n
2

⌋
− 2)x2y4 + x3y4 + (n− 3)x4y4 if n is odd.

Proof. Let a double alternate triangular snake DA(Tn) be a graph having (n+2bn2 c)
vertices and (n−1+4bn2 c) edges. The edge partition of DA(Tn) is given as follows:
If n is even, then there will be no pendant edge in DA(Tn). Therefore, we have

|E{2,3}| = |uv ∈ E(DA(Tn)) : du = 2 and dv = 3| = 4,

|E{2,4}| = |uv ∈ E(DA(Tn)) : du = 2 and dv = 4| = 4
⌊n

2

⌋
− 4,

|E{3,4}| = |uv ∈ E(DA(Tn)) : du = 3 and dv = 4| = 2,

|E{4,4}| = |uv ∈ E(DA(Tn)) : du = 4 and dv = 4|
= |E(DA(Tn))| − |E{2,3}| − |E{2,4}| − |E{3,4}| = n− 3.
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If n is odd, then there will be a pendant edge in DA(Tn). Therefore, we have

|E{1,4}| = |uv ∈ E(DA(Tn)) : du = 1 and dv = 4| = 1,

|E{2,3}| = |uv ∈ E(DA(Tn)) : du = 2 and dv = 3| = 2,

|E{2,4}| = |uv ∈ E(DA(Tn)) : du = 2 and dv = 4| = 4
⌊n

2

⌋
− 2,

|E{3,4}| = |uv ∈ E(DA(Tn)) : du = 3 and dv = 4| = 1,

|E{4,4}| = |uv ∈ E(DA(Tn)) : du = 4 and dv = 4|
= |E(DA(Tn))| − |E{1,4}| − |E{2,3}| − |E{2,4}| − |E{3,4}| = n− 3.

Thus, the M − polynomial of DA(Tn) is

M(DA(Tn);x, y) =
∑
i≤j

mij(DA(Tn))xiyj

=

{
4x2y3 + (4

⌊
n
2

⌋
− 4)x2y4 + 2x3y4 + (n− 3)x4y4 if n is even,

xy4 + 2x2y3 + (4
⌊
n
2

⌋
− 2)x2y4 + x3y4 + (n− 3)x4y4 if n is odd.

�

Definition 21. The quadrilateral snake Qn is obtained from the path Pn by replac-
ing each edge of the path by a quadrilateral C4.

Theorem 2.26. If Qn is a quadrilateral snake, then

M(Qn;x, y) = 4x2y2 + 4(n− 2)x2y4.

Proof. Let quadrilateral snake Qn be a graph having (3n− 2) vertices and 4(n− 1)
edges. The edge partition of Qn is given by,

|E{2,2}| = |uv ∈ E(Qn) : du = 2 and dv = 2| = 4,

|E{2,4}| = |uv ∈ E(Qn) : du = 2 and dv = 4|
= |E(Qn)| − |E{2,2}| = 4(n− 2).

Thus, the M − polynomial of Qn is

M(Qn;x, y) =
∑
i≤j

mij(Qn)xiyj = 4x2y2 + 4(n− 2)x2y4.

�

Definition 22. A double quadrilateral snake DQn is a graph consisting two quadri-
lateral snakes that have a common path.

Theorem 2.27. If DQn is a double quadrilateral snake, then

M(DQn;x, y) = 2(n− 1)x2y2 + 4x2y3 + 4(n− 2)x2y6 + 2x3y6 + (n− 3)x6y6.



92 B. BASAVANAGOUD AND PRAVEEN JAKKANNAVAR EJMAA-2020/8(1)

Proof. Let a double quadrilateral snake DQn be a graph having (5n − 4) vertices
and 7(n− 1) edges. The edge partition of DQn is given by,

|E{2,2}| = |uv ∈ E(DQn) : du = 2 and dv = 2| = 2(n− 1),

|E{2,3}| = |uv ∈ E(DQn) : du = 2 and dv = 3| = 4,

|E{2,6}| = |uv ∈ E(DQn) : du = 2 and dv = 6| = 4(n− 2),

|E{3,6}| = |uv ∈ E(DQn) : du = 3 and dv = 6| = 2,

|E{6,6}| = |uv ∈ E(DQn) : du = 6 and dv = 6|
= |E(DQn)| − |E{2,2}| − |E{2,3}| − |E{2,6}| − |E{3,6}| = n− 3.

