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ON f-STATISTICAL CONVERGENCE IN RANDOM 2-NORMED
SPACES

A.N. GUNCAN AND M. SARICA

ABSTRACT. The idea of f-statistical convergence was introduced in Aizpuru et
al. [2] and since then several generalizations and applications of this concept
have been investigated by various authors. Recently Giirdal and Ozgiir [12]
and Borgohain [4] studied f-statistical convergence in probabilistic normed
space, and the generalized statistical convergence via moduli in normed space,
respectively. In this paper we propose to study f-statistical convergence in
random 2-normed space which seems to be a quite new and interesting idea.

1. INTRODUCTION

The probabilistic metric space was studied by Menger [20], which is an interesting
and important generalization of the notion of a metric space. The theory of proba-
bilistic normed (or metric) spaces was initiated and developed in [3] 25, 26 27 28]
and, it was further extended to random/probabilistic 2-normed space by Golet [13]
using the concept of 2-norm which is defined by Gihler [14, [15] and Giirdal and
Pehlivan [10] studied statistical convergence in 2-normed spaces. Also, statistical
convergence in 2-Banach spaces was studied by Giirdal and Pehlivan in [I1]. Quite
recently in [23] 24], generalized statistical convergence was studied for sequence
spaces in probabilistic normed space by Savag and Giirdal.

The concept of the statistical convergence of a sequence of real S' = {s,,} was first
introduced by Fast [7] (see also [30]) as follows: let A be a subset of N. Then the
asymptotic density of A denoted by & (A) :=lim,, oo L [{k < n: k € A}|, where the
vertical bars denote the cardinality of the enclosed set. A sequence S = {sn},cy
is said to convergence statistically to s and we write lim, o s, = s (stat) if for
every € > 0,

lim l\{kjgn:\s;€—5|25}|:0.

n—oo N
Properties of statistically convergent sequences were studied in [5] [8, [0, [18]. In [I8],
Kolk begins to study the applications of statistical convergence to Banach spaces.
In [5] there are important results that relate the statistical convergence to classical
properties of Banach spaces.
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We recall that f : Rt — RT is called modulus function, or simply modulus, if it
is satisfies:
(1) f(s) =0if and only if s = 0.
(2) f(5+p) < £ () + f (p) for every 5,p € R*
(3) f is increasing.
(4) f is continuous from the right at 0.
From these properties it is clear that a modulus function must be continuous on

1—7—3 and f(s) =s” (0<p<1).
The notion of a modulus function was introduced by Nakano [22], Maddox [19]

have introduced and discussed some properties of sequence space defined by using
modulus function.

In this note we intend to unify these two approaches and define and study f-
statistical convergence in random 2-normed spaces which is quite a new and inter-
esting idea to work with.

R*. Examples of modulus functions are f (s) =

2. DEFINITIONS AND NOTATIONS

First we recall some of the basic concepts, which will be used in this paper. All
the concepts listed below are studied by Aizpuru et al. [2].

Let f be an unbounded modulus function. The f-density of a set A C N is
defined by

5, () — tind 1A @)
n f(n)
in case this limit exists.

Let X be a normed space and let (s,), be a sequence in X. We will say that
the f-statistical limit of (s,),, is s € X, and write f-stlim s, = s, if for each € > 0
we have 05 ({t e N:||s; — s|| > €}) =0.

Note that if A C N is finite we have that there exist ng, p € N such that |4 (n)| =
p if n > ny and it will be §5 (A) = 0 for each unbounded f. Therefore, if lims,, = s
and f is an unbounded modulus function then f-stlims, = s.

It is straightforward to see that f-stlim (s, + p,) = f-stlims,, + f-stlimp,, and
af-stlims, = f-stlimas,, whenever a € K and the limits on the right sides exist.
Also, it is easy to prove that for X = K we have f-stlim s;p; = f-stlim s; f-st lim p;.

Although it is quite clear that §(A4) = 1 — 6 (N\A) whenever one of the sides
exist, the situation is a bit different for unbounded moduli. First, assume A C N
and d5 (A) = 0. For every n € N

f(n) < F(AM)]) + F(MNNA) (n)])

1< LUAMD FAMNA) ()]) - FAM)D
- f(n) f(n) f(n)
By taking limits we deduce that 05 (N\A) = 1. On the other hand, the naturally
expected reciprocal is false:

Example 1. Let f(z) =log(z+1) . If E = {n? :n €N} and O = N\A then

we have &y (E) = 87 (0) = 1. Moreover, if S = {n®:n €N} then §;(5) = 1,
6 (N\S) =1 and so f-stlimx,) does not even exist, whereas stlim x,,) = 0.

and so
+ 1.

<

Let us note that for any unbounded modulus f and any A C N we have that
d7 (A) = 0implies ¢ (A) = 0. Indeed, if 0 (A) = 0 then for every p € N there exists
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ng € N such that if n > ng then f (|A (n)]) < %f (n) < %pf (%n) =f (%n), which
implies |A (n)| < %n and so § (A) = 0.

