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GROWTH OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX
VARIABLES ON THE BASIS OF CENTRAL INDEX

DILIP CHANDRA PRAMANIK, MANAB BISWAS AND KAPIL ROY

ABSTRACT. In the present paper we study the comparative growth properties
of composite entire functions of several complex variables on the basis of central
index.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS
We denote complex n-space by C™ and indicate its elements (points):

(21522, 05 2n) s ([21]5 |22] 5 s [2n]) 5 (P1s 72, ) 5 (R, gy e Ko

by their corresponding symbols z, |z|,r, k etc. Throughout Q = Q,, stands for a
nonempty open complete n-circular region in C™(see §3.3 of [2]) with center at
(0,0,...,0), the zero element of C™.

We write
I = {r:r=|z| forz € Q}
and
Qf ={r:re|Q],nor; =0, 1 <j<n}
and regard these as subsets of the n-dimensional Euclidean space R™.

For any r,s € R", we say that
(i) r <sors>r,if and only if r; < s; for 1 < j <n,

(#6) r < sor s >r,if and only if » < s but r is not equal to s
and

(i13) r << sor s >>r, if and only if r; < s; for 1 < j < n.

A function f(z), z € C" is said to be analytic at a point £ € C™ if it can be
expanded in some neighborhood of £ as an absolutely convergent power series. If
we assume & = (0,0, ...,0), then f (z) has representation(see [4] and [6])
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o0 o
k1 _k kv _ k
f (Z) = Z aklak27~--aknZ11222"'zn - Z agz,
k=(0,0,....,0) |k|=0

where k = (k1, ko, ..., kyn) belongs to N = {k : k € C", each k; is rational integer}
and |k] = k1 + ko + ... + k.

For r > (0,0, ...,0), the maximum term p(r) = p(r, f), the maximum modulus
M(r) = M(r, f) and the central index v(r) = v(r, f) = (v1(r, ), v2(r, f), ..y vn(r, f))
of entire function f(z) are given by (see [4] and [5])

u(r) = u(r, ) = max{ag| r*}
M(r) = M(r, £) = max]| (2)
and
N max [k; : ag| 7% = p(r)], if p(r) >0
V](T)—Vj(raf)_{ 0’ lf,U,(T):O, fOT].SjSTL
Also, the central index v(r, f) for which maximum term is achieved

|V(T’f)| :V1(T,f)+V2(7“,f)+...+l/n(’l“,f>.

Definition 1 ([2], p.339) The order p; and lower order As of an entire function

f(2) = f (21,22, ..., 2,) are defined as follows
. logm M(r1,72, .o Ty f)
ps = limsup
T 3T yneey Ty —> 00 log(rlrg...rn)
and o
1 M ey T
A= limint 287 Mlrura e f)
1,720 T —00 log(rirg...rym)

where
log[k] x = log (log[k_l] x) for k=1,2,3,...and 1og[O] T =2z

Also one can define hyper order and hyper lower order of entire function of n-
complex variables in the following way:

Definition 2 The hyper order p; and the hyper lower order Xf of an entire
function f are defined as follows:

IOg[3] M(rla 725y n, f)

pr= limsu
pf rl,rg,“.,rnri)oo IOg(’I“l’I“g...’I“n)
and "
. log®) M .
)‘f — lim inf 0g (Tlv T2,...,T f) )

P12, T —>00 log(rirg...ry)

In this paper we wish to establish the order (lower order) and hyper order (hyper
lower order) of an entire function of several complex variables can also be defined in
terms of central index. During the past few decades, many authors (see for e.g.[1]
and [3]) investigated the growth of entire functions of a single complex variable
on the basis of central index. Here our aim is to study the comparative growth
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properties of composite entire functions of several complex variables with respect
to left (right) factor based on their central index.
2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.
Lemma 1[4]: Let p,r € || and let u(p) and wu(r) be both positive. Then the
line integral,

taken over any connected polygon in || with sides parallel to the axes and from p
to r,

(1) exists,
(#4) is independent of the polygon and
(7i7) is such that log u(r) = log u(p) + I.

