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DISJOINT LI-YORKE CHAOS IN FRECHET SPACES

M. KOSTIC

ABSTRACT. The main aim of this paper is to consider various notions of (dense)
disjoint Li-Yorke chaos for general sequences of multivalued linear operators in
Fréchet spaces. We also consider continuous analogues of introduced notions
and provide certain applications to the abstract partial differential equations.

1. INTRODUCTION AND PRELIMINARIES

Assume that X is a Fréchet space. As it is well known, a linear operator T
on X is called hypercyclic iff there exists an element © € Do(T) = [,y D(T™)
whose orbit {T"z : n € Ny} is dense in X; T is called topologically transitive, resp.
topologically mixing, iff for every pair of open non-empty subsets U, V of X, there
exists ng € N such that 7" (U) N V # (), resp. there exists ny € N such that, for
every n € N with n > ng, T"(U) N V # (). We accept the following notion of chaos:
a linear operator T' on X is called chaotic iff it is topologically transitive and the
set of periodic points of T', defined by {x € Do(T') : (3n € N) T"z = x}, is dense in
X. For further information concerning topological dynamics of linear operators in
Banach and Fréchet spaces, we refer the reader to the monographs [3] by F. Bayart,
E. Matheron, [19] by K.-G. Grosse-Erdmann, A. Peris, and a forthcoming one [22]
by the author.

The notion of a Li-Yorke irregular vector in Hilbert space has been defined for the
first time by B. Beauzamy in [4]. After that, Li-Yorke linear dynamics in Hilbert,
Banach and Frechet function spaces has been analyzed by a great number of other
authors including G. T. Prajitura [35], T. Bermudez et al [5], N. C. Bernardes Jr
et al [8], X. Wu [38] and Z. Yin et al [39] (see also [23], [28]). It is well known
that any linear hypercyclic operator needs to be Li-Yorke chaotic as well as that
the converse statement does not hold in general. On the other hand, the notion of
distributional chaos was introduced by B. Schweizer and J. Smital in [36] (1994).
In linear dynamics, distributional chaos was firstly considered in the analyses of
quantum harmonic oscillator, by J. Duan et al [16] (1999) and P. Oprocha [34]
(2006); the first systematic studies of linear distributional chaos is those ones carried
out by N. C. Bernardes Jr. et al [7] (2013) and J. A. Conejero et al [14] (2016).
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Further information about Li-Yorke chaos and distributional chaos in metric and
Fréchet spaces can be obtained by consulting [22] and references cited therein.

Disjointness in linear dynamics was introduced independently by L. Bernal—
Gonzélez [6] (2007) and J. Bés, A. Peris [9] (2007). From then on, a great number
of various notions of disjointness for linear operators has been introduced and ana-
lyzed; for the notion of disjoint mixing operators and disjoint supercyclic operators
one may refer e.g. to the article [10] by J. Bés et al and the doctoral dissertation
[32] of O. Martin, respectively. Regarding disjoint dynamics of abstract partial
differential equations, the first step has been made by the author in [21, Subsection
3.1.1], where disjointness for strongly continuous semigroups induced by semiflows
has been examined. These results have been recently reconsidered in a joint re-
search study [13] with C.-C. Chen, S. Pilipovi¢ and D. Velinov for C-distribution
semigroups and C-distribution cosine functions in Fréchet spaces, as well as in a
joint research study with V. E. Fedorov [17] for abstract degenerate fractional dif-
ferential equations in Fréchet spaces. The notion of disjoint (reiterative, (my,-))
distributionally chaotic operators and some applications to abstract PDEs have
been investigated in [24]-[26] and [28]. To the best knowledge of the author, this is
the first paper, in both linear and non-linear setting, which considers the notion of
disjoint Li-Yorke chaos. The genesis of paper is motivated by our recent results on
the existence of special types of dense Li-Yorke irregular manifolds obtained in a
joint research study with A. Bonilla [12], and later expanded by the author in [30].

The organization and main ideas of paper are given as follows. First of all,
we recollect some necessary preliminaries about lower and upper m,,-densities of
subsets in N; after that, in Subsection 1.1, we remind ourselves of the basic facts
and definitions from the theory of multivalued linear operators in Fréchet spaces.
Various notions of disjoint Li-Yorke chaos were introduced and analyzed in Sec-
tion 2: In Definition 2.1, we introduce the notion of (d, X, My, S, 1)-Li-Yorke chaos,
where 1 < s,7 < 2; in Definition 2.2, we introduce the notion of (d, X, s,1)-Li-Yorke
chaos, where 1 < s < 2 and 3 < i < 4, and finally, in Definition 2.4, we introduce
the notion of (d,X’,mn, s,1)-Li-Yorke chaos, where 3 < s <4 and 1 < i < 2. Here,
(my) denotes an increasing sequence of positive reals satisfying liminf, . = > 0.
Disjoint Li-Yorke chaos under our consideration generalizes the notions of disjoint
hypercyclicity and disjoint distributional chaoticity for multivalued linear operators,
and it cannot be reduced to the Li-Yorke chaos of single components, as illustrated
in Example 2.6. In Proposition 2.8, we clarify the fundamental inclusions for var-
ious types of disjoint Li-Yorke chaos. Following a simple observation from [12], in
Proposition 2.9, we connect a certain type of disjointness condition of Li-Yorke type
with reiterative distributional chaos of type 0. Disjoint Li-Yorke irregular vectors
and manifolds have been investigated in Subsection 2.1.

Speaking-matter-of-factly, the starting point for genesis of this paper is the fol-
lowing theorem, which can be deduced obeying the method developed in the proof
of [7, Theorem 15] and our previous considerations of dense (disjoint, reiterative)
my,~distributional chaos contained in the papers [12] and [25]-[26]; from the sake of
completeness, we will outline the main details of proof in Section 3:

Theorem 1.1. Suppose that X is separable, m € N, (T} )ren)1<j<N 1S a sequence
in L(X,Y), Xo is a dense linear subspace of X, (my,) € R as well as:

(1) limy oo TjJC:L' =0,z € Xg, j € Np;
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(ii) there exist a vector y € X and an increasing sequence (ny) tending to
infinity such that limg_ o0 Py (Tjnpy) = +00, j € Ny limyse0 | Tjn,ylly =
+00, j € Ny, provided that Y is a Banach space].

Then there exists a dense submanifold W of X consisting of those vectors x which
are (d, my)-distributionally near to zero of type 1 for ((Tjr)ren)i<j<n and for
which there exists a strictly increasing subsequence (Ii) of (ny) such that the se-
quence (Pm (T, %)) ken tends to +00 for all j € Ny [(|| T}, x|y )ken tends to +oo
for all j € Ny, provided thatY is a Banach space]. In particular, ((T; k)ken)1<j<N
is densely (d, W, my,, 1,1)-Li-Yorke chaotic.

In a separate part of the third section, Subsection 3.1, we analyze certain corollar-
ies of Theorem 1.1 and applications to unilateral backward weighted shift operators
and weigted forward shift operators, which need not be continuous in our investi-
gation (see also Example 2.7). The Li-Yorke chaos for translation semigroups in
weighted function spaces have been considered for the first time by X. Wu in [38],
who proved that a strongly continuous translation semigroup (7'(t));>o is Li-Yorke
chaotic on L5([0, 00)) iff liminf;, 1 p(t) = 0, provided in advance that the function
p is bounded from above; in this case, being Li-Yorke chaotic and hypercyclic for
(T'(t))+>0 is the same thing. This is no longer case if the function p is not bounded
from above, when there exists a strongly continuous translation semigroup that is
Li-Yorke chaotic, even completely distributionally chaotic, but not hypercyclic ([1]).
It is worth noting that X. Wu has analyzed in [38] several various notions similar
to Li-Yorke chaos, like sensitivity, infinite sensitivity, spatio-temporal chaos, dense
d-chaos and generic (0-)chaos; see [8] for discrete analogues. The consideration of
these notions for disjointness requires further analyses and it is without scope of this
paper; at this place, we want only to mention in passing that the assertion of [38,
Lemma 2.1] holds not only for a translation Cp-semigroup on a weighted function
space but also for any strongly continuous operator family (T'(¢));>0 € L(X,Y),
where X and Y are possibly different Fréchet spaces. The analysis from [38] has
been continued by the author in [23], especially for translation semigroups and
semigroups induced by semiflows in weighted function spaces.

Disjoint Li-Yorke chaotic properties of abstract PDEs in Fréchet spaces have
been analyzed in Section 4, where we initiate the studies of (disjoint) Li-Yorke
chaos for abstract differential equations of second order and (disjoint) Li-Yorke
chaos for abstract differential equations of fractional order in time variable; albeit
formulated for disjoint (f, 1, 1)-Li-Yorke chaos, a great number of examples are given
for disjoint (f,1,1)-distributional chaos which is a much stronger notion, whose
discrete counterpart has been recently analyzed in [26] (here, f : [0,00) — [1,00)
is an increasing mapping satisfying liminf;_, @ > 0). This is a foundational
study of disjoint Li-Yorke chaos and we would like to say that we have found
this theme very difficult to be thoroughly explored in theoretical sense, primarily
from the facts that the methods from [5], [8], [23] and [35] cannot be so easily
reexamined for disjointness. For the sake of brevity, we propose only one open
problem in Subsection 2.1 (Problem 1).

