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GROWTH OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX

VARIABLES ON THE BASIS OF CENTRAL INDEX

DILIP CHANDRA PRAMANIK, MANAB BISWAS AND KAPIL ROY

Abstract. In the present paper we study the comparative growth properties
of composite entire functions of several complex variables on the basis of central
index.

1. Introduction, Definitions and Notations

We denote complex n-space by Cn and indicate its elements (points):

(z1, z2, ..., zn) , (|z1| , |z2| , ..., |zn|) , (r1, r2, ..., rn) , (k1, k2, ..., kn)
by their corresponding symbols z, |z| , r, k etc. Throughout Ω = Ωn stands for a
nonempty open complete n-circular region in Cn(see §3.3 of [2]) with center at
(0, 0, ..., 0), the zero element of Cn.

We write
|Ω| = {r : r = |z| for z ∈ Ω}

and
Ω+ = {r : r ∈ |Ω| , no rj = 0, 1 ≤ j ≤ n}

and regard these as subsets of the n-dimensional Euclidean space Rn.

For any r, s ∈ Rn, we say that

(i) r ≤ s or s ≥ r, if and only if rj ≤ sj for 1 ≤ j ≤ n,

(ii) r < s or s > r, if and only if r ≤ s but r is not equal to s
and

(iii) r << s or s >> r, if and only if rj < sj for 1 ≤ j ≤ n.

A function f (z), z ∈ Cn is said to be analytic at a point ξ ∈ Cn if it can be
expanded in some neighborhood of ξ as an absolutely convergent power series. If
we assume ξ = (0, 0, ..., 0), then f (z) has representation(see [4] and [6])
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f (z) =
∞∑

k=(0,0,....,0)

ak1,k2,...,knz
k1
1 zk2

2 ...zkn
n =

∞∑
|k|=0

akz
k,

where k = (k1, k2, ....., kn) belongs to N = {k : k ∈ Cn, each kj is rational integer}
and |k| = k1 + k2 + .....+ kn.

For r > (0, 0, ..., 0), the maximum term µ(r) = µ(r, f), the maximum modulus
M(r) = M(r, f) and the central index ν(r) = ν(r, f) = (ν1(r, f), ν2(r, f), ..., νn(r, f))
of entire function f(z) are given by (see [4] and [5])

µ(r) = µ(r, f) = max
k∈N

{|ak| rk}

M(r) = M(r, f) = max
|z|=r

|f (z)|

and

νj(r) = νj(r, f) =

{
max

[
kj : |ak| rk = µ(r)

]
, if µ(r) > 0

0, if µ(r) = 0, for 1 ≤ j ≤ n.

}
Also, the central index ν(r, f) for which maximum term is achieved

|ν(r, f)| = ν1(r, f) + ν2(r, f) + ...+ νn(r, f).

Definition 1 ([2], p.339) The order ρf and lower order λf of an entire function
f(z) = f (z1, z2, ....., zn) are defined as follows

ρf = lim sup
r1,r2,...,rn→∞

log[2] M(r1, r2, ..., rn, f)

log(r1r2...rn)

and

λf = lim inf
r1,r2,...,rn→∞

log[2] M(r1, r2, ..., rn, f)

log(r1r2...rn)
.

where

log[k] x = log
(
log[k−1] x

)
for k = 1, 2, 3, ... and log[0] x = x.

Also one can define hyper order and hyper lower order of entire function of n-
complex variables in the following way:

Definition 2 The hyper order ρf and the hyper lower order λf of an entire
function f are defined as follows:

ρf = lim sup
r1,r2,...,rn→∞

log[3] M(r1, r2, ..., rn, f)

log(r1r2...rn)

and

λf = lim inf
r1,r2,...,rn→∞

log[3] M(r1, r2, ..., rn, f)

log(r1r2...rn)
.