Thus, the M − polynomial of DQn is

M(DQn;x, y) =
∑
i≤j

mij(DQn)xiyj = 2(n−1)x2y2+4x2y3+4(n−2)x2y6+2x3y6+(n−3)x6y6.

�

Definition 23. The alternate quadrilateral snake A(Qn) is obtained from a path
v1v2...vn by joining vi, vi+1 (alternatively) to new vertices vi, wi respectively and
then joining vi and wi. i.e., every alternate edge of a path is replaced by a cycle
C4.

Theorem 2.28. If A(Qn) is an alternate quadrilateral snake, then

M(A(Qn);x, y) =

{ (
n
2 + 2

)
x2y2 + nx2y3 + (n− 3)x3y3 if n is even,

xy3 +
(
bn2 c+ 1

)
x2y2 + 2bn2 cx

2y3 + (n− 3)x3y3 if n is odd.

Proof. Let an alternate quadrilateral snake A(Qn) be a graph having (n + 2bn2 c)
vertices and (3bn2 c+ n− 1) edges. The edge partition of A(Qn) is given as follows:
If n is even, then there will be no pendant edge in A(Tn). Therefore, we have

|E{2,2}| = |uv ∈ E(A(Qn)) : du = 2 and dv = 2| = n

2
+ 2,

|E{2,3}| = |uv ∈ E(A(Qn)) : du = 2 and dv = 3| = n,

|E{3,3}| = |uv ∈ E(A(Qn)) : du = 3 and dv = 3|
= |E(A(Qn))| − |E{2,2}| − |E{2,3}| = n− 3.

If n is odd, then there will be a pendant edge in A(Tn). Therefore, we have

|E{1,3}| = |uv ∈ E(A(Qn)) : du = 1 and dv = 3| = 1,

|E{2,2}| = |uv ∈ E(A(Qn)) : du = 2 and dv = 2| =
⌊n

2

⌋
+ 1,

|E{2,3}| = |uv ∈ E(A(Qn)) : du = 2 and dv = 3| = 2
⌊n

2

⌋
,

|E{3,3}| = |uv ∈ E(A(Qn)) : du = 3 and dv = 3|
= |E(A(Qn))| − |E{1,3}| − |E{2,2}| − |E{2,3}| = n− 3.

Thus, the M − polynomial of A(Qn) is

M(A(Qn);x, y) =
∑
i≤j

mij(A(Qn))xiyj

=

{ (
n
2 + 2

)
x2y2 + nx2y3 + (n− 3)x3y3 if n is even,

xy3 +
(
bn2 c+ 1

)
x2y2 + 2bn2 cx

2y3 + (n− 3)x3y3 if n is odd.
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�

Definition 24. An irregular quadrilateral snake IQn is a graph obtained from the
path Pn : u1u2...un with vertex set V (IQn) = V (Pn) ∪ {vi, wi : 1 ≤ i ≤ n− 2} and
the edge set E(IQn) = E(Pn) ∪ {uivi, wiui+2 : 1 ≤ i ≤ n− 2}.

Theorem 2.29. If IQn is an irregular quadrilateral snake, then

M(IQn;x, y) = nx2y2 + 4x2y3 + 2(n− 4)x2y4 + 2x3y4 + (n− 5)x4y4.

Proof. Let an irregular quadrilateral snake IQn be a graph having (3n−4) vertices
and (4n− 7) edges. The edge partition of IQn is given by,

|E{2,2}| = |uv ∈ E(IQn) : du = 2 and dv = 2| = n,

|E{2,3}| = |uv ∈ E(IQn) : du = 2 and dv = 3| = 4,

|E{2,4}| = |uv ∈ E(IQn) : du = 2 and dv = 4| = 2(n− 4),

|E{3,4}| = |uv ∈ E(IQn) : du = 3 and dv = 4| = 2,

|E{4,4}| = |uv ∈ E(IQn) : du = 4 and dv = 4|
= |E(IQn)| − |E{2,2}| − |E{2,3}| − |E{2,4}| − |E{3,4}| = n− 5.