We use the standard terminology throughout the paper. We assume that X and
Y are two non-trivial Fréchet spaces over the same field of scalars K € {R,C} as
well as that the topologies of X and Y are induced by the fundamental systems
(Pn)nen and (pY )nen of increasing seminorms, respectively (separability of X or
Y is not assumed a priori in future). Then the translation invariant metric d :
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X x X — [0,00), defined by

o0

1 Pn(fE 7y)
d = —_ X 1.1
(z,9) 7?:1 Tty ©YEX (1.1)

enjoys the following properties: d(x + u,y +v) < d(z,y) + d(u,v), x, y, u, v € X;
d(cz,cy) < (e + d(z,y), ¢ € K, 2, y € X, and d(aw, Bz) > $15-L5d(0,2),
z € X, a, f € K. Define the translation invariant metric dy : Y x Y — [0,00) by

replacing p,,(-) with pY (-) in (1.1). We endow the Fréchet space Y* with the metric

dY’”(fhﬁ) = 1@?§de($j,yj), = (1'1,' . 'axk) € Yka g: (y17' : 72/k) € Yka

where k € N.

Suppose that C' € L(X) is an injective operator. Put p$(z) := p,(C~'z), n € N,
x € R(CO). Then p¢(-) is a seminorm on R(C) and the calibration (p¢),en induces
a Fréchet locally convex topology on R(C); we shall denote this space simply by
[R(C)]. Notice that [R(C)] is a Fréchet (Banach) space provided that X is.

Given s € R in advance, set |s] :==sup{l € Z:s> 1} and [s] :=inf{l € Z :s <
[}. Denote by E, 3(z) the Mittag-Leffler function E, 5(z) :== > ", 2"/T(an + ),
z € C. Set, for short, E,(2) := Eny1(2), 2 € C and By = {re?? : 0] < ¥}
(9 € (0,7]). We refer the reader to [21] for the notions of fractionally integrated C-
semigroups and C-cosine functions, C-distribution semigroups and C-distribution
cosine functions, a-times C-regularized resolvent families and their integral gen-
erators (@« > 0, C € L(X) injective). Throughout the paper, we assume that
N e N\ {1}; set Ny :={1,2,---,N}.

In this paper, we will consider the spaces L} (©2) and Cp,,(2), where (2 is an open
non-empty subset of R™. Here, p; :  — (0,00) is a locally integrable function, the
norm of an element f € L? (Q) is given by |||, := ([, |f(2)[Pp1(2) dz)'/? and dx
denotes Lebesgue’s measure on R™. Recall that, for a given upper semicontinuous
function p : @ — (0,00), the space Cy ,(€2) consists of all continuous functions
f: Q — C satisfying that, for every e > 0, {x € Q : |f(x)|p(x) > €} is a compact
subset of ; equipped with the norm ||f|| := sup,¢q | f(2)|p(x), Co,,(Q2) becomes a
Banach space.

We will use the following notions of lower and upper densities for a subset A C N :

Definition 1.2. ([27]) Let (m,) be an increasing sequence in [1,00). Then:
(i) The lower (my)-density of A, denoted by d,, (A), is defined through

dm (A) := lim inf M,
" n—oo n
(ii) The lower [; (m,)-Banach density of A, denoted by Bd,.,, (A), is defined

through

Bd,.,, (A):=liminfliminf AN+ 1+ mll .
v s—+4o00 n—oo S
Denote by R the class consisting of all increasing sequences (m,,) of positive reals
satisfying liminf, ,. “» > 0, i.e., there exists a finite constant L > 0 such that
n < Lmy, n € N. Unless stated otherwise, we will always assume that (m,) € R
henceforth. The assumption m,, € N for all n € N can be made.
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1.1. Multivalued linear operators. A multivalued map (multimap) A : X —
P(Y) is said to be a multivalued linear operator (MLO) iff the following two con-
ditions hold:

(i) D(A) :={z € X : Az # 0} is a linear subspace of X;

(il) Az+ Ay C Az +y), =, y € D(A) and Az C A(\x), A € K, z € D(A).
If z, y € D(A) and A, n € K with |[A| + |n| # 0, then it is well-known that
Mz + nAy = A(Ax + ny); furthermore, if A is an MLO, then A0 is a linear
manifold in Y and Az = f + A0 for any = € D(A) and f € Az. Set R(A) := {Az:
x € D(A)}. The set A710 = {x € D(A) : 0 € Az} is called the kernel of A and it
is denoted henceforth by N(A) or Kern(A). The inverse A~! of an MLO is defined
by D(A™Y) := R(A) and A~ 'y := {x € D(A) : y € Az}. Let us recall that A is
called purely multivalued iff A0 # {0}.

Suppose that A : X — P(Y) and B: Y — P(Z) are two MLOs, where Z is a
Fréchet space over the same field of scalars as X and Y. The product of A and B
is defined by D(BA) := {z € D(A) : D(B) N Az # 0} and BAz := B(D(B) N Az).
Then BA : X — P(Z) is an MLO and (BA)~! = A~'B71. The multiplications
of MLOs with scalars and sums of MLOs are taken in the usual way. The integer
powers of an MLO A : X — P(X) are defined inductively by: A° =: I;

D(A") :=={z € D(A" ") : D(A) N A" 'z # 0},
and
Az = (AA" Nz = U Ay, x € D(A™).
yeD(A)NAr—1g
Set Doo(A) 1= ey D(A™).

Suppose that A is an MLO in X. Then a point A € C is said to be an eigenvalue
of A iff there exists a vector z € X\ {0} such that Az € Ax; we call z an eigenvector
of operator A corresponding to the eigenvalue A. The point spectrum of A, o,(.A)

for short, is defined as the set consisting of all eigenvalues of A.
We need the following definition from [28]:

Definition 1.3. We say that the sequence (A;);en of MLOs is X-Li-Yorke chaotic
iff there exists an uncountable set S C (;cy D(A;) ()X such that for every pair
(z,y) € S x S of distinct points and for every integer j € N there exist elements
zj; € Ajz and y; € A,y so that

liminf dy (:vj7yj) =0 and limsupdy (xj,yj) > 0.

j—0o0 Jj—o0
In this case, S is called a X-Li-Yorke scrambled set for (Aj)jen and each such
pair (z,y) is called a X-Li-Yorke pair for (A;)jen. We say that (A;),ecn is densely
X-Li-Yorke chaotic iff S can be chosen to be dense in X.

We refer the reader to [28], [8] and [23] for the notion and properties of Li-Yorke
(semi-)irregular vectors. Any notion introduced above is accepted also for an MLO
operator A : X — P(X) by using the sequence (A; = A7) ¢y for definition. Finally,
if X = X, then we remove the prefix “X-” from the terms and notions.

We will also use the following definition from [26]:

Definition 1.4. Let (m,) € R. Suppose that, for every j € Ny and k € N, A;; :
D(Ajx) €CX = YisanMLO and x € ﬂ;vzl Mrey D(A;j ), z # 0. Then we say that
x is (reiteratively) (d, m,)-distributionally near to 0 of type 1 for ((A;r)ren)1<j<n
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iff there exists A C N such that (Bd,,, (A°) =0) d,, (A°) =0 as well as for each
j € Ny and k € N there exists z; , € A; px such that limpea g—oo zjk =0, 5 € Ny.

Definition of (d, X, i)-distributional chaoticity of tuple ((A; x)ken)i<j<n, Where
1 € Nig, is too large to be repeated here. For further information on the subject,
we refer the reader to [25].

2. DI1SJOINT LI-YORKE CHAOS, DISJOINT LI-YORKE IRREGULAR VECTORS AND
MANIFOLDS

Let € > 0, and let (z;%)ken and (y;x)ken be sequences in X (1 < j < N).
Consider the following conditions:

(Im e N)(Vk e N)(3l, € N) s.t. Iy <lpg1, k€N,

and kli)rgopsz(a:j,lk —yju) =+, k€N, j €Ny,

provided that Y is a Fréchet space, or

(VE e N)(3l € N) s.t. I < lpy1, k€N,

and kli_)n;onj,lk — Yjln HY = 400, j € Ny, provided that Y is a Banach space;
(2.1)

(3m € N)(vk € N)(Vj € Ny)(3l € N)sit. I <., k€N, j €Ny,
and kli)n;op%(xj,li — yj,li) =400, k€N, j€ Ny,
provided that Y is a Fréchet space, or
(Vk € N)(Vj € Ny)(Tl, € N) st I <1, k€N, jeNy,
and lim H:r i Y || = 400, j € Ny, provided that Y is a Banach space;
k—oo!l Dlx  THGIY
(2.2)

d,, ( U {keN:dy(zjh, ;%) > 6}) =0; (2.3)

JENN

Bd,.,,. ( U {k e N:dy (x5, yjk) > 6}> =0; (2.4)

JENN

(Vk € N)(Ing € N) s.t. ng < ngy1, £ € Nand klim dy (;vj’nwyj’nk) =0, j € Ny;
— 00

(2.5)
(Vk € N)(Vj € Ny)(3nf, e N)st. nf <nl,,, k€N
and khﬁrrolo dy (wjmi’yjm{;) =0, j € Nn. (2.6)

Now we are ready to propose the following definitions:

Definition 2.1. Let i € Ny and (m,,) € R. Suppose that, for every j € Ny and
keN, Ajr: D(Ajr) € X =Y is an MLO and X is a linear subspace of X.
Then we say that the sequence ((A;r)ren)i<j<n is disjoint (X, m,,, 1,4)-Li-Yorke
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chaotic, (d, X,my,1,i)-Li-Yorke chaotic in short, resp. disjoint (X,my,,2,4)-Li-
Yorke chaotic, (d, X, mn, 2, 1)-Li-Yorke chaotic in short, iff there exists an uncount-
able set S C ﬂjvzl N, D(A;jx) N X such that for each € > 0 and for each pair
xz, y € S of distinct points we have that for each j € Ny and k € N there exist
elements z; , € A, xz and y; , € A; ry such that (2.1) and (2.i+2) hold, resp. (2.2)
and (2.i+2) hold.