In this paper we wish to establish the order (lower order) and hyper order (hyper
lower order) of an entire function of several complex variables can also be defined in
terms of central index. During the past few decades, many authors (see for e.g.[1]
and [3]) investigated the growth of entire functions of a single complex variable
on the basis of central index. Here our aim is to study the comparative growth
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properties of composite entire functions of several complex variables with respect
to left (right) factor based on their central index.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Lemma 1[4]: Let p, r ∈ |Ω| and let µ(p) and µ(r) be both positive. Then the

line integral,

I =

r∫
p

n∑
j=1

νj(x)

xj
dxj

taken over any connected polygon in |Ω| with sides parallel to the axes and from p
to r,

(i) exists,

(ii) is independent of the polygon and

(iii) is such that logµ(r) = logµ(p) + I.
Lemma 2[4]: Let r ∈ |Ω|. Let p ∈ |Cn| and be such that p >> (1, 1, ..., 1), while

pr = (p1r1, p2r2, . . . , pnrn) ∈ |Ω|.
Let

Nj = max
r≤t≤pr

νj(t) for 1 ≤ j ≤ n.

Then

(i) µ(r) ≤ M(r) ≤ µ(r)
n∏

j=1

[
Nj +

pj
pj − 1

]
,

(ii) µ(r) = M(r), if and only if the series

∞∑
|k|=0

akr
k has at most one non vanishing term,

(iii) the last relation in (i) is an equality if and only if µ(r) = 0.
Lemma 3 Let f(z) be an entire function of n-complex variables with order ρf ,

then

ρf = lim sup
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, f)|
log(r1r2...rn)

.

Proof. Set

f (z) =
∞∑

k=(0,0,....,0)

ak1,k2,.....,knz
k1
1 zk2

2 ...zkn
n =

∞∑
|k|=0

akz
k.

By Lemma 1, we see the maximum term µ(r) of f satisfies

logµ(r) = logµ(p) +

r∫
p

n∑
j=1

νj(x)

xj
dxj (1)

Since Krishna, J.G. ([4], Corollary 2.9) proved that νj(r) is increasing and right
continuous in j-th variable for 1 ≤ j ≤ n. Therefore, for any p, r ∈ |Ω| such that
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µ(r) > 0 and p >> (1, 1, ..., 1), we get for 1 ≤ j ≤ n,

νj(r) ≤
1

log pj

r∫
p

νj(r1, ..., rj−1, ..., rn)
dxj

xj
. (2)

From (1) and (2) we get

logµ(r) ≥ logµ(p) +

n∑
j=1

νj(r) log pj (3)

By Lemma 2, we have
µ(r, f) ≤ M(r, f) (4)

It follows from (3) and (4) that
n∑

j=1

νj(r) log pj ≤ logM(r, f) + C (5)

where C(> 0) is a suitable constant.
As p >> (1, 1, ..., 1) i.e., p = (p1, p2, ..., pn) >> (1, 1, ..., 1), choosing pj = 2 for

1 ≤ j ≤ n, we get

n∑
j=1

νj(r) log 2 ≤ logM(r, f) + C

⇒ |ν(r, f)| log 2 ≤ logM(r, f) + C

By this and Definition 1, we have

lim sup
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, f)|
log(r1r2...rn)

≤ lim sup
r1,r2,...,rn→∞

log[2] M(r1, r2, ..., rn, f)

log(r1r2...rn)
= ρf

(6)
On the other hand, by choosing pj = 2 for 1 ≤ j ≤ n i.e., p = (2, 2, ..., 2) in (i)

of Lemma 2, we have

M(r, f) ≤ µ(r, f)
n∏

j=1

[Nj + 2] ,where Nj = max
r≤t≤pr

νj(t) for 1 ≤ j ≤ n

⇒ M(r, f) ≤
∣∣aν(r,f)∣∣ rν(r,f) n∏

j=1

[Nj + 2] (7)