Lemma 2[4]: Let r € |Q|. Let p € |C™| and be such that p >> (1,1,...,1), while
pr = (pir1,p2r2, ..., Patn) € 9.

Let
P = i <7 <n.
N; Tg}%);ru] (t)for1<j<n
Then
() < ) <ue) T [+ 2]
=1 Py
(#i) p(r) = M(r), if and only if the series Z apr”® has at most one non vanishing term,
[k]=0

(741) the last relation in (i) is an equality if and only if u(r) = 0.

Lemma 3 Let f(z) be an entire function of n-complex variables with order py,
then
log |v(r1, 72, ooy Ty f)]

pr= limsup .
T1,72,000, 0 —>00 log(ri72...70)
Proof. Set
S o)
ki ks kn _ 2
f(z)= E Akt koo kn 21 200 2y = E apz”.
k=(0,0,....,0) |k|=0

By Lemma 1, we see the maximum term u(r) of f satisfies

T

log pu(r) = log pu(p) + / > l/jf)
p i=1

dz; (1)

Since Krishna, J.G. ([4], Corollary 2.9) proved that v;(r) is increasing and right
continuous in j-th variable for 1 < j < n. Therefore, for any p,r € || such that
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w(r) >0and p >> (1,1,...,1), we get for 1 < j < n,

r

1 dz;
i(r) < (T1y ey 1y ey T ) —2 2
V](’I“) = logp] /V](rh yTj—1, 7r7l) x; ( )
P
From (1) and (2) we get
log pu(r) > log u(p) + Z vj(r)logp; (3)
By Lemma 2, we have
pu(r, f) < M(r, f) (4)
It follows from (3) and (4) that
Z vi(r)logp; <log M(r, )+ C (5)

j=1
where C'(> 0) is a suitable constant.
Asp>> (1,1,..,1) ie, p = (p1,p2,....pn) >> (1,1,...,1), choosing p; = 2 for
1 <5 <n, we get

Zz/] )log2 <log M(r, f)+

= |v(r, f)|log2 < log M (r, f) + C
By this and Definition 1, we have

log!?
limsup loglV(Tl,’f‘z’ arn7f)| < limsup og M(T17T27 77'n,f) _
T1,72,..,Tn —>00 log(Tlr2~-~rn) T1,72 ey Ty —>00 lOg(Tl’I‘Q...’I‘n)

On the other hand, by choosing p; =2 for 1 < j <nie., p=(2,2,..,2) in (i)
of Lemma 2, we have

< ; = <5<
M(r, f) < u(r, f) H [N; + 2], where N; = T<mtzi>z<)ru]( Jfor1<j<mn
J:

= M(?‘, f) < |al,(r7f)| TV(T’f) I | [Nj + 2] (7)
Jj=1
Since {|a|} is bounded, from (7) we get

n

logM(r,f) < Zuj(r)logrj+ZIOgNj+Cl

j=1 j=1
< Z|y |logr]+ZlogN +Cy
j=1
< |1/( r, )| log(rira...rn) + log(N1 Na...Ny,,) + Cy

= log[z] M(r, f) <log|v(r, f)| + log[2] (rirg..ry) + log[z] (N1N3...N,,) + Cy
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where C;(> 0)(j = 1,2) are suitable constants.
By this and Definition 1, we get

log® M(ry, 73,7, ) log|V(rs, 2, s, /)

= limsu < limsu
P e 1082 T)  rimseeraos 108(riT2rn)
(8)
By (6) and (8), Lemma 3 follows. O

Proceeding similarly as in Lemma 3, we can prove the following result:
Lemma 4 Let f(z) be an entire function of n-complex variables with lower order
Ay, then

1
)\f — lim inf 0g|V(7"1,Tg, 7rnaf)|
T1T2 T 00 log(rira...ry)
Lemma 5 Let f(z) be an entire function of n-complex variables with order Prs
then
log[Q] |V(T17 T2y .y T,y f)|

pr= limsup .
T1,72,..., Ty —> 00 log(mrz...rn)
Proof. Set
oo oo
ky k k E
fz) = Z Aoy bk 21 29" o2 = Zakz )
k=(0,0,....,0) |k|=0