Suppose that s € N,. Then we say that the sequence ((Ajr)ren)i<j<n is
densely (d,X,mn,s,i)—Li—Yorke chaotic iff S can be chosen to be dense in X. A
finite sequence (A;)1<j<n of MLOs on X is said to be (densely) (d, X,m,,, s,i)-
distributionally chaotic iff the sequence ((A;x = A?)keN)lngN is. The set S is
said to be (d, o g, My, s,1)-Li-Yorke scrambled set ((d, o, m,,, s,4)-Li-Yorke scram-
bled set in the case that X = X) of ((Aj1)ren)1<j<n ((A;)1<j<n); in the case
that X = X, then we also say that the sequence ((A;x)ren)i1<j<n ((Aj)1<j<n) is
disjoint (my,, s,1)-Li-Yorke chaotic, (d, m,, s,?)-Li-Yorke chaotic in short.

Definition 2.2. Let i € {3,4}. Suppose that, for every j € Ny and k € N, A :
D(A;j1) € X — Y is an MLO and X is a linear subspace of X. Then we say that
the sequence ((A; 1 )ren)1<j<n is disjoint (X, 1,4)-Li-Yorke chaotic, (d, X, 1,4)-Li-
Yorke chaotic in short, resp. disjoint (X, 2, i)-Li-Yorke chaotic, (d, X, 2,7)-Li-Yorke
chaotic in short, iff there exists an uncountable set S C ﬂjvzl N, D(Ajr) N X
such that for each € > 0 and for each pair x, y € S of distinct points we have that
for each j € Ny and k € N there exist elements x5, € A, xz and y; ; € A, xy such
that (2.1) and (2.i4-2) hold, resp. (2.2) and (2.i+2) hold.

Let s € Ny. Then we say that the sequence ((A; x)ken)1<j<n is densely (d, X, s, 4)-
Li-Yorke chaotic iff S can be chosen to be dense in X. A finite sequence (A;)1<j<n
of MLOs on X is said to be (densely) (d, X, s, i)-distributionally chaotic iff the
sequence ((Ajr = Af)ren)i<j<n is. The set S is said to be (d,0g,s,1)-Li-
Yorke scrambled set ((d, o, s,7)-Li-Yorke scrambled set in the case that X = X) of
((Ajr)ken)i<j<n ((Aj)i<j<n); in the case that X = X, then we also say that the
sequence ((A; k)ren)1<j<n ((Aj)1<j<n) is disjoint (s,%)-Li-Yorke chaotic, (d, s,%)-
Li-Yorke chaotic in short.

Remark 2.3. Assume that ((A; k)ren)1<j<n is d-hypercyclic and « is a correspond-
ing d-hypercyclic vector for ((A; x)ren)1<j<n; see [29, Definition 2.2] for the notion
of dF-hypercyclicity, here F is a collection of all non-empty subsets of N. Then it
can be simply verified that ((A;1)ken)1<j<n is (d, X, 1,3)-Li-Yorke chaotic with
X = span{z}.

Consider, in place of conditions (2.1)-(2.2), the following ones with o > 0:

dmn < U {k S N : dy (I'j,lwyj,k) < 0’}) = O7 (27)

JENN

(vj € N) dy, ({k€N:dy (z;0,550) < }) =0. (2.8)

Albeit not such important in our further investigations in comparision with Def-
inition 2.1 and Definition 2.2, we will also introduce the following
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Definition 2.4. Suppose that, for every j € Ny and k € N, A;, : D(A;) C
X — Y is an MLO and X is a linear subspace of X. Then we say that the se-
quence ((Aj )ren)1<j<n is disjoint (X, m,,3,1)-Li-Yorke chaotic, (d, X,my,3,1)-
Li-Yorke chaotic in short [disjoint (X, my,, 3, 2)-Li-Yorke chaotic, (d, X, m,,, 3, 2)-Li-
Yorke chaotic in short], resp. disjoint (X', My, 4, 1)-Li-Yorke chaotic, (d, X, mp, 4, 1)-
Li-Yorke chaotic in short [disjoint (X, My, 4, 2)-Li-Yorke chaotic, (d, X, my, 4, 2)-Li-
Yorke chaotic in short] iff there exist an uncountable set S C ﬂ;vzl N, D(A;jx)NX
and o > 0 such that for each ¢ > 0 and for each pair z, y € S of distinct points
we have that for each j € Ny and k& € N there exist elements z; € A;rz and
yjk € Ajry such that (2.7) and (2.5) [(2.7) and (2.6)] hold, resp. (2.8) and (2.5)
[(2.8) and (2.6)] hold.

Let s € {3,4} and i € Ny. Then we say that the sequence ((A;x)ken)i<j<n is
densely (d,f(,mn,s,i)-Li—Yorke chaotic iff S can be chosen to be dense in X. A
finite sequence (A;)i<j<ny of MLOs on X is said to be (densely) (d, X,my, s,7)-
distributionally chaotic iff the sequence ((A; 1, = Af) ren)1<j<n is. The set S is said
to be (d, o ¢, my,, s,i)-Li-Yorke scrambled set ((d, o, my,, s,1)-Li-Yorke scrambled set
in the case that X = X) of ((Ajx)ren)1<j<n ((A;)1<j<n); in the case that X =
X, then we also say that the sequence ((A;x)ren)i<j<n ((Aj)1<j<n) is disjoint
(my, s,1)-Li-Yorke chaotic, (d, m,, s, i)-Li-Yorke chaotic in short.

As in our previous investigations of disjoint m,,-distributional chaos, we need to
know the minimal linear subspace X for which the corresponding tuple of MLOs
is (d,f(,mn, s,1)-Li-Yorke chaotic or (d,f(, s,1)-Li-Yorke chaotic, with the mean-
ing clear. Since the X-Li-Yorke chaos and disjoint X-Li-Yorke chaos are rotation
invariant, we essentially need to consider only such tuples of MLOs whose compo-
nents are pairwise different and which are not rotations of some other components
in the tuple. It is also clear that the notion from Definition 2.1 and Definition 2.2
can be introduced for general binary relations between a topological space X and a
Fréchet space Y, as well as that the notion from Definition 2.4 can be introduced for
general binary relations between a topological space X and a pseudo-metric space
Y. For the sake of brevity, we will not consider disjoint (MLO) Li-Yorke extensions
in this paper (see [22] for similar problematic).

An idea of G. T. Prajitura given on [35, p. 690] can be used for construction of
disjoint Li-Yorke chaotic MLOs. We will explain this idea only for (d, X,my,1,4)-
Li-Yorke chaos:

Example 2.5. Suppose that A;, Bj;, C; are given MLOs in X, as well as the
tuple (A;)1<j<n is (d, X, mn, 1,i)-Li-Yorke chaotic for some (m,) € R. For each
integer j € Ny, we define the multivalued map 7; = (’%j lg; ) by D(T;) := {(z,y) €
X xX :xz € D(A)), y€ D(Bj)ND(C))} and Tj(z,y) := {(z,w) € X x X 1w €
Cjy, 3z1 € Ajx, 322 € Bjy, z = 21 + 22}. Then it can be easily seen that for each
integer j € Ny, 7; is an MLO in X x X. Furthermore, it can be simply checked that
the supposition z;, € A¥z for some k € N and j € Ny implies (z;,0) € T}(z,0).
Observed this, it readily follows that the tuple (7;)1<j<n is (d, X, mn, 1,4)-Li-Yorke
chaotic in X x X, as well.

If the sequence ((A;)ken)i<j<n is (densely) X-Li-Yorke chaotic in the sense
of any notion introduced in the above three definitions, then for each j € Ny we
have that the sequence (A; x)ren is (densely) X-Li-Yorke chaotic (in particular, if
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X =Y = X and ((Ajx)ren)1<j<n is densely Li-Yorke chaotic in the sense of any
notion introduced above, then [28, Proposition 4] yields that for each j € Ny one
has o, (AF)N{A € K: [A] > 1} = 0)). The converse statement does not hold even for
orbits of linear continuous operators on Hilbert spaces, as the next example shows:

Example 2.6. In [39, Theorem 3.7], Z. Yin, S. He and Y. Huang have shown
that, for any two positive real numbers a and b such that a < b, there exists
an invertible operator T acting on a Hilbert space X such that [a,b] = {A >
0 : AT is distributionally chaotic} and for any distinct values A1, A2 € [a,b], the
operators A\;T and AT have no common Li-Yorke irregular vectors (see e.g. [39,
Definition 3] for the notion). Let Ay < Ay and A1, Aa € [a, b]. It can be easily checked
that the operators A\;T and AT cannot be (d, X, 2, 4)-Li-Yorke chaotic because any
non-zero vector z € S — .S, where S denotes the corresponding scrambled set, needs
to be a common Li-Yorke irregular vector for both operators A\;T and A7, as can
be easily seen. This implies that A\;T and AT cannot be disjoint Li-Yorke chaotic in
the sense of any notion introduced in Definition 2.1 and Definition 2.2. Furthermore,
these operators cannot be disjoint Li-Yorke chaotic in the sense of notion introduced
in Definition 2.4 because, if we suppose the contrary, then for each non-zero vector
z € 8§ — S there exist two strictly increasing sequences (ng) and (lg) of positive
integers such that limg oo [|[(A; 7)™ 2| = 0 and limsup,_, [|(\;T)% 2] > 0 (j =
1,2). By the proofs of [39, Theorem 3.3, Theorem 3.7], this would imply that there
exists a constant ¢(A1, A2), independent of z, such that |[(AMT)"z| < (A1, A2)]|2]|
for all n € N and therefore ||z|| > o/c(A\1, A2). This is a contradiction because the
set S — .S cannot be bounded away from zero.

