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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR SOME

THIRD ORDER NONLINEAR DELAY DIFFERENTIAL

EQUATIONS

HOCINE GABSI, ABDELOUAHEB ARDJOUNI AND AHCENE DJOUDI

Abstract. We establish the existence of positive periodic solutions for a third
order differential equations with periodic delay. For that purpose, we use the

fixed point technique. By choosing available operators and applying Schauder’s
fixed-point theorem we obtain sufficient conditions for the existence of positive
and periodic solutions. We end by giving an example to illustrate our claim.

1. Introduction

In this article, we investigate the existence of positive periodic solutions for the
third order functional differential equation with variable delay

...
x = a (t) ẍ+ b (t) ẋ+ λc(t)g (x (t− τ (t))) , (1)

where
...
x =

d3x

dt3
, ẍ =

d2x

dt2
, ẋ =

dx

dt
and g ∈ C (R,R), c ∈ C (R, (0,∞)), τ ∈

C (R,R+) are continuous positive ω-periodic functions in t with ω is a positive
constant. To reach our desired end we have to transform (1) into an integral
equation and then use Schauder’s fixed point theorem to show the existence of
positive periodic solution. The obtained equation writes as a compact functional
differential equation mapping with periodic delays. This kind of equations appear in
a number of ecological models. In particular, our equation can be interpreted as an
extension equation of the standard Malthus population model

...
x = a (t) ẍ+ b (t) ẋ

subject to a perturbation with periodical delay. One important question is whether
these equations can support positive periodic solutions. Particular question has
been studied extensively by a number of authors; see for example [1]-[10], [12]-[16]
and the references therein. In this paper, we will obtain existence criteria for ω-
periodic solutions of (1) by means of the well known fixed point theorem due to
Schauder’s.

Our subject is to establish some sufficient condition ensuring that (1) has at
least one positive ω-periodic solution. To describe the main result we need some
preparations and use the following notations. For ω > 0, let Cω be the set of all
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continuous scalar functions x, periodic in t of period ω. Then (Cω, ∥·∥) is a Banach
space with the supremum norm

∥x∥ = sup
t∈R

|x (t)| = sup
t∈[0,ω]

|x (t)| . (2)

Define

C+
ω = {x ∈ Cω | x > 0} and C−

ω = {x ∈ Cω | x < 0} . (3)

Denote

M = max {b (t) | t ∈ [0, ω]} , m = min {b (t) | t ∈ [0, ω]} , β =
√
M. (4)

Throughout this paper, we will denote by

µ = e−
∫ ω
0

a(v)dv, (5)

and let

ζ =
exp

(
−βω

2

)
β (1− exp (−βω))

, η =
1 + exp (−βω)

2β (1− exp (−βω))
.

In order to simplify notations, we define the functions F and ϕ by

ϕ (t) =
(
ḃ− ab

)
(t) ,

F (t, x) = λc (t) g (x (t− τ (t)))− ϕ (t)x (t) .

Throughout this section we assume that F (t, x) > 0 for all t ∈ [0, ω], x ∈ Cω.
λ is a positive parameter and a, b, c, τ and g are ω-periodic in t where ω is a
positive constant. For convenience, the conditions needed for our criteria are listed
as follows

H1) a, b, ḃ, ϕ, c ∈ C (R, (0,∞)).

L1) lim
x→0

g(x)
x = ∞.

L2) lim
x→∞

g(x)
x = ∞.

L3) lim
x→0

g(x)
x = 0.

L4) lim
x→∞

g(x)
x = 0.

2. Preliminaries

Our investigation needs the following helpful lemmas.

Lemma 2.1 ([7]). The equation

d2

dt2
y (t)−My (t) = h(t), h ∈ C−

ω ,

has a unique ω-periodic solution

y (t) =

∫ t+ω

t

K (t, s) (−h (s)) ds,

where

K (t, s) =
exp (−β (s− t)) + exp (β (s− t− ω))

2β (1− exp (−βω))
, s ∈ [t, t+ ω] .