Since {|ak|} is bounded, from (7) we get

logM(r, f) ≤
n∑

j=1

νj(r) log rj +

n∑
j=1

logNj + C1

≤
n∑

j=1

|ν(r, f)| log rj +
n∑

j=1

logNj + C1

≤ |ν(r, f)| log(r1r2...rn) + log(N1N2...Nn) + C1

⇒ log[2] M(r, f) ≤ log |ν(r, f)|+ log[2](r1r2...rn) + log[2](N1N2...Nn) + C2
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where Cj(> 0)(j = 1, 2) are suitable constants.
By this and Definition 1, we get

ρf = lim sup
r1,r2,...,rn→∞

log[2] M(r1, r2, ..., rn, f)

log(r1r2...rn)
≤ lim sup

r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, f)|
log(r1r2...rn)

(8)
By (6) and (8), Lemma 3 follows. �
Proceeding similarly as in Lemma 3, we can prove the following result:
Lemma 4 Let f(z) be an entire function of n-complex variables with lower order

λf , then

λf = lim inf
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, f)|
log(r1r2...rn)

.

Lemma 5 Let f(z) be an entire function of n-complex variables with order ρf ,
then

ρf = lim sup
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, f)|
log(r1r2...rn)

.

Proof. Set

f (z) =
∞∑

k=(0,0,....,0)

ak1,k2,.....,knz
k1
1 zk2

2 ...zkn
n =

∞∑
|k|=0

akz
k,

By Lemma 1, we see the maximum term µ(r) of f satisfies

logµ(r) = logµ(p) +

r∫
p

n∑
j=1

νj(x)

xj
dxj (9)

Since Krishna, J.G. ([5], Corollary 2.9) proved that νj(r) is increasing and right
continuous in j-th variable for 1 ≤ j ≤ n. Therefore, for any p, r ∈ |Ω| such that
µ(r) > 0 and p >> (1, 1, ..., 1), we get for 1 ≤ j ≤ n,

νj(r) ≤
1

log pj

r∫
p

νj(r1, ..., rj−1, ..., rn)
dxj

xj
. (10)

From (9) and (10) we get

logµ(r) ≥ logµ(p) +
n∑

j=1

νj(r) log pj (11)

By Lemma 2, we have
µ(r, f) ≤ M(r, f) (12)

It follows from (11) and (12) that
n∑

j=1

νj(r) log pj ≤ logM(r, f) + C, (13)

where C(> 0) is a suitable constant.
As p >> (1, 1, ..., 1) i.e., p = (p1, p2, ..., pn) >> (1, 1, ..., 1), choosing pj = 2 for

1 ≤ j ≤ n, we get
n∑

j=1

νj(r) log 2 ≤ logM(r, f) + C
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⇒ |ν(r, f)| log 2 ≤ logM(r, f) + C

By this and Definition 2, we have

lim sup
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, f)|
log(r1r2...rn)

≤ lim sup
r1,r2,...,rn→∞

log[3] M(r1, r2, ..., rn, f)

log(r1r2...rn)
= ρf .

(14)
On the other hand, by choosing pj = 2 for 1 ≤ j ≤ n i.e., p = (2, 2, ..., 2) in (i)

of Lemma 2, we have

M(r, f) ≤ µ(r, f)
n∏

j=1

[Nj + 2] ,

where Nj = max
r≤t≤pr

νj(t) for 1 ≤ j ≤ n

⇒ M(r, f) ≤
∣∣aν(r,f)∣∣ rν(r,f) n∏

j=1

[Nj + 2] (15)

Since {|ak|} is bounded, from (15) we get

logM(r, f) ≤
n∑

j=1

νj(r) log rj +
n∑

j=1

logNj + C1

≤
n∑

j=1

|ν(r, f)| log rj +
n∑

j=1

logNj + C1

≤ |ν(r, f)| log(r1r2...rn) + log(N1N2...Nn) + C1

⇒ log[2] M(r, f) ≤ log |ν(r, f)|+ log[2](r1r2...rn) + log[2](N1N2...Nn) + C2

where Cj(> 0)(j = 1, 2) are suitable constants.
By this and Definition 2, we get

ρf = lim sup
r1,r2,...,rn→∞

log[3] M(r1, r2, ..., rn, f)

log(r1r2...rn)
≤ lim sup

r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, f)|
log(r1r2...rn)

(16)
By (14) and (16), Lemma 5 follows. �

Proceeding similarly as in Lemma 5, we can prove the following result:
Lemma 6Let f(z) be an entire function of n-complex variables with order λf ,

then

λf = lim inf
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, f)|
log(r1r2...rn)

.