Concerning Example 2.6, it should be noted that we have recently proved that
the operators A\yT" and AT are disjoint distributionally chaotic of type
i €{4,5,6,8,9,10,11, 12}; see [25] for notion and more details. We will not analyze
Li-Yorke analogues for these types of disjoint distributional chaos here.

We continue by providing one more illustrative example:

Example 2.7. (see also [25, Example 3.24]) Consider a weighted forward shift
F,, € L(I?), defined by F,(z1, 22, ) — (0,w121,wsT2, - - -), where the sequence of
weights w = (wg)gen consists of sufficiently large blocks of 2’s and blocks of (1/2)’s.
Set o := (1/ws)ren. Then for each non-zero vector (z,)nen € I? there exists ng € N
such that x,, # 0 and, for every integer k € N, we have

|F nnen + & (@a)nen]| 2 21l

This, in turn, implies that the operators F,, and F, cannot be disjoint Li-Yorke
chaotic in the sense of any notion introduced in Definition 2.1, as well as that
F,, and F, cannot be (d, X,1,3)-Li-Yorke chaotic [(d, X,2,3)-Li-Yorke chaotic,
(d, X,3,1)-Li-Yorke chaotic, (d,)~(,4,1)—Li—Yorke chaotic]. Now we will analyze
the question when F,, and F,, can be (d, X, 1,4)-Li-Yorke chaotic or (d, X, 2, 4)-Li-
Yorke chaotic. Assume that e; is a Li-Yorke irregular vector for F,,. Then e; is a
Li-Yorke irregular vector for F,, and it trivially follows that the operators F,, and F,
are (d, span{e; },2,4)-Li-Yorke chaotic with S = span{e; } being the corresponding
disjoint scrambled set. Similarly, if e; is an m,,-distributionally irregular vector for
F,,, then e; is likewise an m,,-distributionally irregular vector for F,, and the op-
erators F,, and F, are (d, span{e;}, mpy,4,2)-Li-Yorke chaotic with S = span{e;}
being the corresponding disjoint scrambled set (see [26] for the notion).
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Observe that for each subset A C N we have that the assumption d,, (A4) = 0 for
some (my,) € R implies Bd,.,, (A) = 0 (if we suppose the contrary, the set A needs
to be syndetic [27] and therefore d,,, (A) > 0, which contradicts our assumption).
Therefore, the validity of (2.3) implies that of (2.4) and we can trivially verify that
the following proposition holds good:

Proposition 2.8. Suppose that, for every j € Ny and k € N, A; 1 : D(A; ) C
X =Y is an MLO, (m,) € R and X is a linear subspace of X. Then we have:

(i) The sequence ((Ajr)ken)i<j<n s (d, X, my,2,i)-Li-Yorke chaotic if it is
(d, X, mp,1,i)-Li-Yorke chaotic (i = 1,~2).

(ii) The sequence ((Ajr)ren)i<j<n is (d, X, mn,s,2)-Li-Yorke chaotic if it is
(d, X, My, 8, 1)-Li-Yorke chaotic (s = 1,2); if the sequence ((Aj k)ren)1<j<n
is (d, X, my, s,2)-Li-Yorke chaotic, then it is (d, X, s, 3)-Li-Yorke chaotic
(s=1,2). )

(i) The sequence ((Ajk)ren)i<j<n s (d,X,s,4)-Li-Yorke chaotic if it is
(d, X, my, s,3)-Li-Yorke chaotic (s = 3,4).

(iv) The sequence ((Ajr)ren)i<j<n s (d, X, my,4,1)-Li-Yorke chaotic if it is
(d, X, mp,3,i)-Li-Yorke chaotic (i = 1,~2).

(v) The sequence ((Ajr)ren)i<j<n s (d, X, mp,s,2)-Li-Yorke chaotic if it is
(d, X, my,s,1)-Li-Yorke chaotic (s = 3,{1).

(vi) The sequence ((Ajr)ren)i<j<n is (d,X,n,s,i)-Li-Yorke chaotic if it is
(d, X, mp, s,i)-Li- Yorke chaotic (s € Ny, i =1,2).

For orbits of linear continuous operators in Banach spaces, it is worth noting
that the following equivalence relations hold:

Proposition 2.9. Suppose that X is a Banach space and T; € L(X) for all j € Ny.
Then the following statements are mutually equivalent:

(i) There exist two strictly increasing sequences (Iy) and (sx) of positive inte-
gers and vector x € X such that limy_, o Tjs’“x =0 and limy_, ||T]lk:r|| =

400 O'EINN).
(ii) For every o >0, e > 0 and (m,,) € R, we have that

Bdl;mn< U {keN:|Tfz| < o—}> =0, and

JENN
Bdl;mn< U {keN:|Tfz| > e}) =0.
JENN
(iii) For every o >0, € > 0 we have that (2.9) holds with m,, = n.

Proof. The only non-trivial is to show that (i) implies (ii); see also the proof of [30,
Proposition 2.16(i)]. So, let o > 0, ¢ > 0 and (m,,) € R be fixed. By definition of
Bd,.,,, (-), it suffices to prove that for each fixed number s > 0 one has:

Ujery k€ N2 T80 <o} o+ 1on ot m,

lim inf =0 (2.10)
n—o00 S
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and

f Ujeny {k € N2 ITfall 2 e} [ L+ m,]

lim in = 0. (2.11)
n— 00 S

It is clear that there exist two strictly increasing sequences of positive integers
(13,) and (j;,) with unbounded differences such that HTJl;‘xH <o+ |Tu|+---+
ITx )=+ =ma=1/2 and | TS al| > 202 + | T3]l + - - - + | T [)F+m+1 for all k € N
and j € Ny. An elementary line of reasoning shows that the sets (J;cy, {k € N
||Tf:c|| > o} N[, + [ms]] and UjeNN {keN: ||Tjkz\| <o} N[j, — [msl, g, are
empty, finishing the proofs of (2.10)-(2.11). O

2.1. Disjoint Li-Yorke irregular vectors and manifolds. For any type of dis-
joint Li-Yorke chaos introduced above, we can define corresponding notion of dis-
joint semi-Li-Yorke irregular vectors and disjoint Li-Yorke irregular vectors. Con-
sider the following conditions:

the same as (2.1) with the term x;;, — y;, replaced therein with z;;,; (2.12)

the same as (2.1) with the terms x;;, — v, and kliHrI;OpnY1 (20, — Yju.) = +00

replaced therein with x;;, and kli_)n;opzl (gcj,lk) > 0, respectively; (2.13)

the same as (2.2) with the term T~ Y replaced therein with Ve (2.14)

: .
the same as (2.2) with the terms Ti =Y and kl;ngopm (xjyli; - yjali) = 400

replaced therein with ;4 and kli_)ngopzl (xj,li) > 0, respectively; (2.15)

the same as (2.5) with the term lm dy (%jnpsYjme) =0
—00

replaced therein with kli_glo dy (ajjmk,O) =0; (2.16)

the same as (2.6) with the term klim dy (xj,nk_,yj,nk) =0
—00

replaced therein with lim dy (2;,,,,0) = 0. (2.17)

k— o0

Now we are ready to introduce the following notion:

Definition 2.10. Let i € Ny and (m,,) € R. Suppose that, for every j € Ny and

EeN, Ajr : D(Ajr) € X — Y is an MLO, X is a linear subspace of X, and
2 € (Njeny Nren D(Ajk) N X. Then we say that:

(i) z is (d, X, my, 1, 1)-Li-Yorke irregular vector for ((A;x)ken)1<j<n iff z is
(d, my,)-distributionally near to zero of type 1 for ((A;r)ken)i<j<n and
(2.12) holds with elements z;;, € A;;, ;

(ii)  is (d, X,mp, 1,1)-Li-Yorke semi-irregular vector for ((A;x)ren)1<j<n iff
x is (d,my,)-distributionally near to zero of type 1 for ((Ajx)ren)i<j<n
and (2.13) holds with elements x;,;, € A;;, x;
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(i) = is (d, X,my, 1,2)-Li-Yorke irregular vector for ((A;x)ren)i<j<n iff = is
(d, X, my, 1, 1)-Li-Yorke irregular vector for ((Ajx)ken)i<j<n iff x is reiter-
atively (d, m,)-distributionally near to zero of type 1 for ((A; x)ken)1<j<n
and (2.12) holds with elements z,,;, € A;, x;

(iv) z is (d, X, mp,1,2)-Li-Yorke irregular vector for ((Aj k)ken)1<j<n iff z is
reiteratively (d, m,,)-distributionally near to zero of type 1 for
((Ajk)ren)1<j<n and (2.13) holds with elements z;;, € A, ;

(v) z is (d, X, my,2,1)-Li-Yorke irregular vector for ((A;r)ren)i<j<n iff @ is
(d, my,)-distributionally near to zero of type 1 for ((A;x)ken)i<j<n and
(2.14) holds with elements z; ,; € A, ; x;

"k "k

(vi) z is (d, X,mp, 2, 1)-Li-Yorke semi-irregular vector for ((A; x)ren)i<j<n iff
x is (d,my)-distributionally near to zero of type 1 for ((Aji)ren)i<j<n
and (2.15) holds with elements T € Aj,lix;

(vii) z is (d, X, mn, 2, 2)-Li-Yorke irregular vector for ((A;x)ren)i<j<n iff @ is
(d, X, mn, 1,1)-Li-Yorke irregular vector for ((A; x)ren)i<j<n iff 2 is reiter-
atively (d, my,)-distributionally near to zero of type 1 for ((A;x)ren)i<j<n
and (2.14) holds with elements T € .Aj’lias;

(viil) z is (d, X, mp,2,2)-Li-Yorke semi-irregular vector for ((A;x)ren)i<j<n
iff x is reiteratively (d,m,,)-distributionally near to zero of type 1 for
((Ajk)ken)1<j<n and (2.15) holds with elements T € A.Jix.