Lemma 2.2 ([7]). ζ ≤ K (t, s) ≤ η and
∫ t+ω

t
K (t, s) ds = 1

M for all t ∈ [0, ω] and
s ∈ [t, t+ ω].
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Lemma 2.3 ([7] ). The equation

d2

dt2
y (t)− a (t) y (t) = h(t), h ∈ C−

ω

has a unique ω-periodic solution

y (t) = (Dh) (t) = (I − TB)
−1

Th (t) ,

where

(Th) (t) =

∫ t+ω

t

K (t, s) (−h (s)) ds and (By) (t) = [a (t)−M ] y (t) .

Next, we define operators A,D,P : Cω −→ Cω by

(Dh) (t) = ((I − TB)
−1

Th) (t) ,

(Aφ) (t) := −
∫ t+ω

t

G (t, s)F (s, φ (s)) ds,

and

(Pφ) (t) = (DAφ) (t) = ((I − TB)
−1

TAφ) (t) , (6)

where the function G is given by

G (t, s) =
e−

∫ s
t
a(v)dv

1− e−
∫ ω
0

a(v)dv
, t ≤ s ≤ t+ ω, t ∈ R. (7)

Remark 2.4. From the fact that t ≤ s ≤ u ≤ s+ ω ≤ t+ 2ω we have∫ t+ω

t

∫ s+ω

s

(
e−β(s−t) + e−β(t+ω−s)

)
e−

∫ u
s

advy (u) duds

=

∫ t+ω

t

∫ t+ω

s

(
e−β(s−t) + e−β(t+ω−s)

)
e−

∫ u
s

advy (u) duds

+

∫ t+ω

t

∫ s+ω

t+ω

(
e−β(s−t) + e−β(t+ω−s)

)
e−

∫ u
s

advy (u) duds.

By change variables in second summand z = u− ω and use the ω–periodicity of y
we have ∫ t+ω

t

∫ t+ω

s

(
e−β(s−t) + e−β(t+ω−s)

)
e−

∫ u
s

advy (u) duds

=

∫ t+ω

t

∫ s

t

(
e−β(s−t) + e−β(t+ω−s)

)
e−

∫ z+ω
s

advy (z) dzds.

By interchanging the integrating order, one gets∫ t+ω

t

∫ s+ω

s

(
e−β(s−t) + e−β(t+ω−s)

)
e−

∫ u
s

advy (u) duds

=

∫ t+ω

t

(∫ u

t

(
e−β(s−t) + e−β(t+ω−s)

)
e−

∫ u
s

advds

)
y (u) du

+

∫ t+ω

t

(∫ t+ω

z

(
e−β(s−t) + e−β(t+ω−s)

)
e−

∫ z+ω
s

advds

)
y (z) dz.

Then

(TAφ) (t) =

∫ t+ω

t

H (t, s)φ (s) ds,
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for s ∈ [t, t+ ω] with

H (t, s) =

∫ s

t

(
e−β(u−t) + e−β(t+ω−u)

)
e−

∫ s
u
advdu

2β (1− e−βω) (1− µ)

+

∫ t+ω

s

(
e−β(u−t) + e−β(t+ω−u)

)
e−

∫ s+ω
u

advdu

2β (1− e−βω) (1− µ)
.

On the other hand, it is easy to see that

µ

β2 (1− µ)
≤ H (t, s) ≤ 1

β2 (1− µ)
. (8)

Because∫ s

t

(
e−β(u−t) + e−β(t+ω−u)

)
e−

∫ s
u
advdu

+

∫ t+ω

s

(
e−β(u−t) + e−β(t+ω−u)

)
e−

∫ s+ω
u

advdu

≥ µ

∫ s

t

(
e−β(u−t) + e−β(t+ω−u)

)
du+

∫ t+ω

s

(
e−β(u−t) + e−β(t+ω−u)

)
du

= µ

∫ t+ω

t

(
e−β(u−t) + e−β(t+ω−u)