By Lemma 1, we see the maximum term u(r) of f satisfies

T

log u(r) = log p(p) + /
p J
Since Krishna, J.G. ([5], Corollary 2.9) proved that v;(r) is increasing and right
continuous in j-th variable for 1 < j < n. Therefore, for any p,r € || such that
w(r) >0and p >> (1,1,...,1), we get for 1 < j <n,

Zla ©

n
=1

T

1 dz;
(r) < Ty ey Ty ey Ty ) — 2. 10
I/](’I")_ logpj/yj(rla yTj—1, 7rl) x; ( )
P
From (9) and (10) we get
log pu(r) > log u(p) + Y vj(r)log p; (11)
j=1
By Lemma 2, we have
pu(r, f) < M(r, f) (12)
It follows from (11) and (12) that
Z vj(r)logp; <log M(r, f)+ C, (13)
j=1

where C'(> 0) is a suitable constant.
As p >> (1,1,...,1) ie,, p = (p1,p2, ..., pn) >> (1,1,...,1), choosing p; = 2 for
1 <5 <n, we get

Zuj(r) log2 <log M(r,f)+C
j=1
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= |v(r, f)|log2 <logM(r,f)+C
By this and Definition 2, we have

. log[Q] [v(r1, 72y ooy Ty )] . log[g] M(ri,ro, s, f)
lim sup < limsup =
T1,T2,..ey Ty —>00 IOg(T1T2---7‘n) T1,T2,eey Ty —>00 10g("“1¢2--~7an)

On the other hand, by choosing p; =2 for 1 < j <nie, p=(2,2,..,2) in (i)
of Lemma 2, we have

M(r, f) < u(r HN+2
j=1

where N; = max v;(t) for 1<j<n
r<t<pr

n
= M(Tv f) < |a'1/(r,f)| TU(nf) H [N] + 2] (15)
j=1
Since {|ag|} is bounded, from (15) we get

n

logM(r, f) < Zuj(r)logrj+ZIOgNj+Cl

j—l j=1
< Z|z/ |long+ZIOgN +C
Jj=1

< |1/( r, f)|log(rira...rn) + log(N1 Na...N,,) + Cy

= log? M(r, f) <log|v(r, f)| + log? (r1ra...r) + loglZ (N1 Ny...N,,) + Cs

where C;(> 0)(j = 1,2) are suitable constants.
By this and Definition 2, we get

log®l M log!2
Py = limsup o8 (TI’TQ’ ’T"7f) < limsup 0g |V(T17T27 7Tn7f)|
T1,7'2,. ., Ty —>00 log(rlrz...rn) T1yT2 e T —00 log(r1r2.”rn)

(16)
By (14) and (16), Lemma 5 follows. O

Proceeding similarly as in Lemma 5, we can prove the following result: B
Lemma 6Let f(z) be an entire function of n-complex variables with order Ay,
then

- log!?! ey T
= liming 08 LT e )]
T1,T2,0e0 Ty =00 log(rirg...rym)

3. STATEMENT AND PROOF OF MAIN THEOREMS

In this section we present the main results of the paper.
Theorem 1 Let f and g be two entire functions of n-complex variables. Also
let 0 < Afog < prog <00 and 0 < Ay < pg < 0o. Then

)‘fogé lim inf log |v(ry, 72, -, 7"mf09)|§min{>‘fog’ﬁ’foy}
pg  rirzeara—oe loglv(ri,re, ..., T, g)| g Py
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SInax{)\fog’pfog} < limsup IOg‘V('I’l,TQ,...,’I"n,fOQ” < pfog.
)‘g Pg T1,72,.0, Ty —>00 IOg|V(T17T2""7rn’g)| /\!1
Proof. Using respectively Lemma 3 and Lemma 4 for the entire function g, we have
for arbitrary positive £ and for all sufficiently large values of rq,7s, ..., 7, that

log |v(r1,72, ... Tn, 9)| < (pg + €)log(rira...r5) (17)
and log [v(11,72,...,7n, g)| > (Ag — &) log(r172...75). (18)
Also, for a sequence of values of each of rq, 79, ..., 7, tending to infinity
log [v(r1, T2, ...;Tn, )| < (Ag +€)log(rira...1y) (19)
and log|v(r1,72, ..., 7n, g)| > (pg — €) log(r17a...7). (20)