Definition 2.11. Let ¢ € {3,4}. Suppose that, for every j € Ny and k € N,
Air : D(Ajr) € X — Y is an MLO, X is a linear subspace of X, and z €
Njeny Nien D(Aj k) N X. Then we say that:
(i) @ is (d, X, 1,3)-Li-Yorke irregular vector for ((A; 1)ren)1<j<n iff (2.16) and
(2.12) hold with elements z,,;, € A;, z;
(ii) zis (d, X, 1, 3)-Li-Yorke semi-irregular vector for ((A; x)ken)1<j<n iff (2.16)
and (2.13) hold with elements z;;, € A;, ;
(iti) « is (d, X, 1,4)-Li-Yorke irregular vector for ((A; x)ren)i<j<n iff (2.17) and
(2.12) hold with elements z;;, € A;, x;
(iv) zis (d, X, 1,4)-Li-Yorke irregular vector for ((A;j x)ken)1<j<n iff (2.17) and
(2.13) hold with elements z;;, € A;, x;
(v) zis (d, X, 2, 3)-Li-Yorke irregular vector for ((A; )ren)1<j<n iff (2.16) and
(2.14) hold with elements T € .Aj%x;
(vi) zis (d, X, 2, 3)-Li-Yorke semi-irregular vector for ((A; x)ken)1<j<n iff (2.16)
and (2.15) hold with elements T € 'Aj,lix;
(vii) xis (d, X, 2,4)-Li-Yorke irregular vector for ((A; x)ren)i<;j<n iff (2.17) and
(2.14) hold with elements T € Aj’lix;
(viil) zis (d, X, 2,4)-Li-Yorke semi-irregular vector for ((A; x)ren)1<j<n iff (2.17)
and (2.15) hold with elements T8 € A»%z.

Let {0} # X’ C X be a linear manifold.
d1. Suppose i, j € Ny and (m,,) € R. Then we say that X' is a (d, X, m,,, 1, j)-
Li-Yorke (semi-)irregular manifold for ((A;x)ren)i<j<n ((d,mn,1,j)-Li-
Yorke (semi-)irregular manifold in the case that X = X) iff any element z €
(X’ﬁﬂ;-vzl N, D(A;j )\ {0} is a (d, X, my, i, j)-Li-Yorke (semi-)irregular



260 M. KOSTIC EJMAA-2020/8(1)

vector for ((Aj1)ken)1<j<n; the notion of a ((d,my,i,4)-, (d, X, mn,i,5)-
)Li-Yorke (semi-)irregular manifold for (A;)i<j<n is defined similarly.

d2. Suppose i € Ny and j € {3,4}. Then we say that X’ is a (d,X,4,J)-
Li-Yorke (semi-)irregular manifold for ((A; x)ren)i<j<n ((d, %, j)-Li-Yorke
(semi-)irregular manifold in the case that X = X) iff any element = €
(X' N oy Ny D(AR) \ {0} is a (d, X4, j)-Li-Yorke (semi-)irregular
vector for ((A; k)ken)1<;j<n; the notion of a ((d, 1, j)-, (d, X, 1, j)-)Li-Yorke
(semi-)irregular manifold for (A;)1<;j<n is defined similarly.

We have the following:

d3. Suppose that 7, j € Ng, (m,) € Rand 0 # z € X N ﬂ;vzl Nie; D(A; k)
is a (d, X, My, i, j)-Li-Yorke (semi-)irregular vector for ((A;x)ren)i<j<n-
Then X’ = span{z} is a (d, X, my,, j)-Li-Yorke (semi-)irregular manifold
for ((Ajx)ren)1<j<ni

d4. Suppose i € Ng, j € {34}and07éx€Xﬂﬂ 1 Mrey D(Aj i) s

a (d, X,i,7)-Li-Yorke (semi-)irregular vector for ((A;jx)ken)i<j<n. Then
X' = span{z} is a (d, X, i, j)-Li-Yorke (semi-)irregular manifold for
((Ajk)ren)i<j<n-

If X’ is dense in X, then the notions of dense ((d, my, 4, j)-, (d, X, m,, 1, j)-)Li- Yorke
(semi-)irregular manifolds, (d,, j)-, (d, X, i, j)-)Li-Yorke (semi- )irregular manifolds,
etc., are defined analogically.

It can be simply verified by a great number of concrete and very plain examples
that the notions of (d, X, my,,4,j)-Li-Yorke chaos and (d, X,my, i1, j;)-Li-Yorke
chaos differ if (m,) € R, 4, i1, j, j1 € Na and (4,j) # (21,]1) as well as that
the notions of (d, X,4,)-Li-Yorke chaos and (d, X, i1, j1)-Li-Yorke chaos differ if
i, i1 € No, 4, 71 € {3,4} and (4,5) # (i1,41)- The counterexamples exist even
for general sequences of linear continuous operators on finite-dimensional spaces,
for which it is also clear that they can have (d, X, M. 1, j)-Li-Yorke semi-irregular
vectors but not any (d, X, my,1, j) Li-Yorke irregular vector (take, for example,
X =Y :=K", T; := 0 for even j's and T} := 21 for odd j's). In connection with
this, we would like to propose the following

Problem 1.

(i) Let (my) € R and 4, j € Na. Does there exist a tuple (7})1<;<n of lin-
ear continuous operators on an infinite-dimensional space X admitting a
(d,f( , M, 1, j)-Li-Yorke semi-irregular vector and its neighborhood which
does not contain any (d, X, my,, 1, j)-Li- Yorke irregular vector for (T’ Tj)i<j<n?

(ii) Let ¢ € Ng and j € {3, 4} Does there exist a tuple (7})1<j<n of lin-
ear continuous operators on an infinite-dimensional space X admitting a
(d, X,i ,7)-Li-Yorke semi-irregular vector and its neighborhood which does
not contain any (d, X, i, j)-Li-Yorke irregular vector for (T})1<j<n?

Let us recall that for a continuous linear operator T' € L(X ) any neighborhood
of a X-Li-Yorke semi- irregular vector for T contains a X- irregular vector for T,
provided that {T79z : j € No} C X (see [8, Lemma 7, Theorem 8] and [23, Definition
2.2] for the notion, as well as [23, Lemma 3.5, Remark 3.6, Theorem 3.7] for a
continuous analogue). Unfortunately, the proof of [8, Lemma 7] cannot be recovered
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for disjointness, to our best knowledge, and we must follow some other approaches
for solving Problem 1. It is also clear that we can raise a continuous counterpart
of Problem 1 for strongly continuous semigroups of operators (cf. also the proof of
implication [38, Theorem 2.2, (1-2) = (1-1)]).

Concerning the notion introduced in Definition 2.4, the corresponding notion of
disjoint Li-Yorke irregular vectors and (uniform) disjoint Li-Yorke irregular mani-
folds can be also accompanied. The main difference is the use of notion of (d, m,)-
distributionally m-unbounded vectors of type 1 for ((Ajx)ren)i<j<n and my-
distributionally m-unbounded vectors for ((Ax)ken) in place of conditions analyzed
in the equations (2.12) or (2.14); see [26] for more details. For the sake of brevity
and better exposition, we will skip all related details about this subject.

In our previous research studies, we have observed some important differences
between Banach spaces and Fréchet spaces concerning the existence of (disjoint)
my,-distributionally unbounded vectors. These differences are also perceived for
(disjoint) Li-Yorke chaos (cf. [25] for more details):

Example 2.12. Set B := {k € N : A, is purely multivalued for all j € Ny}.
Let Y be a Banach space and let B be infinite. Then any non-zero vector z €
ﬂ?’:l My D(A; ;) satisfies (2.12), which is no longer true in the case that Y is a
Fréchet space.