)
du =

2µ

β

(
1− e−βω

)
,

and ∫ s

t

(
e−β(u−t) + e−β(t+ω−u)

)
e−

∫ s
u
advdu

+

∫ t+ω

s

(
e−β(u−t) + e−β(t+ω−u)

)
e−

∫ s+ω
u

advdu

≤
∫ s

t

(
e−β(u−t) + e−β(t+ω−u)

)
du+

∫ t+ω

s

(
e−β(u−t) + e−β(t+ω−u)

)
du

≤
∫ t+ω

t

(
e−β(u−t) + e−β(t+ω−u)

)
du =

2

β

(
1− e−βω

)
.

Then,

ωµ

M (1− µ)
=

ωµ

β2 (1− µ)
≤

∫ t+ω

t

H (t, s) ds ≤ ω

β2 (1− µ)
=

ω

M (1− µ)
. (9)

Then we get the following.

Lemma 2.5. The mappings D and P are completely continuous. Further, D sat-
isfies

0 < (Th) (t) ≤ (Dh) (t) ≤ M

m
∥Th∥ , h ∈ C−

ω .

Proof. The proof is very similar to the proof of Lemma 2 in [14]. �

Theorem 2.6 (Schauder [11]). Let S be a closed convex bounded subset of a
Banach space X. Assume that A : S → S is compact operator. Then, A has at
least one fixed point in S.
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3. Main Results

To apply Theorem 2.6, we need to define a Banach space X, a closed convex
subset Γ of X and construct a fixed point mapping that is a completely continuous.
So, we let (X, ∥·∥) = (Cω, ∥·∥) and Γ = {φ ∈ B : l ≤ φ ≤ L}, where l is non-negative
constant and L is positive constant. In this section we obtain the existence of a
positive periodic solution of (1) by considering the two cases primary λ = 1 and
secondary λ > 0.

Lemma 3.1. The function x ∈ Cω is a solution of equation (1) if and only if

x (t) = (Px) (t) , (10)

where the function P is given by (6).

Proof. Let x ∈ Cω be a solution of (1). Taking

u (t) =
d2

dt2
x (t)− b (t)x (t) ,

and

F (t, x) = λc(t)g (x (t− τ (t)))− ϕ (t)x (t) ,

then (1) can be rewritten as

d

dt
u (t)− a (t)u (t) = F (t, x) . (11)

We proceed formally from (11) to obtain

d

dt

(
u (t) e

∫ ∞
t

a(v)dv
)
= e

∫ ∞
t

a(v)dvF (t, x (t)) .

After integration from t to t+ ω, we obtain

d2

dt2
x (t)− b (t)x (t) = −

∫ t+ω

t

G (t, s)F (s, x (s)) ds. (12)

Clearly, the right hand side of (12) is negative and ω−periodic. Then from Lemma
2.3, we have

x (t) =

∫ t+ω

t

K (t, s) [M − b (s)]x (s) ds

+

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)F (u, x (u)) duds.

This yields

x (t) = (TBx) (t) + (TAx) (t) .

Therefore, since ∥TB∥ ≤ 1− m
M < 1, then, the solution of (1) can be written in the

form

x (t) = ((I − TB)
−1

TAx) (t) .

It is clear that the existence of periodic solutions for (1) is equivalent to the existence
of solutions for the operator equation x = Px in Cω. �

First we consider a special case when λ = 1. So we have the following theorem.



122 H. GABSI, A. ARDJOUNI AND A. DJOUDI EJMAA-2020/8(1)

Theorem 3.2. Let (H1) holds. In addition, suppose that F satisfies

µ (1− µ)

ω
≤ F (t, x) ≤ M (1− µ)

ω
for x ∈

[
µ2

M , M
m

]
and t ∈ [0, ω] .

Then, (1) has at least one positive ω-periodic solution x with 0 < µ2

M ≤ x (t) ≤ M
m

for t ∈ [0, ω].