Thus, the M − polynomial of IQn is

M(IQn;x, y) =
∑
i≤j

mij(IQn)xiyj = nx2y2+4x2y3+2(n−4)x2y4+2x3y4+(n−5)x4y4.

�

Definition 25. A double alternate quadrilateral snake DA(Qn) consists of two
alternate quadrilateral snakes that have a common path.

Theorem 2.30. If DA(Qn) is a double alternate quadrilateral snake, then

M(DA(Qn);x, y) =

{
nx2y2 + 4x2y3 + 2(n− 2)x2y4 + 2x3y4 + (n− 3)x4y4 if n is even,
xy4 + 2bn2 cx

2y2 + 2x2y3 + 2(n− 2)x2y4 + x3y4 + (n− 3)x4y4 if n is odd.

Proof. Let a double alternate quadrilateral snake DA(Qn) be a graph having (n+
4bn2 c) vertices and (6bn2 c+n− 1) edges. The edge partition of DA(Qn) is given as
follows:
If n is even, then there will be no pendant edge in DA(Tn). Therefore, we have

|E{2,2}| = |uv ∈ E(DA(Qn)) : du = 2 and dv = 2| = n,

|E{2,3}| = |uv ∈ E(DA(Qn)) : du = 2 and dv = 3| = 4,

|E{2,4}| = |uv ∈ E(DA(Qn)) : du = 2 and dv = 4| = 2(n− 2),

|E{3,4}| = |uv ∈ E(DA(Qn)) : du = 3 and dv = 4| = 2,

|E{4,4}| = |uv ∈ E(DA(Qn)) : du = 4 and dv = 4|
= |E(DA(Qn))| − |E{2,2}| − |E{2,3}| − |E{2,4}| − |E{3,4}| = n− 3.
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If n is odd, then there will be a pendant edge in DA(Tn). Therefore, we have

|E{1,4}| = |uv ∈ E(DA(Qn)) : du = 1 and dv = 4| = 1,

|E{2,2}| = |uv ∈ E(DA(Qn)) : du = 2 and dv = 2| = 2
⌊n

2

⌋
,

|E{2,3}| = |uv ∈ E(DA(Qn)) : du = 2 and dv = 3| = 2,

|E{2,4}| = |uv ∈ E(DA(Qn)) : du = 2 and dv = 4| = 2(n− 2),

|E{3,4}| = |uv ∈ E(DA(Qn)) : du = 3 and dv = 4| = 1,

|E{4,4}| = |uv ∈ E(DA(Qn)) : du = 4 and dv = 4|
= |E(DA(Qn))| − |E{1,4}| − |E{2,2}| − |E{2,3}| − |E{2,4}| − |E{3,4}| = n− 3.

Thus, the M − polynomial of DA(Qn) is

M(DA(Qn);x, y) =
∑
i≤j

mij(DA(Qn))xiyj

=

{
nx2y2 + 4x2y3 + 2(n− 2)x2y4 + 2x3y4 + (n− 3)x4y4 if n is even,
xy4 + 2bn2 cx

2y2 + 2x2y3 + 2(n− 2)x2y4 + x3y4 + (n− 3)x4y4 if n is odd.

�

Definition 26. The graph DWn is a graph consisting of the two wheels Wn of the
same order having the same central vertex.

Theorem 2.31. If DWn is a graph with (2n+ 1) vertices and 4n edges, then

M(DWn;x, y) = 2nx3y3 + 2nx3y2n.

Proof. Let DWn be a graph having (2n + 1) vertices and 4n edges. The edge
partition of DWn is given by,

|E{3,3}| = |uv ∈ E(DWn) : du = 3 and dv = 3| = 2n,

|E{3,2n}| = |uv ∈ E(DWn) : du = 3 and dv = 2n|
= |E(DWn)| − |E{3,3}| = 2n.

Thus, the M − polynomial of DWn is

M(DWn;x, y) =
∑
i≤j

mij(DWn)xiyj = 2nx3y3 + 2nx3y2n.