3. THE PROOF AND COROLLARIES OF MAIN RESULT

We start this section by inserting the proof of Theorem 1.1:

Proof of Theorem 1.1. The proof is very similar to that of [7, Theorem 15]
and we will only outline the main details. It suffices to consider the case in which
X and Y are Fréchet spaces whose topology is induced by a countable system of
seminorms because otherwise we can endow Y (or X, if it is a Banach space) with
the following increasing family of seminorms pY (y) := n|jy|ly (n € N, y € Y), which
turns the space Y into a linearly and topologically homeomorphic Fréchet space.
So, let it be the case. Then it is clear that, for every j € Ny and I, k € N, there
exist finite numbers ¢;;, > 0 and aj € N such that p) (T xz) < ¢jxiPa,,, (2),
xz € X, k, l €N, j e Ny. Introducing recursively the following fundamental system
of increasing seminorms p),(-) (n € N) on X :

pi(z) =pi(z), ze€X,

N
ph(x) =) [p1(x) + ¢j11pa, ., () + p2(2)], w€ X,
j=1
N
Prir () =D [P0(@) + ¢iinPag i () + -+ CimiPay ) (2) + Pua(@)], @ € X,
j=1

we may assume without loss of generality that
Py (Tjkx) < ppyi(x) forall z€ X, jeNyand k, [ €N. (3.1)

Furthermore, we may assume without loss of generality that m = 1. Then we can
construct a sequence (z;);eny in Xo and a strictly increasing sequence (k;)gen of
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positive integers such that, for every I € N, one has: p(2;) <1, py (Tjn,, x1) > 12!
and p- (T kxs) < 1/1, provided j € Ny, s =1,---,1—1 and k > my,11/l. Take any
strictly increasing sequence (r4)qeny in N\ {1} such that

Tq+1 = 1+ 71g+my, B o for all ¢ € N. (3.2)
Let a € {0,1}" be a sequence defined by a; = 1 iff s = r, for some ¢ € N. Further
on, let 8 € {0,1}" contains an infinite number of 1’s and let 8, < o for all ¢ € N.
If B;,, = 1 for some ¢o € N and x5 = Z;’il Br,Tr, /2", then with k = Nk, and
j € Ny, we have 1 + k=1 + M,y < rgot1 for ¢ > qo, k > my,, for ¢ < go and

pTYq+1<Tj,kxs) <1/(rq+1) for s < ry,, as well as:

! 1
p 1147 Ly, P ]’,7 T,
Py (Tjwzs) > 10 — Py (Tjhtr,) _ S py (Tjntr,)

27q g
a<qo q>qo
1
Py (T kr,) prok(er,)
D D TERD Dl T
a<qo a>qo
1 1
quo—Zm 2276127‘%—1.
q4<qo 9>qo0

Furthermore, if k € [1,mqu0+1] and py 1(Tj,kxs) < 1/(rgy +1) for s < re, +1,
which holds provided that k > mqu0+1+1/(rqo + 1), then we have 1 + 7y + k <
L+ 7g + M, 41 <741 due to (3.2) and therefore

p;/qOH( T kxr,) TYQOH (T} rvr,)
o (Tyaap) < 30 B atn) | o 2 (i)
3<qo q>qo0
1 Ditktrg (Try)
S D e i D
q9<qo 27 (rg, +1) q>qo 20
<t 4 Z ! €N
<o — < j € Ny,
2(rg, + 1) 5o 2 qu +1’
which clearly implies that
Tqot1 1 ( [’} 1 )
Dq kaﬁ pq kaﬁ
dy (T rxg,0) = — = —
( JkB ) ; 201 + py(T; kxp) i Z 2 po(Tixxp)
1 1

< —\ jEN

T Tg 1 + a7 N

and zg is a (d, span{xg}, my, 1,1)-Li-Yorke irregular vector for ((T}r)ren)1<j<n-
The final statement of theorem now follows similarly as in the proofs of [7, Theorem
15] and [30, Theorem 4.1].

Now we will state the following corollary of Theorem 1.1:

Corollary 3.1. Suppose that X is separable, ((Tjr)ren)i<j<n 1S a Sequence in
L(X,)Y), Xo is a dense linear subspace of X, and limy_oTjrx = 0, z € X,
7 € Nn. Then the following statements are equivalent:
(1) The tuple ((Tjr)ken)i<j<n is densely (d,m,,1,1)-Li-Yorke chaotic for
some (all) (my,) € R.
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(ii) The tuple ((T; )kEN)1<j<N is densely (d,my,1,2)-Li-Yorke chaotic for
some (all) (my, )
(i) The tuple ((1}, k)keN)1<]<N is densely (d, 1,3)-Li-Yorke chaotic.
(iv) The tuple (T} x)ken)i<j<n is densely (d,1,4)-Li-Yorke chaotic.

Proof. For the proof of implication (i) = (ii), it suffices to recall that the assumption
d,,, (A) =0 for some (m,,) € Rand A C Nimplies Bd,,,, (A) = 0. The implications

(ii) = (iii) = (iv) are trivial, while the implication (iv) = (i) follows from an
application of Theorem 1.1. ([l

In connection with Theorem 1.1, it should be recalled that the existence of dense
Li-Yorke irregular manifolds for orbits of linear continuous operators on Banach
spaces has been analyzed in [8, Section 4]. In particular, the authors have shown
that for any operator T € L(X), where X is a separable Banach space, the existence
of a dense linear subspace X, of X and a strictly increasing sequence (Ij) of positive
integers such that limy_,, [|T%x|| = 0 for all z € X implies that the Li-Yorke chaos
of T is equivalent either with the existence of dense Li-Yorke irregular manifold for
T or the existence of an unbounded orbit (see [8, Corollary 33]). The method used
in the proof of this result is substantially different from that of [7, Theorem 15] and
we will not reexamine it for disjoint Li-Yorke chaos.

Now we state the following corollary of Theorem 1.1, which can be deduced
by using the pivot spaces [R(C)], X and the sequence ((T,r)ren)i<j<n, where
T;(Czx) :=T;,Czx, x € X for k€ Nand j € Ny :

Corollary 3.2. Suppose that T; : D(T; ) € X — X is a linear mapping, C €
L(X) is an injective mapping with dense range, as well as

R(C) C D(Tj ) and T; 1,C € L(X) for all k € N and j € Ny.

Suppose, further, that X is separable, m € N, Xy s a dense linear subspace of X,
(my) € R as well as:

(1) limg_ o0 Tj,kC:c =0, x € X, Jj € Ny;

(i) there exist a vector y € X and an increasing sequence (ny) tending to in-
finity such that limy_, o0 P (Tjn, Cy) = +00, j € Ny im0 || T).n,, Cyll =
+00, j € Ny, provided that X is a Banach space].

Then there exists a dense submanifold W of X consisting of those vectors x € R(C')
such that = is (d, m,)-distributionally near to zero of type 1 for ((Ti)ken)i<j<n
and for which there exists a strictly increasing subsequence (Ii,) of (ny) such that the
sequence (pm (T} 1, %)) ken tends to 400 for all j € Ny [(| T, x| ken tends to +oo
for all j € Ny, provided that X is a Banach space]. In particular, (T k)ken)1<j<N
is densely (d,W,1,1)-Li-Yorke chaotic.

Remark 3.3. Concerning possible applications of Theorem 1.1 (similar conclusions
hold for Corollary 3.2), it should be noted the following facts with regards to the
validity of condition (ii) in its formulation:

(i) Suppose that X and Y are Banach spaces, (ng) is a strictly increasing
sequence and ((7}, k)keN)1<J<N is a sequence in L(X,Y). If for each j € Ny
we have > po HT T <0, then there exists y € X such that
limy s o0 || T ,n, ylly = oo for each j € Ny.

(ii) Suppose that X is a complex Hilbert space, Y is a complex Banach space,
(ng) is a strictly increasing sequence and ((T)j x)ren)1<j<N IS & sequence in
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L(X,Y). If for each j € Ny we have Y ;2 TP < 00 then there exists
y € X such that limg_,o0 || T} 0, ylly = oo for each Jj € Ny.

The statements (i) and (ii) are trivial consequences of [25, Proposition 3.9], which
slightly extend one of the main results of article [33] by V. Miiller and J. Vrsovsky.

We close this section with the observation that [28, Proposition 3] can be refor-
mulated for disjointness, showing that some investigations can be reduced to the
case in which X = X.

3.1. Applications to shift operators. Suppose that X is a Fréchet sequence
space in which (e, )nen is a basis (see e.g. [19, Section 4.1]). In this subsection, we
will always assume that for each j € Ny the unilateral weighted backward shift T}
on X is given by

Tj<‘r">neN <wj "x"+1>neN7 <$n>nEN € X, and
DT) = {0y € X : Ty{oa) pen € X} (G €0).

The continuity of operators T} will not be assumed a priori.
We start by providing the following illustrative example:

Example 3.4. Suppose that X :=I!(N), 0< (4 <G <+ <G < 1, {Wnhnen ==
(522 ) nen and (W) ndnen = ((3227)% Ynen for all j € NN, see also [31 Theorem
3.5] and [30, Example 4.9]. Then for each j € Ny the corresponding operator Tj is
topologically mixing, absolutely Cesaro bounded and therefore not distributionally
chaotic; albeit this basically follows from the argumentation used in the proof of
[31, Theorem 3.5], we will include all relevant details for the sake of completeness.
Applying Stirling’s formula, we get that

B(n) = Hwi ~/mn, n— +oo. (3.3)
j=1
Using this and [31, Proposition 3.1], we get that the operator T; is topologically
mixing (j € Ny). Furthermore, for each n € N, X 5 = (z3), _ # 0 and j € Ny
we have:

*ZHT%H* Z Z Wit -+ wie1) V[
=1 k=Il+1
oo
s
k=2

1,n)

in(k—
Z (kal e 'kal)cjmkl

m

1 n+1k—1 ¢ 1 00 n ¢
= ZZ(kal cowpet) || + - Z Z(wkfl o wpe1)” |zl
k=2 1=1 k=nt2 =1
1 n+1lk—1
< —Z Wg_] """ Wk 1|xk|+* Z Zwk 1o weo1 Tkl
"M== [yt

For the estimation of second addend, the arguments used in [31] show that it does
not exceed 2||z||. For the first addend, we can employ (3.3) in order to see that
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there exist two finite constants ¢ > 0 and ¢; > 0 such that

n+1k 1 n+1 n+1
*Zzwk e we—|Te| < = Z\xk|Z\/ Z|$k|<01||$||7
k=2 I=1 "=

finishing the proof of fact that T} is absolutely Cesaro bounded and consequently
not distributionally chaotic (j € Ny ). This implies that the operators 17, - -, Tn
cannot be (d, X, i)-distributionally chaotic for any ¢ € Ng; see [25]. On the other
hand, the operator Tj is clearly Li-Yorke chaotic and possesses a Li-Yorke irregular
vector y. In our concrete example, we have [T z|| < | T;"z|| for any =z € X,
j € Ny \ {1} and any strictly increasing sequence (ny) so that Corollary 3.2 with
C = I yields that the operators 717, - -, T are densely (d, 1,1)-Li-Yorke chaotic.
Finally, we want to note that these operators cannot be d-hypercyclic due to [37,
Theorem 2.1] (cf. also [9] and [11] for basic results given in this direction).