Proof. Let Γ =
{
x ∈ X | x ∈

[
µ2

M , M
m

]}
. It is obvious that Γ is a bounded closed

convex set in X. Moreover, for any x ∈ Γ, it is easy to verify that P is continuous
and (Px) (t+ ω) = (Px) (t), that is, P (Γ) ⊂ X.

Next, we claim that Pφ ∈ Γ for all φ ∈ Γ. That is, P maps Γ into itself. To
see this, note that since 0 < µ (1− µ) /ω ≤ F (t, x) ≤ M (1− µ) /ω, then for any
φ ∈ Γ, by Lemmas 2.2 and 2.5, we have

(Pφ) (t) = (I − TB)
−1

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)F (u, φ (u)) duds

= (I − TB)
−1

∫ t+ω

t

H (t, s)F (s, φ (s)) ds

≤
∥∥∥(I − TB)

−1
∥∥∥∫ t+ω

t

|H (t, s)F (s, φ (s))| ds

≤ M

m

∫ t+ω

t

|H (t, s)F (s, φ (s))| ds

≤ M

m

M (1− µ)

ω

ω

M (1− µ)

=
M

m
. (13)

On the other hand, by Lemmas 2.2 and 2.5,

(Pφ) (t) = (I − TB)
−1

∫ t+ω

t

H (t, s)F (s, φ (s)) ds

≥
∫ t+ω

t

H (t, s)F (s, φ (s)) ds

≥ µ (1− µ)

ω

∫ t+ω

t

H (t, s) ds

≥ µ (1− µ)

ω

ωµ

M (1− µ)

=
µ2

M
> 0. (14)

Combining (13) and (14), we get Pφ ∈ Γ for all φ ∈ Γ. Moreover, from Lemma
2.5, P is completely continuous in X. Hence by Theorem 2.6, P has a fixed point

x ∈ Γ, that is to say, (1) has a positive ω-periodic solution x (t) with 0 < µ2

M ≤
x (t) ≤ M

m . �

Case λ > 0.
In this case, we let

L (r) = max
0≤x≤r

g (x) , (15)
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and

l (r) = min
0≤x≤r

g (x) . (16)

Here, we assume further that for all t ∈ [0, ω], x ∈ Cω and

F (t, x) = λc (t) g (x (t− τ (t)))− ϕ (t)x (t) ≥ 0. (17)

Theorem 3.3. Suppose that (H1) and the conditions (17), (L3) hold. Then (1)
has a positive ω-periodic solution for

λ >
M (1− µ) r1

l (r1)µ
∫ ω

0
c (u) du

. (18)

Proof. In view of (L3) there is an 0 < r1 so that g (x) ≤ εx for x ∈ [0, r1] where
ε > 0 satisfies

ελ

m (1− µ)

∫ ω

0

c (u) du ≤ 1. (19)

Let Γ := {x ∈ X | x ∈ [0, r1]}, it is easy to see that Γ is a bounded closed convex
set of X. Also, we will show that Pφ ∈ Γ for all φ ∈ Γ. In fact, for any φ ∈ Γ, by
Lemmas 2.2, 2.5 and from (19) we can get

(Pφ) (t)

= (I − TB)
−1

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)F (u, φ (u)) duds

≤ M

m

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) [λεc (u)φ (u− τ (u))− ϕ (u)φ (u)] duds

≤ ε
M

m
λ

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) c (u)φ (u− τ (u)) duds

≤ ε
M

m
λr1

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) c (u) duds

≤ ε
M

m
λr1

1

1− µ

∫ t+ω

t

K (t, s) ds

∫ ω

0

c (u) du

≤ ε
M

m
λr1

1

1− µ

1

M

∫ ω

0

c (u) du ≤
(

ελ

m (1− µ)

∫ ω

0

c (u) du

)
r1

≤ r1.
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Similarly, by Lemmas 2.2, 2.5 and g (φ) ≥ l (r1) for φ ∈ Γ, for any φ we get

(Pφ) (t)

≥
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) [λc (u) g (φ (u− τ (u)))− ϕ (u)φ (u)] duds

≥
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)λc (u) g (φ (u− τ (u))) duds

−
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)ϕ (u)φ (u) duds

≥ λl (r1)
µ

µ− 1

∫ t+ω

t

K (t, s)

∫ s+ω

s

c (u) duds

− r1

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)ϕ (u) duds.

in fact that G (t, s) = e−
∫ s
t
a(v)dv/ (1− µ) and µ = e−

∫ ω
0

adv so∫ s+ω

s

G (s, u)ϕ (u) du = b (s) .