�

Definition 27. The ACn be a graph obtained from a cycle Cn : u1u2...unu1 with
the vertex set V (ACn) = V (Cn) ∪ {vi, wi : 1 ≤ i ≤ n} and the edge set E(ACn) =
E(Cn) ∪ {uivi, viwi : 1 ≤ i ≤ n}.
Theorem 2.32. If ACn is a graph with 3n vertices and 3n edges, then

M(ACn;x, y) = nxy2 + nx2y3 + nx3y3.

Proof. Let ACn is a graph having 3n vertices and 3n edges. The edge partition of
ACn is given by,

|E{1,2}| = |uv ∈ E(ACn) : du = 1 and dv = 2| = n,

|E{2,3}| = |uv ∈ E(ACn) : du = 2 and dv = 3| = n,

|E{3,3}| = |uv ∈ E(ACn) : du = 3 and dv = 3|
= |E(ACn)| − |E{1,2}| − |E{2,3}| = n.
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Thus, the M − polynomial of ACn is

M(ACn;x, y) =
∑
i≤j

mij(ACn)xiyj = nxy2 + nx2y3 + nx3y3.

�

Definition 28. An umbrella Um,n = (Pm + K1) ◦ Pn is a graph of order (m + n)
and size (2m+ n− 2), where Pm and Pn are the two paths of lengths (m− 1) and
(n− 1), respectively.

Theorem 2.33. If Um,n is an umbrella with (m + n) vertices and (2m + n − 2)
edges, then

M(Um,n;x, y) = xy2+(n−3)x2y2+2x2y3+3x2ym+1+(m−3)x3y3+(m−2)x3ym+1.

Proof. Let an umbrella Um,n be a graph having (m+ n) vertices and (2m+ n− 2)
edges. The edge partition of Um,n is given by,

|E{1,2}| = |uv ∈ E(Um,n) : du = 1 and dv = 2| = 1,

|E{2,2}| = |uv ∈ E(Um,n) : du = 2 and dv = 2| = n− 3,

|E{2,3}| = |uv ∈ E(Um,n) : du = 2 and dv = 3| = 2,

|E{2,m+1}| = |uv ∈ E(Um,n) : du = 2 and dv = m+ 1| = 3,

|E{3,3}| = |uv ∈ E(Um,n) : du = 3 and dv = 3| = m− 3,

|E{3,m+1}| = |uv ∈ E(Um,n) : du = 3 and dv = m+ 1|
= |E(Um,n)| − |E{1,2}| − |E{2,2}| − |E{2,3}| − |E{2,m+1}| − |E{3,3}| = m− 2.

Thus, the M − polynomial of Um,n is

M(Um,n;x, y) =
∑
i≤j

mij(Um,n)xiyj = xy2+(n−3)x2y2+2x2y3+3x2ym+1+(m−3)x3y3+(m−2)x3ym+1.

�

Definition 29. A Dumbbell Dbn is a graph obtained from two cycles of length n
by joining a vertex from one cycle to a vertex of another cycle.

Theorem 2.34. If Dbn is a dumbbell with 2n vertices and (2n+ 1) edges, then

M(Dbn;x, y) = 2(n− 2)x2y2 + 4x2y3 + x3y3.

Proof. Let a dumbbell Dbn be a graph having 2n vertices and (2n+ 1) edges. The
edge partition of Dbn is given by,

|E{2,2}| = |uv ∈ E(Dbn) : du = 2 and dv = 2| = 2(n− 2),

|E{2,3}| = |uv ∈ E(Dbn) : du = 2 and dv = 3| = 4,

|E{3,3}| = |uv ∈ E(Dbn) : du = 3 and dv = 3|
= |E(Dbn)| − |E{2,2}| − |E{2,3}| = 1.

Thus, the M − polynomial of Dbn is

M(Dbn;x, y) =
∑
i≤j

mij(Dbn)xiyj = 2(n− 2)x2y2 + 4x2y3 + x3y3.

�

Definition 30. The slanting ladder SLn is a graph obtained from two paths u1u2...un
and v1v2...vn by joining each ui with vi+1, (1 ≤ i ≤ n− 1).
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Theorem 2.35. If SLn is a slanting ladder with 2n vertices and 3(n − 1) edges,
then

M(SLn;x, y) = 2xy3 + 4x2y3 + 3(n− 3)x3y3.