Now we will provide an application of Corollary 3.2 to unbounded unilateral
backward shift operators:

Example 3.5. Let S := {ny : k € N}, where (ny) is a strictly increasing sequence
of positive integers, and let the operator A;(xn)nen = (1 4+ 7)" " &p11)nen act
with its maximal domain in the space X := ¢o(N) for j € Ny. Set C{x,)nen i=
((3/2)"" 2 )nen, (Tn)nen € X. Then it is clear that C' € L(X) is injective and
R(C) is dense in X. Furthermore, it can be easily seen that A;?C € L(X) for all
j € Ny and k € N; strictly speaking, for any vector « := (2, )nen in X we have
(3/2)—(l+k)2

k(k+1)

A5 Cal| <l SUP(l +)

o(k+1

< a1+ )5 sup (14 )¥) 372"

<cjxllzl,

for some positive finite constant c;, > 0. On the other hand, with sequence x :=
(1/n)nen we have

(k+1) _ 2
[ 45Ca]) = sup(L+ )" 77 3/27 4 fa]
(k+1)
> (14 5)F 27 (3/2) 707 |ag
— (1+ )5 (3/2)" 0% ok 0o, ke N.

Define now T}y := A¥ if k € S and Tj := (1+ |AYC|)2AY if k ¢ S. By the
above argumentation, we have that the requirements of Corollary 3.2 are satisfied,
so that ((Tj k)ken)1<j<n is densely (d, X, 1, 1)-Li-Yorke chaotic.

Arguing as in [25, Example 5.3], we can prove that there exist two distributionally
chaotic unilateral backward weighted shifts on the space X := ¢¢(N) which cannot
be (d, X,n,1,7)-Li-Yorke chaotic for ¢ € Ny or (d, X,n,3,4)-Li-Yorke chaotic for
i € No.

Further on, it is clear that Theorem 1.1 and Corollary 3.2 cannot be applied in
the analysis of weighted forward shifts in Fréchet sequence spaces. On the other
hand, we can prove directly that tuples of such operators are disjoint Li-Yorke
chaotic with e; being the corresponding disjoint Li-Yorke irregular vector:
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Example 3.6. Let a weighted forward shift F,, € L(I?) be defined by F,(z1, 2, -
) = (0,wix1,wame, - - +), where w = (wg)ren consists of sufficiently large blocks
of 2’s and blocks of (1/2)’s. In a great number of concrete situations, we have
that the operators ¢; F,,, where ¢; € K\ {0} for j € Ny, are (d, span{e:}, 1, 1)-Li-
Yorke chaotic. Observe, finally, that these operators cannot be disjoint hypercyclic
because F,, and its multiples cannot be hypercyclic.

4. APPLICATIONS TO ABSTRACT PDES IN FRECHET SPACES

The main aim of this section is to continue the research raised in [23] concerning
Li-Yorke chaotic solutions of abstract PDEs of first order. In contrast with the
above-mentioned article, we consider here Li-Yorke chaotic solutions of abstract
fractional PDEs as well. For the sake of brevity, we will consider only continuous
counterpart of disjoint ()~( , M, 1, 1)-Li-Yorke chaos here, which will be called dis-
joint (X, f,1,1)-Li-Yorke chaos (cf. [30] and [26] for the notion of disjoint reiterative
X ¢-distributional chaos and certain applications to abstract PDEs).

Suppose that T'(t) : D(T(t)) € X — Y is a linear possibly not continuous
mapping (¢t > 0). By Z(T) we denote the set consisting of those vectors z € X
such that x € D(T(¢)) for all ¢ > 0 as well as that the mapping ¢t — T(t)z,
t > 0 is continuous. Denote by m(-) the Lebesgue measure on [0,00) and by F
the class consisting of all increasing mappings f : [0,00) — [1,00) satisfying that
liminfy, 1o 22 > 0.

We will use the following continuous counterpart of Definition 1.2:

Definition 4.1. ([27]) Let A C [0,00), and let f € F. Then the lower f-density of
A, denoted by d(A), is defined through:

A t
ds(A) == liminf m(ANn[0, f®)))

t—o0 t
Consider the following condition:

(Im € N)(Vk € N)(3ty, € [0,00)) s.b. b < tt1, klim ty = o0, k€N,
—00
and klim pﬁ(zj,tk —Yj1,) = +00, k€N, je Ny,
—00

provided that Y is a Fréchet space, or
(Vk S N)(ﬂtk € [0,00)) st bty < iy, k-hm tr = 400, kEeN,
—00

and klim ij,tk — Yjtn H = +00, j € Ny, provided that Y is a Banach space.
— 00
(4.1)

Definition 4.2. Suppose that X is a linear subspace of X, Tj(t) : D(Tj(t)) € X —
Y is a linear possibly not continuous mapping (¢ > 0, j € Ny) and f € F. If there
exist an uncountable set S C [,y Z(T5) N X and m € N, in the case that Y is a
Fréchet space, such that (4.1) holds and for each € > 0 and for each pair =, y € S
of distinct points we have that

df< U {t=0:dy (Tj(t)z, T (t)y) > e}> =0, (4.2)
JENN

then we say that the tuple ((T}(t))i>0)i<j<n is (d,X, f,1,1)-Li-Yorke chaotic
((d, f,1,1)-Li-Yorke chaotic, if X = X). Furthermore, we say that the tuple
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((Tj(t))+>0)1<j<n is densely (d, X, f,1,1)-Li-Yorke chaotic iff S can be chosen to
be dense in X. The set S is said to be (d, 0 ;)-Li-Yorke scrambled set ((d,oy)-

scrambled set in the case that X = X) of ((Tj(t))i>0)1<j<N-

If ¢ > 1 and f(t) ;=147 (¢t > 0), then we particularly obtain the notions of
(dense) disjoint X,-Li-Yorke chaos, (dense) disjoint ¢-Li-Yorke chaos, (d, 0% ,)-Li-
Yorke scrambled set and (d, 0,)-Li-Yorke scrambled set for ((T;(t))i>0)1<j<n-

The main result for applications is the following continuous counterpart of The-
orem 1.1; the proof can be deduced similarly and therefore omitted (cf. [14] and
[30] for more details):

Theorem 4.3. Suppose that X is separable, m € N, f € F, ((Tj(%))t>0)1<j<n 5 a
sequence of strongly continuous operator families in L(X, Y) Xo s a dense linear
subspace of X, as well as:
(i) limyoo Tj(t)z =0, € Xo, j € Nn;
(ii) there exist a vectory € X and an increasing sequence (t},) tending to infinity
such that limy_, pY, (Tj(t,)y) = +o0, j € Ny im0 |T5(t},)ylly = +o00,
j € Ny, provided that Y is a Banach space].
Then there exist a dense submanifold W of X consisting of those vectors x which
are disjoint f-distributionally near to zero for ((Tj(t))e>0)1<j<n, in the sense that
for each number € > 0 we have that (4.2) holds with y = 0, and for which there
exists a strictly increasing subsequence (ty) of (t).) tending to infinity such that the
sequence (pm (T (tk)x))ken tends to +o0o for all j € Ny [(||T(tk)z|ly )ren tends to
+oo for all j € Ny, provided that Y is a Banach space]. In particular, the tuple
((T3(t)t>0)1<j<n is densely (d, W, f,1,1)-Li- Yorke chaotic.

We continue by providing two simple remarks:

Remark 4.4. Suppose that X and Y are Banach spaces as well as that the tuple
((T3(t)t>0)1<j<n of strongly continuous operator families in L(X,Y") satisfies (i)
and

}HEOZHT HL X,y) = To°

Considering the operators T'(¢ ) : XN — YN defined by T(t)(z1, - -, on) =
(Ty(t)xy, - -, ITn(t)xn) for t > 0 and zq,- - -, 25 € X, it can be simply proved that
there exist a strictly increasing sequence () of positive real numbers and a vector
(1, zn) € XV such that limy_oo[|| 71 (tr) 21|y + - - - + [|[ T (te)zn]||y] = +o0.
But, this does not imply the validity of condition (ii) in Theorem 4.3.

Remark 4.5. Suppose that X is a Banach space and T; € L(X) for all j € Ny. If
there exists an element y € X such that limy_,o | T;™y|| = +oo for all j € Ny,

then for each integer m € N we have that limy_, ||TmL”’°/mJy|| = +oo for all

j € Ny, as well; this can be deduced along the lines of proof of [35, Proposition
2.4]. Similarly, if X is a Banach space, (T (t))¢>0 is a strongly continuous semigroup
on X for each j € Ny, y € X and limy_,o ||T;(t})y|| = 400, j € Ny for some
strictly increasing seqeunce (t},) tending to infinity, then for each ty > 0 we have
limy, o HT (toLt /toJ)y” =400, j € Ny.