Thus, from Lemma 2.2

(Pφ) (t) ≥ λl (r1)
µ

1− µ

∫ t+ω

t

K (t, s) ds

∫ ω

0

c (u) du− r1M

∫ t+ω

t

K (t, s) ds.

≥
λl (r1)µ

∫ ω

0
c (u) du

M (1− µ)
− r1 > 0.

Clearly if λ > M (1− µ) r1/µl (r1)
∫ ω

0
c (u) du so Pφ > 0. Then Pφ ∈ Γ for all

φ ∈ Γ. Hence, P (Γ) ⊂ Γ. Furthermore, from Lemma 2.5, the operator P is
completely continuous. Clearly, all the hypotheses of the Schauder’s theorem are
satisfied. Thus there exists a fixed point x ∈ Γ such that Px = x. By Lemma 3.1
this fixed point is a solution of (1) and the proof is complete. �

Theorem 3.4. Suppose that (H1) and the conditions (17), (L4) hold. Then, (1)
has a positive ω-periodic solution for

λ >
r2M (1− µ)

l (r2)µ
∫ ω

0
c (u) du

. (20)

Proof. In view of (L4) we can choose 1 < R so that g (x) ≤ εx for x ≥ R. Let
r2 = M

mR where ε > 0 satisfies

ελ

m (1− µ)

∫ ω

0

c (s) ds− η

∫ ω

0

b (s) ds ≤ 1. (21)

Let Γ := {x ∈ X | R ≤ x ≤ r2}, it is easy to see that Γ is a bounded closed convex
set of X. Next, we will show that Pφ ∈ Γ for all φ ∈ Γ. That is, R ≤ Pφ ≤ r2. In
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fact, for any φ ∈ Γ, by Lemmas 2.2, 2.5 and from (21) we can get

(Pφ) (t)

= (I − TB)
−1

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)F (u, φ (u)) duds

≤ M

m

∫ t+ω

t

K (t, s) ds

∫ s+ω

s

G (s, u) [λεc (u)φ (u− τ (u))− ϕ (u)φ (u)] du

≤ M

m
r2λε

∫ t+ω

t

K (t, s) ds

∫ s+ω

s

G (s, u) c (u) du

− M

m
R

∫ t+ω

t

K (t, s) ds

∫ s+ω

s

G (s, u)ϕ (u) du

≤ M

m
r2λε

∫ t+ω

t

K (t, s) ds

∫ s+ω

s

G (s, u) c (u) du− M

m
R

∫ t+ω

t

K (t, s) b (s) ds

≤ r2

(
1

m

λε

1− µ

∫ ω

0

c (s) ds

)
− M

m
R

(
η

∫ ω

0

b (s) ds

)
≤ r2

[
ελ

m (1− µ)

∫ ω

0

c (s) ds− η

∫ ω

0

b (s) ds

]
≤ r2. (22)

On the other hand, for any φ ∈ Γ by Lemmas 2.2, 2.5 and g (φ) ≥ l (r2) on Γ, we
get

(Pφ) (t) ≥
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) [λc (u) g (φ (u− τ (u)))− ϕ (u)φ (u)] duds

≥
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)λc (u) g (φ (u− τ (u))) duds

−
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)ϕ (u)φ (u) duds

≥ λl (r2)
µ

1− µ

∫ t+ω

t

K (t, s) ds

∫ ω

0

c (u) du

− r2

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)ϕ (u) duds.

≥ λl (r2)
µ

1− µ

1

M

∫ ω

0

c (u) du− r2

∫ t+ω

t

K (t, s) b (s) ds.