Using respectively Lemma 3 and Lemma 4 for the composite entire function fog,
we have for arbitrary positive ¢ and for all sufficiently large values of ry, 79, ...,
that

log [v(r1,r2,...;Tn, fog)| < (prog + €)log(rira...1y) (21)
and log|v(r1,72, ..., Tn, f09)] > (Afog — €) log(rira...Tp). (22)
Again, for a sequence of values of each of r1,7s..., 7, tending to infinity
log [v(r1,r2, ..., Tn, fog)| < (Afog + €) log(rira...7p) (23)
and log|v(r1,72, ... T, f0g)| > (prog — €) log(riTa...1). (24)

Now from (17) and (22) it follows for all sufficiently large values of r1,75..., 7,

that
10g|V(7"17T27 "'7Tn7fog)| > )\fog — €

log [v(r1,72, oy iy g)| = pgte
As g(> 0) is arbitrary, we obtain that
hmlnf 108} ‘V(Tlar% ~~~,?"n,f09)| Z )‘fOQ.
1,72, =00 log |v(r, oy e, iy 9)] Pg

(25)

Again, combining (18) and (23) we get for a sequence of values of each of
r1,T9..., Ty tending to infinity
log |v(r1, 72, e, T'my fOg)] < Afog + €
log v(ri,re,....Tn,9)] — Ag—¢
Since ¢(> 0) is arbitrary, it follows that

lim inf log‘y(TI;TQa“wrnafog” S )\fOQ.
1,72, =00 10g V(11,12 ooy Ty G)| Ag

(26)

Similarly, from (20) and (21) it follows for a sequence of values of each of
r1,T9..., Ty tending to infinity that

log |V(T17T23 coyT'ny ng)| < Pfog +e€

10g|V(T1,T27...7Tn,g)| a pg_E '
As (> 0) is arbitrary, we obtain that
lim inf log|V(r1, 72, -+, ™m; f09)| < Plog (27)

rira,esrn =00 10g V(11 T, iy G)] T Py
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Now combining (25), (26) and (27) we get that
1 ey Ty . Afo 0
liminf Og|V(T17T27 yT'n fog)l Smln{ fg’pf g}.
Py 1,7, =00 log V(11,72 vy Ty )] Ag | Py
Now, from (19) and (22) we obtain for a sequence of values of each of r1,ra..., 7y
tending to infinity that
log |v(r1, 72, ey Tny fOg)] S Afog — €
log [v(r1,72, ey Tnyg)| = Agte
Choosing € — 0 we get that

(28)

thU.p 10g\”(7”1a7"2,-~-77“naf09)| Z )‘fog.
T1,T25.03Tn —>00 10g|1/(7"1,1"2,...,rn,g)| )\9

(29)

Again, from (18) and (21) it follows for all sufficiently large values of r1,75..., 7,
that
log |v(r1, 72, .c.;Tn, fOg)] < Piog +e
log |v(r1,72, s Tny )|~ Ag—€
As g(> 0) is arbitrary, we obtain that

limsup 10g|1/(rlvr27"'»rnaf0.g)‘ S pfog.
T1,72,00 0, T —>00 10g|V(7“1a7“27---a7“n79)| Ag

(30)
Similarly, combining (17) and (24) we get for a sequence of values of each of
r1,T9..., 7y tending to infinity that
IOg |V(7’1,’f‘2, ceey Ty fog)| > Pfog —€
log |v(ri,re,....;Tn,9)| — pg+e€
Since ¢(> 0) is arbitrary, it follows that

log |V(T17T27 s Ty fog)‘ > Pfog

lim su 31
7“177"2,~~77‘np—>00 10g|1/(r1,7"2,...,7“n,g)| - pg ( )
Therefore, combining (29), (30) and (31) we get that
)\ O, O, . 1 ) 1y iy O,
max {ﬂ, @} S lim sup 0g |V(’I"1 T2 r ng)| S pf 9 . (32)
/\g Pg T1,72 ey Ty — 00 10g|V(T17T27~-~7Tnag)| >‘9
Thus the theorem follows from (28) and (32). O

Example 1 Considering f = z, g = expz and n = 1 one can easily verify that
the sign ‘<’ in Theorem 1 cannot be replaced by ‘<’ only.