Proof. Let a slanting ladder SLn be a graph having 2n vertices and 3(n− 1) edges.
The edge partition of SLn is given by,

|E{1,3}| = |uv ∈ E(SLn) : du = 1 and dv = 3| = 2,

|E{2,3}| = |uv ∈ E(SLn) : du = 2 and dv = 3| = 4,

|E{3,3}| = |uv ∈ E(SLn) : du = 3 and dv = 3|
= |E(SLn)| − |E{1,3}| − |E{2,3}| = 3(n− 3).

Thus, the M − polynomial of SLn is

M(SLn;x, y) =
∑
i≤j

mij(SLn)xiyj = 2xy3 + 4x2y3 + 3(n− 3)x3y3.

�

Definition 31. The triangular ladder TLn with vertex set V (TLn) = {ui, vi : 1 ≤
i ≤ n} and the edge set E(TLn) = {uiui+1, vivi+1, uivi+1 : 1 ≤ i ≤ n} ∪ {uivi : 1 ≤
i ≤ n}.

Theorem 2.36. If TLn is a triangular ladder with 2n vertices and (4n− 3) edges,
then

M(TLn;x, y) = 2x2y3 + 2x2y4 + 4x3y4 + (4n− 11)x4y4.

Proof. Let a triangular ladder TLn be a graph having 2n vertices and (4n − 3)
edges. The edge partition of TLn is given by,

|E{2,3}| = |uv ∈ E(TLn) : du = 2 and dv = 3| = 2,

|E{2,4}| = |uv ∈ E(TLn) : du = 2 and dv = 4| = 2,

|E{3,4}| = |uv ∈ E(TLn) : du = 3 and dv = 4| = 4,

|E{4,4}| = |uv ∈ E(TLn) : du = 4 and dv = 4|
= |E(TLn)| − |E{2,3}| − |E{2,4}| − |E{3,4}| = (4n− 11).

Thus, the M − polynomial of TLn is

M(TLn;x, y) =
∑
i≤j

mij(TLn)xiyj = 2x2y3 + 2x2y4 + 4x3y4 + (4n− 11)x4y4.

�

Definition 32. The n-cone graph Cm+Kn is a graph where Cm is a cycle of order
m and Kn is a complete graph of order n.

Theorem 2.37. If Cm+Kn is a n-cone with (m+n) vertices and m(n+ 1) edges,
then

M(Cm +Kn;x, y) = mnxmyn+2 +mxn+2yn+2.

Proof. Let a n-cone graph Cm+Kn be a graph having (m+n) vertices and m(n+1)
edges. The edge partition of Cm +Kn is given by,

|E{m,n+2}| = |uv ∈ E(Cm +Kn) : du = m and dv = n+ 2| = mn,

|E{n+2,n+2}| = |uv ∈ E(Cm +Kn) : du = n+ 2 and dv = n+ 2|
= |E(Cm +Kn)| − |E{m,n+2}| = m.
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Thus, the M − polynomial of Cm +Kn is

M(Cm +Kn;x, y) =
∑
i≤j

mij(Cm +Kn)xiyj = mnxmyn+2 +mxn+2yn+2.

�

Definition 33. The graph C
+(m,t)
n is obtained by identifying one vertex of Cn with

one end vertex of m paths each of length t. In particular, C
+(1,t)
n is a tadpole.

Theorem 2.38. If C
+(m,t)
n is a graph with (n + t) vertices and (mt + n) edges,

then
M(C+(m,t)

n ;x, y) = mxy2 + (m+ n− 2)x2y2 + (m+ 2)x2ym+2.

Proof. Let C
+(m,t)
n be a graph having (n+ t) vertices and (mt+n) edges. The edge

partition of C
+(m,t)
n is given by,

|E{1,2}| = |uv ∈ E(C+(m,t)
n ) : du = 1 and dv = 2| = m,

|E{2,2}| = |uv ∈ E(C+(m,t)
n ) : du = 2 and dv = 2| = m+ n− 2,

|E{2,m+2}| = |uv ∈ E(C+(m,t)
n ) : du = 2 and dv = m+ 2|

= |E(C+(m,t)
n )| − |E{1,2}| − |E{2,2}| = m+ 2.