The trivial case in which the requirements of Theorem 4.3 hold, and which can
be also reworded for disjoint m,,-distributional chaos, is given as follows:
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Example 4.6. Suppose that X is separable, m € N, f € F, (T1(t))¢>0 is a strongly
continuous operator family in L(X,Y) satisfying the condition (ii) of Theorem
4.3 with j = 1, X is a dense linear subspace of X, as well as for each =z € X
there exists a finite number to > 0 such that T;(¢)x = 0 for all ¢ > t;. Suppose,
further, that for each integer j € Ny \ {1} we have that f; : [0,00) = K is a
given continuous function as well as that there exists a sufficiently small number
¢ > 0 such that |f;(¢)| > ¢, t >0, j € Ny \ {1}. Define T}(t) := f;(¢)T1(t), t > 0,
j € Ny \ {1}. Then it can be simply checked that all requirements of Theorem
4.3 hold. In particular, if d/dx is the infinitesimal generator of a Li-Yorke chaotic
strongly continuous translation semigroup in the space L2([0,00)) of Cy ([0, 0)),
then the strongly continuous semigroups generated by the operators

d d d

i . 4.3

d:c’da:—i—wz7 ’d:c—’_wN (4.3)
are densely (d, X, f,1,1)-Li-Yorke chaotic, where ws,- - -,wy are certain scalars

from the field K having non-negative real parts (cf. [15, Lemma 4.6] for precise
definition of generator); the same statement holds for Li-Yorke chaotic strongly
continuous semigroups induced by semiflows for which the condition [23, (D),
p. 25] holds. Observe, finally, that there exists a strongly continuous transla-
tion semigroup (7% (t))i>0 on the space LD([0,00)), with a certain weight function
p:[0,00) — (0,00), which is topologically mixing but not distributionally chaotic
(see e.g. [2, Example 4.2] and [18, Theorem 2.1]). This implies that the strongly
continuous semigroups (71 (t))t>0, (€' T1(t))t>0, - - -, (€“N'T(t))1>0, Whose genera-
tors are given by (4.3), cannot be (d, X, )-distributionally chaotic for any i € Ng;
see [24] for the notion.

The following corollary of Theorem 4.3 can be deduced similarly as in discrete
case:

Corollary 4.7. Suppose that X is separable, m € N, f € F, ((T;(t))t>0)1<j<n
is a sequence of linear operator families in L(X,Y"), Xo is a dense linear subspace
of X, C € L(X) is injective with the mapping t — T;(t)Cz be well-defined and
continuous for t > 0 and j € Ny, as well as:

(i) limy—oo Tj(t)Cx =0, x € Xy, j € Ny;

(ii) there exist a vectory € X and an increasing sequence (t},) tending to infinity
such that limy_,o0 py, (T;(5,)Cy) = 400, j € Ny flimy—so0 || T5(t5)Cylly =
+00, j € Ny, provided that Y is a Banach space].

Then there exist a dense submanifold W of X consisting of those vectors x € R(C')
which are disjoint f-distributionally near to zero for ((Tj(t))e>0)1<j<n, in the sense
that for each number € > 0 we have that (4.2) holds with y = 0, and for which there
exists a strictly increasing subsequence (ty) of (t).) tending to infinity such that the
sequence (pm (T (tk)x))ken tends to +oo for all j € Ny [(||T;(tk)z|lv)ren tends to
+oo for all j € Ny, provided that Y is a Banach space]. In particular, the tuple
((Tj(t))t>0)1<j<n is densely (d, W, f,1,1)-Li-Yorke chaotic.

Remark 4.8. The condition (ii) in Theorem 4.3 (Corollary 4.7) is satisfied in many
concrete cases in which there exists a vector y € X such that lim;_,o p}, (T;(t)y) =
+00, j € Ny (limy—y00 pY, (Tj(t)Cy) = +o00, j € Ny); but, in this case, for each
function f € F the tuple ((T;(t))¢>0)1<j<n Will be densely (d, f)-distributionally
chaotic (cf. [26] for discrete case) in the sense that there exist an uncountable set
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S C X and a finite number o > 0 such that

df< U {t>0:dy (Tj(t)2, T;(t)y) < a}> =0

JENN

and for each € > 0 and for each pair z, y € S of distinct points we have that

df( U {t 20 dy (1002, T3 (1)) > e}> —0,
JENN

which is a much stronger notion than that of dense (d, X, 1, 1)-Li-Yorke chaos (fur-
thermore, for each number ty > 0 the operators T} (to),- - -, T (to) will be densely
(d, my,)-distributionally chaotic, where m,, := [f(n)]). A concrete example for ab-
stract fractional PDEs can be simply constructed: Suppose that 0 < a < 2 and
for each j € Ny we have that (T}(¢))i>0 € L(X) is an a-times C-regularized re-
solvent family with the integral generator A;, as well as that R(C) is dense in X
and there exist a vector x € X and a number \; € X, /3 such that A;z = \;z;
see [21] for the notion. Then, due to [21, Lemma 3.3.1], for each j € Ny we have
that Tj(t)x = E4(t*\;)Cz, t > 0, so that the asymptotic expansion formulae for
the Mittag-Leffler functions [21] yield that the tuple ((Z;(¢))t>0)1<j<n is densely
(d, f)-distributionally chaotic for each function f € F.

We will provide the following illustrative application of Corollary 4.7; see also
[14, Example 5.12] and [21, Example 3.2.39]:

Example 4.9. Suppose that n € N, f € F, p(¢) := ﬁ, teR,Af := [,
D(A) = {f € Cop(R) : f" € Co,(R)}, By = (Co,p(R))"!, D(Ay,) = D(A)"*!
and A, (f1,- 5 fay1) = (Af1 + Afa, Afo + Afs, o Afn + Afngr, Afngr), (f1,
‘s fnt1) € D(Ay). Then +A4,, generate global polynomially bounded n-times inte-
grated semigroups (S, + (t))i>0, neither A, nor —A,, generates a local (n—1)-times
integrated semigroup and we have that, for every @1, ..., ont1 € D,

T T
Gi,n(at)(@lv"-v(pn-&-l) = (¢1a---a¢n+1) )

where G4 ,, denote distribution semigroups generated by +A4,,, and

n+1—1

Yi(+) = Z

Jj=0

+4)
(j,) sogi)j(-it), 1<i<n+1

Denote by G, the corresponding distribution cosine function generated by A2.
Using Corollary 4.7, the first observation from Remark 4.8, and arguing as in the
above-mentioned examples, we can prove that the operator families ((e‘®%(1 +
£)%1G e n(0t)e>0)1<j<n and (€' (1 + 1) Gy (8t))i>0)1<j<n are densely

(d, f)-distributionally chaotic, provided that a; € R and b; € [0,n + 1) for all
7 € Ny. The interested reader may simply write down the corresponding abstract
Cauchy problems of first and second order which do have such operator families as
solutions.

Concerning possible applications to the abstract ill-posed Cauchy problems of
first and second order, we should also mention the paper [13]:

(i) (see [13, Example 2.12]) Consider the general situation of this example

with the first inclusion in the equation [13, (2.7)] being satisfied. If there

exists a complex number A € Q such that R(P;j(—X)) > 0 for all j €
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Ny, then Corollary 4.7 is applicable to the entire C-regularized groups
((Tj(2))zec)1<j<n; the tuple ((C71T;(t))i>0)1<j<n will be densely (d, f)-
distributionally chaotic for any f € F.

(ii) (see [13, Example 2.13]) Similarly, we can simply modify the correpsond-
ing conditions used in this example to conclude that the operators A; will
generate exponentially equicontinuous, analytic (-times integrated semi-
groups (S%(t))i>o of angle /2 on the product space X = E x E (j €
Np). Then we can apply Corollary 4.7 in order to show that the tu-
ple ((C*152 (t))e>0)1<j<n is densely (d, f)-distributionally chaotic for any
f € F, with a certain regularizing operator C € L(X).

Fairly complete analysis of disjoint Li-Yorke chaos for strongly continuous semi-
groups induced by semiflows is without scope of this paper (cf. [20] and [23] for
related problematic). We will only revisit [20, Example 3.19] and [21, Example
3.1.41(iii)] to close the whole paper:

Example 4.10. Suppose that any element of a real matrix [a;s]i<j<n i<s<m IS
a positive real number and, for every j, s € Ny with j # s, there exists an
index [ € Ny, such that aj # ay. Let Q@ := R™ and ¢ > . Define semiflows
;1 10,00) x Q= Q,j=1,2,---,N and p: Q — (0,00) as follows:

(pj(t?xla o '7xm) = (eajltl‘la T '7eajmtxm) and

1
p(zla"'7xm). ,tZO,LE:(Il,"',IE"L)GQ.

- (L)
Define [Ty, (t) f](z) := f(p;(t,x)), t > 0, z € ©, j € Ny. Then, for every j € Ny,
(T, (t))¢>0 is a non-hypercyclic strongly continuous semigroup in Cy ,(€2). Suppose
now that 0 < ¢; < €3 < --- < ey < min{ajs : 1 < j < N,1 < s < m}. Since for
each j € Ny and f € D(R™) (the space of scalar-valued smooth test functions with
compact support and domain R™) we have ||T,,(¢)f]| < [[fllc, it can be simply
seen that the condition (i) of Theorem 4.3 holds for ((e~%'T,, (t))¢>0)1<j<n, With
Xo := D(R™). The condition (ii) of Theorem 4.3 also holds and, in this concrete
situation, we have that lim;_,o [le™"T,, (t)y| = +o0, j € Ny with the vector
y := | - |. Therefore, the strongly continuous semigroups ((e~"Ty, (t))i>0)1<j<N
are densely (d, f)-distributionally chaotic for each function f € F.
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