3. Statement and Proof of main Theorems

In this section we present the main results of the paper.
Theorem 1 Let f and g be two entire functions of n-complex variables. Also

let 0 < λfog ≤ ρfog < ∞ and 0 < λg ≤ ρg < ∞. Then

λfog

ρg
≤ lim inf

r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤min {λfog

λg
,
ρfog
ρg

}
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≤ max {λfog

λg
,
ρfog
ρg

} ≤ lim sup
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ ρfog
λg

.

Proof. Using respectively Lemma 3 and Lemma 4 for the entire function g, we have
for arbitrary positive ε and for all sufficiently large values of r1, r2, ..., rn that

log |ν(r1, r2, ..., rn, g)| ≤ (ρg + ε) log(r1r2...rn) (17)

and log |ν(r1, r2, ..., rn, g)| ≥ (λg − ε) log(r1r2...rn). (18)

Also, for a sequence of values of each of r1, r2, ..., rn tending to infinity

log |ν(r1, r2, ..., rn, g)| ≤ (λg + ε) log(r1r2...rn) (19)

and log |ν(r1, r2, ..., rn, g)| ≥ (ρg − ε) log(r1r2...rn). (20)

Using respectively Lemma 3 and Lemma 4 for the composite entire function fog,
we have for arbitrary positive ε and for all sufficiently large values of r1, r2, ..., rn
that

log |ν(r1, r2, ..., rn, fog)| ≤ (ρfog + ε) log(r1r2...rn) (21)

and log |ν(r1, r2, ..., rn, fog)| ≥ (λfog − ε) log(r1r2...rn). (22)

Again, for a sequence of values of each of r1, r2..., rn tending to infinity

log |ν(r1, r2, ..., rn, fog)| ≤ (λfog + ε) log(r1r2...rn) (23)

and log |ν(r1, r2, ..., rn, fog)| ≥ (ρfog − ε) log(r1r2...rn). (24)

Now from (17) and (22) it follows for all sufficiently large values of r1, r2..., rn
that

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≥ λfog − ε

ρg + ε
.

As ε(> 0) is arbitrary, we obtain that

lim inf
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≥ λfog

ρg
. (25)

Again, combining (18) and (23) we get for a sequence of values of each of
r1, r2..., rn tending to infinity

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ λfog + ε

λg − ε
.

Since ε(> 0) is arbitrary, it follows that

lim inf
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ λfog

λg
. (26)

Similarly, from (20) and (21) it follows for a sequence of values of each of
r1, r2..., rn tending to infinity that

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ ρfog + ε

ρg − ε
.

As ε(> 0) is arbitrary, we obtain that

lim inf
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ ρfog
ρg

. (27)
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Now combining (25), (26) and (27) we get that

λfog

ρg
≤ lim inf

r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ min {λfog

λg
,
ρfog
ρg

}. (28)

Now, from (19) and (22) we obtain for a sequence of values of each of r1, r2..., rn
tending to infinity that

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≥ λfog − ε

λg + ε
.

Choosing ε → 0 we get that

lim sup
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≥ λfog

λg
. (29)

Again, from (18) and (21) it follows for all sufficiently large values of r1, r2..., rn
that

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ ρfog + ε

λg − ε
.

As ε(> 0) is arbitrary, we obtain that

lim sup
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ ρfog
λg

. (30)

Similarly, combining (17) and (24) we get for a sequence of values of each of
r1, r2..., rn tending to infinity that

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≥ ρfog − ε

ρg + ε
.