The concept of 2-normed spaces was introduced and studied by Siegfried Géhler,
a German Mathematician who worked at German Academy of Science, Berlin, in
a series of paper in German language published in Mathematische Nachrichten,
see for example references [0, [I4, [I6]. This notion which is nothing but a two
dimensional analogue of a normed space got the attention of a wider audience after
the publication of a paper by Albert George, White Jr. of USA in 1969 entitled 2-
Banach spaces [31]. In the same year Gihler published another paper on this theme
in the same journal [16]. A.H. Siddiqi delivered a series of lectures on this theme in
various conferences in India and Iran. His joint paper with S. Géhler et al. [I7] of
1975 also provide valuable results related to the theme of this paper. Results up to
1977 were summarized in the survey paper by Siddiqi [29]. A 2-normed space is a
pair (X, ||-,-||), where X is a linear space of a dimension greater than one and |-, -|
is a real valued mapping on X x X such that the following conditions be satisfied:

(i) ||z, y|| = 0 if and only if z and y are linearly dependent

(i1) 12yl = ly, all for all 2,y € X,

(iii) ||az,y|| = || ||=, ||, whenever z,y € X and « € R,

(iv) |z, y + 2| < ||z, yll + ||z, 2| for all z,y,z € X.

As an example of a 2-normed space we may take X = R? being equipped with
the 2-norm ||z, y|| := the area of the parallelogram spanned by the vectors x and
y, which may be given explicitly by the formula

||$ayH = |v1y2 — 2291|, == (v1,22), ¥ = (y1,92)-

Observe that in any 2-normed space (X, ||, -||) we have ||z, y|| > 0 and ||z, y + az|| =
|z, y|| for all z,y € X and « € R. Also, if z,y and z are linearly dependent, then
lovy+ 2l = 2yl + 2, 2l or o,y — 2l = oyl + I, 2] . Given a 2-normed
space (X, ||, -]|), one can derive a topology for it via the following definition of the
limit of a sequence: a sequence (z,) in X is said to be convergent to = in X if
limy, o0 ||@n — 2, y|| = 0 for every y € X.

Now we recall some of the basic concepts related to PN spaces, and we refer to
[25] 26] for more details.

Definition 1. Let R denote the set of real numbers, Ry = {x € R:x >0} and S =
[0, 1] the closed unit interval. A mapping f : R — S is called a distribution function
if it is non-decreasing and left continuous with inficg f (t) = 0 and sup,cp f (t) = 1.

We denote the set of all distribution functions by D such that f(0) = 0. If
a € Ry, then H, € DT, where

1, ift>a,
H“(t)_{ 0, ift<a.

It is obvious that Hy > f for all f € DT.

Definition 2. A triangular norm (t-norm) is a continuous mapping * : S xS — S
such that (S, *) is an abelian monoid with unit one and cxd < axb if c < a and
d <b forall a,b,c,d € S. A triangle function T is a binary operation on DT which
is commutive, associative and 7 (f, Ho) = f for every f € DT.

Recently, Golet [5] defined the random 2-normed space as follows.
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Definition 3. Let X be a linear space of dimension greater than one, T is a triangle
function, and F : X x X — D%. Then F is called a probabilistic 2-norm and
(X, F,7) a probabilistic 2-normed space if the following conditions are satisfied:

(¢) F(z,y;t) = Ho(t) if z and y are linearly dependent, where F(x,y;t) denotes
the value of F(x,y) att € R,

(i1) F(x,y;t) # Ho(t) if x and y are linearly independent,

(1i1) F(x,y;t) = F(y,z;t) for all z,y € X,

(iv) F(azx,y;t) = F(z,y; ﬁ) for everyt >0, a#0 and z,y € X,

(v) F(x +y,z;t) > 7(F(z,2;t), F(y, z;t)) whenever z,y,z € X, and t > 0.

If (v) is replaced by

(vi) Fax4y, z;t1+t2) > F(x, z;t1) % F(y, 2;t2) for allz,y,z € X and t1,t2 € Ry;
then (X, F, x) is called a random 2-normed (also called fuzzy 2-normed) space (for
short, FTN space).

As a standard example, we can give the following:

Example 2. Let (X, ||.,.|)) be a 2-normed space, and let a b = ab for all a,b € S.
For all x,y € X and every t > 0, consider
_ t
t+ =yl
Then observe that (X, F,*) is a fuzzy 2-normed space.

F(z,y;t)

We also recall that the concept of convergence and Cauchy sequence in a fuzzy
2-normed space is studied in [21].