In fact that ∫ t+ω

t

K (t, s) b (s) ds ≤ M

∫ t+ω

t

K (t, s) = 1,∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) c (u) duds ≥ µ

M (1− µ)

∫ ω

0

c (u) du,

by condition (20) we deduce

(Pφ) (t) ≥ λ l(r2)µ
M(1−µ)

∫ ω

0

c (u) du− r2 ≥ (R+ r2)− r2 ≥ R. (23)

So from (22) and (23), we get P : Γ → Γ, it is clear that from Lemmas 2.5, 3.1,
and Theorem 2.6 there exists x ∈ Γ such that Px = x. Hence R ≤ Px ≤ M

mR, that

is to say (1) has at least a positive ω−periodic solution x with R ≤ x ≤ M
mR. �
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Theorem 3.5. Suppose that (H1) and the conditions (17), (L1) hold. Then (1)
has a positive ω-periodic solution for

0 < λ ≤ m (1− µ) r1

L (r1)
∫ ω

0
c (s) ds

. (24)

Proof. Let Q0 > 0. So in view of (L1) there is an 0 < r1 < 1 so that g (x) ≥ Q0x
for x ∈ [0, r1] for a choice of Q0 that satisfies

λµQ0

(1− µ)M

∫ ω

0

c (u) du− M

m
≥ 1. (25)

Let Γ := {x ∈ X | r̂1 ≤ x ≤ r1}. It is easy to see that Γ is a bounded closed convex
set of X, and P (Γ) ⊂ X. We will show that, indeed, Pφ ∈ Γ for all φ ∈ Γ. In fact,
for any φ ∈ Γ, from Lemmas 2.2 and 2.5 we can get

(Pφ) (t) = (I − TB)
−1

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) (−F (u, φ (u))) duds

≥
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) [λQ0c (u)φ (u− τ (u))− ϕ (u)φ (u)] duds

≥
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)λQ0c (u)φ (u− τ (u)) duds

−
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)ϕ (u)φ (u) duds

≥ λQ0

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) c (u)φ (u− τ (u)) duds

− r1

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)ϕ (u) duds.

Let Q̂0 > Q0 so in view of (L1) there is an 0 < r̂1 < r1 so that g (x) ≥ Q̂0x for
x ∈ [0, r̂1], so g (x) ≥ Q0r̂1 for x ∈ [r̂1, r1] thus

(Pφ) (t) ≥ Q0λµr̂1
(1− µ)

1

M

∫ ω

0

c (u) du− r1.

Choose r̂1 = m
M r1 and from (25) we deduce that

(Pφ) (t) ≥ r̂1. (26)

Similarly, by Lemma 2.2, 2.5 and g (φ) ≤ L (r1) for φ ∈ [0, r1], for any φ we get

(Pφ) (t) ≤ M

m

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)λc (u) g (φ (u− τ (u))) duds

≤ λL (r1)
M

m

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) c (u) duds

≤ λL (r1)
M

m

1

1− µ

∫ t+ω

t

K (t, s) ds

∫ ω

0

c (s) ds

≤ λL (r1)

m (1− µ)

∫ ω

0

c (s) ds ≤ r1. (27)

Clearly from (26) and (27) we get Pφ ∈ Γ for all φ ∈ Γ so P (Γ) ⊂ Γ. Also, from
Lemma 2.5, the operator P is completely continuous. Thus by Theorem 2.6 there
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exists a fixed point x ∈ Γ such that Px = x. By Lemma 3.1 this fixed point is a
solution of (1). �

Theorem 3.6. Suppose that (H1) and the conditions (17), (L2) hold. Then (1)
has a positive ω-periodic solution for

0 < λ ≤ (r̂2 + r2)m (1− µ)

L (r̂2)
∫ ω

0
c (s) ds

. (28)