Since ε(> 0) is arbitrary, it follows that

lim sup
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≥ ρfog
ρg

. (31)

Therefore, combining (29), (30) and (31) we get that

max {λfog

λg
,
ρfog
ρg

} ≤ lim sup
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, g)|

≤ ρfog
λg

. (32)

Thus the theorem follows from (28) and (32). �

Example 1 Considering f = z, g = exp z and n = 1 one can easily verify that
the sign ‘≤’ in Theorem 1 cannot be replaced by ‘<’ only.

Remark 1 If we take 0 < λf ≤ ρf < ∞ instead of 0 < λg ≤ ρg < ∞ and the
other conditions remain the same then also Theorem 1 holds with g replaced by f
in the denominator as we see in the next theorem.

Theorem 2 Let f and g be two entire functions of n-complex variables. Also
let 0 < λfog ≤ ρfog < ∞ and 0 < λf ≤ ρf < ∞. Then

λfog

ρf
≤ lim inf

r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, f)|

≤min {λfog

λf
,
ρfog
ρf

}

≤ max {λfog

λf
,
ρfog
ρf

} ≤ lim sup
r1,r2,...,rn→∞

log |ν(r1, r2, ..., rn, fog)|
log |ν(r1, r2, ..., rn, f)|

≤ ρfog
λf

.

Example 2 Considering f = exp z, g = z and n = 1 one can easily verify that
the sign ‘≤’ in Theorem 2 cannot be replaced by ‘<’ only.
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Theorem 3 Let f and g be two entire functions of n-complex variables. Also
let 0 < λfog ≤ ρfog < ∞ and 0 < λg ≤ ρg < ∞. Then

λfog

ρg
≤ lim inf

r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤min {λfog

λg

,
ρfog
ρg

}

≤ max {λfog

λg

,
ρfog
ρg

} ≤ lim sup
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤
ρfog

λg

.

Proof. Using respectively Lemma 5 and Lemma 6 for the entire function g, we have
for arbitrary positive ε and for all sufficiently large values of r1, r2, ..., rn that

log[2] |ν(r1, r2, ..., rn, g)| ≤ (ρg + ε) log(r1r2...rn) (33)

and log[2] |ν(r1, r2, ..., rn, g)| ≥ (λg − ε) log(r1r2...rn). (34)

Also, for a sequence of values of each of r1, r2, ..., rn tending to infinity

log[2] |ν(r1, r2, ..., rn, g)| ≤ (λg + ε) log(r1r2...rn) (35)

and log[2] |ν(r1, r2, ..., rn, g)| ≥ (ρg − ε) log(r1r2...rn). (36)

Using respectively Lemma 5 and Lemma 6 for the composite entire function fog,
we have for arbitrary positive ε and for all sufficiently large values of r1, r2, ..., rn
that

log[2] |ν(r1, r2, ..., rn, fog)| ≤ (ρfog + ε) log(r1r2...rn) (37)

and log[2] |ν(r1, r2, ..., rn, fog)| ≥ (λfog − ε) log(r1r2...rn). (38)

Again, for a sequence of values of each of r1, r2..., rn tending to infinity

log[2] |ν(r1, r2, ..., rn, fog)| ≤ (λfog + ε) log(r1r2...rn) (39)

and log[2] |ν(r1, r2, ..., rn, fog)| ≥ (ρfog − ε) log(r1r2...rn). (40)

Now, from (33) and (38) it follows for all sufficiently large values of r1, r2..., rn
that

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≥ λfog − ε

ρg + ε
.

As ε(> 0) is arbitrary, we obtain that

lim inf
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≥ λfog

ρg
. (41)

Again, combining (34) and (39) we get for a sequence of values of each of
r1, r2..., rn tending to infinity

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤ λfog + ε

λg − ε
.

Since ε(> 0) is arbitrary, it follows that

lim inf
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤ λfog

λg

. (42)
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Similarly, from (36) and (37) it follows for a sequence of values of each of
r1, r2..., rn tending to infinity that

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤
ρfog + ε

ρg − ε
.