Remark 1 If we take 0 < Ay < py < oo instead of 0 < Ay < p; < oo and the
other conditions remain the same then also Theorem 1 holds with g replaced by f
in the denominator as we see in the next theorem.

Theorem 2 Let f and g be two entire functions of n-complex variables. Also
let 0 < Afog < prog < oo and 0 < Ay < py < oo. Then

log|1/(r1,7“2,...,7“n7fog)|< Afog pfog}

ﬁg lim inf min { 5
f Pt

P T rirzera—oo loglv(ri, re, ., f)] T

S rnax{%’m} S limsup log‘V(Tl,T’Q,...,Tn,ng” < Pfog
f

Pf T1,T2 ey Ty —>00 10g|V(T15T27"'7TH7f)| N )\f .
Example 2 Considering f = expz, g = z and n = 1 one can easily verify that
the sign ‘<’ in Theorem 2 cannot be replaced by ‘<’ only.
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Theorem 3 Let f and g be two entire functions of n-complex variables. Also
let 0 < Afog < Ppog <00 and 0 <Ay <p, <oo. Then

XO O
(5=

log?!
liminf 0g |V(7”1,7“2, s Ty ng)‘ Smln

Xfo.q<
Pg T2 TR0 log[z] w(r1,72, ey T, 9)| g Py

Aiog P logZ P
SmaX{Ajog,pfog} < limsup og 2|V(T1a7a27 77",,“ng)| < pjog.
>\g pg T1,72,..,Tn —>00 lOg[ ] |V(’I"1,’I“2,...,’I“n,g)| Ag
Proof. Using respectively Lemma 5 and Lemma 6 for the entire function g, we have
for arbitrary positive € and for all sufficiently large values of rq, 73, ..., 7, that

log[z] [v(r1,re, s oy 9)| < (P + €) log(rira...my) (33)
and log!? [v(r1, 79, oo Tn, 9)| = (Ng — €) log(ri7a...7). (34)
Also, for a sequence of values of each of 1,72, ..., 7, tending to infinity
1og[2] lv(r1, 7oy ey Tny g)] < (Xg + &) log(rira...rn) (35)
and log®?! [v(r1, 72, ..., 70, 9)] = (B, — €) log(r172...7). (36)

Using respectively Lemma 5 and Lemma 6 for the composite entire function fog,
we have for arbitrary positive ¢ and for all sufficiently large values of ry, 79, ...,7,
that

log!? (11,72, sy fO9)| < (Prog +€)log(ri72...70) (37)
and log!® [v(r1, 72, ..., Tn, fog)| = (Atog — €) log(ri72...70). (38)
Again, for a sequence of values of each of r1,rs..., 7, tending to infinity
log? [V(r1,72, ooy Ty f0g)| < (Nfog + €) log(rira...ry) (39)
and log® [v(ry, 79, ..., rn, fog)| > (Pfog — €)log(rira...m). (40)

Now, from (33) and (38) it follows for all sufficiently large values of 71, rz2..., 7y
that
log® |v(ry, 79, ..., 7, fog)] S Xfog — €
log? |v(ry,ra, yrn,g)| — PgtE
As e(> 0) is arbitrary, we obtain that

) _
hmlnf log[ ]2|1/(T17T27"'7T’ﬂ7fog)| Z Afog.
71,7250 =200 10g[ | |V(T1,T27 -~-arnag)| Py

(41)

Again, combining (34) and (39) we get for a sequence of values of each of
r1,T2...,7y tending to infinity

log!?! [v(r1,72, oy T, fOg)| < Afog +€
log® [u(ri, 72,y )|~ Ag—e
Since (> 0) is arbitrary, it follows that

(2] 2
hmll’lf log [2|]V(7‘1,7’27...77"n,fog)| S Ajog.
T15725000,Tn =200 IOg |l/(7"1,7’2,-.-,7’n,g)| >\g

(42)
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Similarly, from (36) and (37) it follows for a sequence of values of each of
r1,7T2..., 7y tending to infinity that

log[2] lv(r1, 72y ooy Ty fOg)] < Pfog T €

log[Z] |V(T177127"'7T’nag)‘ B ﬁg —¢ .