Proof. Let Q1 > 0. If (L2) holds so we can choose r2 > 1 so that g (x) ≥ Q1x for
x ≥ r2. Let r̂2 = M

m r2 where Q1 satisfies

Q1λµ

M (1− µ)

∫ ω

0

c (s) ds− M

m
≥ 1. (29)

Next, consider the subset Γ := {x ∈ X | r2 ≤ x ≤ r̂2}. It is easy to see that Γ is a
bounded closed convex of X. We will show that P : Γ → Γ. Since for any φ ∈ Γ

(Pφ) (t) = (I − TB)
−1

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) (−F (u, φ (u))) duds

≥
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) [λQ1c (u)φ (u− τ (u))− ϕ (u)φ (u)] duds

≥
∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)λQ1c (u)φ (u− τ (u)) duds

− r̂2

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)ϕ (u)φ (u) duds

≥ r2λµQ1

M (1− µ)

∫ ω

0

c (s) ds− r̂2 =

(
λµQ1

M (1− µ)

∫ ω

0

c (s) ds− M

m

)
r2

≥ r2. (30)

Similarly, by Lemma 2.2, 2.5 and g (φ) ≤ L (r̂2) for φ ∈ [r2, r̂2], for any φ we get

(Pφ) (t)

≤ M

m

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u) [λQ1c (u)φ (u− τ (u))− ϕ (u)φ (u)] duds

≤ M

m

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)λQ1c (u)φ (u− τ (u)) duds

− M

m

∫ t+ω

t

K (t, s)

∫ s+ω

s

G (s, u)ϕ (u)φ (u) duds

≤ λL (r̂2)

m (1− µ)

∫ ω

0

c (s) ds− r2

≤ r̂2. (31)

By (30) and (31) we get Pφ ∈ Γ for all φ ∈ Γ so P (Γ) ⊂ Γ. Again by Lemma
2.5, the operator P is completely continuous. Thus by Theorem 2.6 we know P has
fixed point x ∈ Γ that is Px = x and by Lemma 3.1 this fixed point is nothing but
a solution of (1). �

In view of the hypothesis (L1)–(L2), (L3)–(L4) and if (H1) holds, then from
Theorems 3.3 and 3.4, we can easily get the following theorems.
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Theorem 3.7. Suppose that the conditions (17), (L3) and (L4) hold, then (1) has
two positive ω-periodic for

λ ≥ max

{
M (1− µ) r1

l (r1)µ
∫ ω

0
c (u) du

,
r2M (1− µ)

l (r2)µ
∫ ω

0
c (u) du

}
. (32)

From Theorems 3.5 and 3.6, we can easily get the following Theorem.

Theorem 3.8. Suppose that the conditions (17), (L1) and (L2) hold, then (1) has
two positive ω-periodic for

0 < λ ≤ min

{
m (1− µ) r1

L (r1)
∫ ω

0
c (s) ds

,
(r̂2 + r2)m (1− µ)

L (r̂2)
∫ ω

0
c (s) ds

}
. (33)

Example 3.9. Consider the following equation

...
x (t) = sin2 (t) ẍ (t) +

1

2

(
ecos 2t

)
ẋ (t)

+ ecos 2t
(
0.3

arctanx

x
e− cos 2t −

(
sin 2t+

1

2
sin2 t

)
x (s)

)
. (34)

So, sin2 (t) cos 2t are continuous positive π−periodic functions in t. A simple cal-
culation yields

ϕ (t) = −
(
sin 2t+

1

2
sin2 t

)
ecos 2t,

F (t, x) = 0.3
arctanx

x
,

and

µ = e−
π
2 , M =

e

2
and m =

1

2e
.

Moreover, for x ∈
[
µ2

M , M
m

]
=

[
2e−π−1, e2

]
we have

µ (1− µ)

π
≤ 0.3

arctan e2

e2
≤ F (t, x) ≤ 0.3

arctan 2e−π−1

2e−π−1
≤ M (1− µ)

π
,

because the function F is a strictly decreasing on (0,+∞). By Theorem 3.2, we
see that (34) has at least one positive π-periodic solution.
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