As ε(> 0) is arbitrary, we obtain that

lim inf
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤
ρfog
ρg

. (43)

Now, combining (41), (42) and (43) we get that

λfog

ρg
≤ lim inf

r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤ min {λfog

λg

,
ρfog
ρg

}. (44)

Now, from (35) and (38) we obtain for a sequence of values of each of r1, r2..., rn
tending to infinity that

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≥ λfog − ε

λg + ε
.

Choosing ε → 0 we get that

lim sup
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≥ λfog

λg

. (45)

Again, from (34) and (37) it follows for all sufficiently large values of r1, r2..., rn
that

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤
ρfog + ε

λg − ε
.

As ε(> 0) is arbitrary, we obtain that

lim sup
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤
ρfog

λg

. (46)

Similarly, combining (33) and (40) we get for a sequence of values of each of
r1, r2..., rntending to infinity that

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≥
ρfog − ε

ρg + ε
.

Since ε(> 0) is arbitrary, it follows that

lim sup
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≥
ρfog
ρg

. (47)

Therefore, combining (45), (46) and (47) we get that

max {λfog

λg

,
ρfog
ρg

} ≤ lim sup
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, g)|

≤
ρfog

λg

. (48)

Thus the theorem follows from (44) and (48). �



EJMAA-2020/8(1) GROWTH OF ENTIRE FUNCTIONS OF SEVERAL 247

Example 3 Considering f = z, g = exp(exp z) and n = 1 one can easily verify
that the sign ‘ ≤’ in Theorem 3 cannot be replaced by ‘ <’ only.

Remark 2 If we take 0 < λf ≤ ρf < ∞ instead of 0 < λg ≤ ρg < ∞and the
other conditions remain the same then also Theorem 3 holds with g replaced by f
in the denominator as we see in the next theorem.

Theorem 4 Let f and g be two entire functions of n-complex variables. Also
let 0 < λfog ≤ ρfog < ∞ and 0 < λf ≤ ρf < ∞. Then

λfog

ρf
≤ lim inf

r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, f)|

≤min {λfog

λf

,
ρfog
ρf

}

≤ max {λfog

λf

,
ρfog
ρf

} ≤ lim sup
r1,r2,...,rn→∞

log[2] |ν(r1, r2, ..., rn, fog)|
log[2] |ν(r1, r2, ..., rn, f)|

≤
ρfog

λf

.

Example 4 Taking f = exp(exp z), g = z and n = 1 one can easily verify that
the sign ‘ ≤’ in Theorem 4 cannot be replaced by ‘ <’ only.

References

[1] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions
of second order linear differential equations, Kodai Math J., Vol. 22, 273-285, 1999.

[2] B. A. Fucks, Introduction to the theory of functions of several complex variables, Amer.
Math. Soc., 1963.

[3] P. V. Filevych, On the growth of the maximum modulus of an entire function depending on
the growth of its central index, Ufa Mathematical Journal, Vol. 3, No. 1, 92-100, 2011.

[4] J. G. Krishna, Maximum term of a power series in one and several complex variables, Pacific
Journal of Mathematics, Vol. 29, No. 3, 609-622, 1969.

[5] J. G. Krishna, Probabilistic techniques leading to a Valiron-type theorem in several complex
variables, Ann. Math. Statist., Vol. 41, 2126-2129, 1970.

[6] S. Kumar and G. S. Srivastava, Maximum term and lower order of entire functions of several
complex variables, Bulletin of Mathematical Analysis and Applications, Vol. 3, No. 1, 156-
164, 2011.

Dilip Chandra Pramanik

Department of Mathematics, University of North Bengal,
Raja Rammohanpur, Dist-Darjeeling, 734013, West Bengal, India

E-mail address: dcpramanik.nbu2012@gmail.com

Manab Biswas
Barabilla High School, P.O. Haptiagach
Dist-Uttar Dinajpur, 733202, West Bengal, India

E-mail address: manab biswas83@yahoo.com

Kapil Roy
Department of Mathematics, University of North Bengal,

Raja Rammohanpur, Dist-Darjeeling, 734013, West Bengal, India
E-mail address: roykapil692@gmail.com