As (> 0) is arbitrary, we obtain that

log[Q] ‘V('I"l,’f’g, -.-,Tn,f09)| < ﬁng

lim inf 5 < == (43)
T1725m0 Tn—r00 log[ ) |1/(T’1,7"2, ...,Tn,g)| pg
Now, combining (41), (42) and (43) we get that
A 1 .
)\jog < hmlnf Og |V(7"177"2, rn?ng)‘ S mln{Af‘)g png} (44)
pg T1T2000 T 00 IOg[ ! |I/(T’1,T27 "'7T7L7g)| )\g

Now, from (35) and (38) we obtain for a sequence of values of each of r1,ra..., 7,
tending to infinity that

log |V(T177n2,~~->7nn,f0.g)| > Xfogfs
IOg[ ! ‘ (7"1,7"2, "'7Tnvg)| B Ag te

Choosing € — 0 we get that

log?! T Ao
hmsup 0og g |]Z/(T1’7"27 ) T 7f0.g)| > I g. (45)
T1572505Tn =00 IOg |V(T1,T2,..-,Tn,g)| Ag

Again, from (34) and (37) it follows for all sufficiently large values of 1, ra..., 7,
that

log[Z] ‘V(Tl,?"g, "'7Tn7f0.g)| < ﬁng te
1Og[2] |V(7“177"2,...,7“n,g)‘ B Ag —€

As (> 0) is arbitrary, we obtain that

(2] 5
lim sup log \1/(1"1,7’2, ceiy Ty f0G)| < piog. (46)
1725000 Tn—>00 IOg |V(7"1,7"2,...,T'n,g)| >\g

Similarly, combining (33) and (40) we get for a sequence of values of each of
r1,7T9..., "ptending to infinity that

log[Z] ‘V(T’l,’l"27 "'77nn7f09)| > ﬁfc’g — €
IOg[Q] |V(T17T2,...,7"n,g)‘ B pg+€

Since (> 0) is arbitrary, it follows that

log[z] ‘V(Tlar% ..-,Tn,f09)| > png

lim sup > ==, (47)
rirasern—oe log® u(ry,ra, s Thy g)] Py
Therefore, combining (45), (46) and (47) we get that
oo Pro log!? s T Pfo
max { fg pf g}< hmsup og |V(T1?T27 ) T 7ng)| <pi g. (48)

g pg TLsT25005Tn =00 log v(ri,re, srn, g)l Ag

Thus the theorem follows from (44) and (48). O
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Example 3 Considering f = z, g = exp(exp z) and n = 1 one can easily verify
that the sign * <’ in Theorem 3 cannot be replaced by ‘ <’ only.

Remark 2 If we take 0 < Xf <Py <o instead of 0 < Xg <Py < ooand the
other conditions remain the same then also Theorem 3 holds with g replaced by f
in the denominator as we see in the next theorem.

Theorem 4 Let f and g be two entire functions of n-complex variables. Also
let O <Xf0g S Pfog <0 and 0 <Xf <Py <00 Then

by 2] - _
)\jogg hmlnf log 2|l/(7n17/r27 ceey T,y fo.g)‘ Smin{)\1097 j"g}
Py~ rursrn=oe loghlu(ry ry, o, f)] Ar o Py
3\ i (2] 5
< max{@)@} < limsup lOg [2!V(r1a7‘27"'arn7f09)| < p£0g~
Ay Py 12,00 1ogt = v(r, e, ey Ty f)] A

Example 4 Taking f = exp(expz), g = z and n = 1 one can easily verify that
the sign * <’ in Theorem 4 cannot be replaced by ‘ <’ only.
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