Thus, the M − polynomial of C
+(m,t)
n is

M(C+(m,t)
n ;x, y) =

∑
i≤j

mij(C
+(m,t)
n )xiyj = mxy2+(m+n−2)x2y2+(m+2)x2ym+2.

�

Definition 34. The graph θ(Cm)n is obtained from n copies of Cm that shares an
edge in common, where Cm is a cycle of length m. i.e., an n page book graph with
m-polygonal pages.

Theorem 2.39. If θ(Cm)n is an n page book graph with m-polygonal pages, then

M(θ(Cm)n;x, y) = n(m− 3)x2y2 + 2nx2yn+1 + xn+1yn+1.

Proof. Let θ(Cm)n be a graph having n(m−2) + 2 vertices and n(m−1) + 1 edges.
The edge partition of θ(Cm)n is given by,

|E{2,2}| = |uv ∈ E(θ(Cm)n) : du = 2 and dv = 2| = n(m− 3),

|E{2,n+1}| = |uv ∈ E(θ(Cm)n) : du = 2 and dv = n+ 1| = 2n,

|E{n+1,n+1}| = |uv ∈ E(θ(Cm)n) : du = n+ 1 and dv = n+ 1|
= |E(θ(Cm)n)| − |E{2,2}| − |E{2,n+1}| = 1.

Thus, the M − polynomial of θ(Cm)n is

M(θ(Cm)n;x, y) =
∑
i≤j

mij(θ(Cm)n)xiyj = n(m− 3)x2y2 + 2nx2yn+1 + xn+1yn+1.

�

Definition 35. The kayak paddle graph KP (k,m, l) is a graph obtained by joining
two cycles Ck and Cm by a path of length l.

Theorem 2.40. If KP (k,m, l) is a kayak paddle graph, then

M(KP (k,m, l);x, y) = (k +m+ l − 6)x2y2 + 6x2y3.
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Proof. Let KP (k,m, l) be a graph having (k +m+ l− 1) vertices and (k +m+ l)
edges. The edge partition of KP (k,m, l) is given by,

|E{2,2}| = |uv ∈ E(KP (k,m, l)) : du = 2 and dv = 2| = k +m+ l − 6,

|E{2,3}| = |uv ∈ E(KP (k,m, l)) : du = 2 and dv = 3|
= |E(KP (k,m, l))| − |E{2,2}| = 6.

Thus, the M − polynomial of KP (k,m, l) is

M(KP (k,m, l);x, y) =
∑
i≤j

mij(KP (k,m, l))xiyj = (k +m+ l − 6)x2y2 + 6x2y3.

�

Definition 36. The graph C
(t)
n is obtained from the one-point union of t cycles of

length n.

Theorem 2.41. If C
(t)
n is a graph with t(n− 1) + 1 vertices and nt edges, then

M(C(t)
n ;x, y) = t(n− 2)x2y2 + 2tx2y2t.

Proof. Let C
(t)
n be a graph having t(n − 1) + 1 vertices and nt edges. The edge

partition of C
(t)
n is given by,

|E{2,2}| = |uv ∈ E(C(t)
n ) : du = 2 and dv = 2| = t(n− 2),

|E{2,2t}| = |uv ∈ E(C(t)
n ) : du = 2 and dv = 2t|

= |E(C(t)
n )| − |E{2,2}| = 2t.

Thus, the M − polynomial of C
(t)
n is

M(C(t)
n ;x, y) =

∑
i≤j

mij(C
(t)
n )xiyj = t(n− 2)x2y2 + 2tx2y2t.

�

Note that, the topological indices (that are mentioned in Table 1) of all these
special graphs can be obtained by using respective M−polynomial and column
4 of Table 1. The process of obtaining these topological indices is given in two
Corollaries 2.11 and 2.13 as an illustration.

3. Conclusion

In this paper, we have obtained M -polynomial of some special graphs and some
topological indices of these graphs. The advantage of M -polynomial is that, from
that one expression we can obtain several degree-based topological indices. It is very
challenging to bring all the degree-based topological indices under M−polynomial.
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