Definition 4. Let (X, F,*) be a FTN space. Then, a sequence x = {x} is said
to be convergent to L € X with respect to the fuzzy norm F if, for every e > 0 and
n € (0,1), there exists ko € N such that Fy, _1 . (€) > 1 —n whenever k > ko and
nonzero z € X. It is denoted by F-limx =L or x, —p L as k — oo.

Definition 5. Let (X, F,«) be a FTN space. Then, a sequence x = {zy} is said to
be statistically convergent to L € X with respect to the fuzzy norm F if, for every
e>0,n€(0,1) and nonzero z € X

SH{keN:Fy_1.(e)<1-1n} =0
or equivalently

SH{keN:Fy _1.(c)>n}) =1
It is denoted by st(FTN)-limz = L or L is called the st(FTN)-limit of x.

Definition 6. Let (X, F, ) be a FTN space. Then, a sequence x = {xy} is called
a statistically Cauchy sequence with respect to the fuzzy norm F if, for every e > 0,
n € (0,1) and nonzero z € X, there exists a number ko € N such that

S{keN:Fy_5,.()<1-n})=0
for all k,m > k.

3. MAIN RESULTS

In this section we study the density on moduli with respect to the fuzzy norm
F' in the FTN-space and prove some important results. The results are analogues
to those given by Aizpuru et al. [I} 2], Giirdal and Ozgiir [12] and Borgohain [4].

Following the line of Borgohain [4] we now introduce the following definition
using modulus functions.
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Definition 7. Let (X, F,«) be a FTN space. Then, a sequence x = {xy} is said to
be frrn-statistically convergent to L € X with respect to the fuzzy norm F if, for
everye > 0,0 >0, n€ (0,1) and nonzero z € X

i J ks n: Foyr:(e) <1-m}l)
k f (k)

=0.

We define it as fpry-st-limz = L.

Corollary 1. Let (X, F,*) be a FTN space. For any unbounded modulus f, if
F-limx = L, then frppy-st-limx = L. But the converse need not be true in general.

Proof. Let F-limxz = L. Then for every ¢ > 0 and n € (0,1), there exists kg € N
such that
ka—L,z (5) >1- n
whenever k > kg and nonzero z € X. Construct
A(e)={k<n:F, _1.(c) <1—n},
which is a finite set of N. Then we have that there exists kg,p € N such that
|A ()] = p, if & > ko, which will show that

NACIC)IN
k

f (k)

Hence frprn-st-limx = L. O
The following example shows that the converse need not be true.

Example 3. Let X = R?, with the 2-norm ||z, z|| = |12 — 2221, © = (21, 72),
z = (21,22), and a xb = ab for all a,b € S. Let F(z,z;t) = for every
x,2 € X, 20 #0, and every € > 0. Now define a sequence,

- (k,0), ifk:n2,k§n
(0,0, otherwise

_t
t+[|z,z]]

and write
K,(me)={k<n:Fy_r.()<1-n}, 0<n<1; L=(0,0).
We see that e ifk—n? k<n
Paraim{ T TR S
Therefore x = (x) s frrn-statistical convergent, i.e. limy 710(‘1;"(%’5)” =0, but not
convergent (X, F, ) .

The proofs of the following Theorems are easy and thus omitted.

Theorem 2. Let (X, F,x) be a FTN space. If a sequence x = (xy) is frrn-st-
convergent, then the fpry-st-limit is unique.

Corollary 3. Let (X, F,«) be a FTN space. For f and g two unbounded moduli,
’Lf fFTN-St-limLL’ = L1 and fFTN—st-limm = L2 then L1 = Lg.

Theorem 4. Let (X, F,x) be a FTN space. Let frry-stlima = Ly and frry-st-
limy = Ls. Then

(Z) fFTN—St—lim (.T + y) = L1 + LQ,

(i) frrn-st-im (az) = aLq, for any a > 0.
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‘We now introduce our main theorem.

Theorem 5. Let (X, F,*) be a FTN space and f an unbounded modulus. Then
frry-st-limz = L if and only if there exists a set K = {k, 1 k1 <ko <ks <..}
with 0¢ (K) = 1 such that fppy-limay, = L.

Proof. Suppose that fpry-st-limx = L. Then for any € > 0, » € N and nonzero z
in X, we have

and

Then lim,, JUH59l — o,

M(l,e) DM (2,¢) D ... D> M (i,e) DM (i+ 1,¢) D ..., (1)
and v

L F(M ()
S )

Now we have to show that for n € M (r,e), {zk,} is frrn-limz = L. On con-
trary suppose that {z, } is not fprn-limz = L. Therefore there is n > 0 such that
Fy,. —L,- (€) > n for infinitely many terms. Let M (n,¢) :={n € N: F,, _p.(¢) <n}
and n > %7 7 € N. Then

=1, reN (2)

L FOM (o))

no f(n)
and by , M (r,e) € M (n,e). Thus lim, %ﬁfm = 0, which contradicts
and we get that {z,} is frrx-limz = L. Conversely, suppose that there exists a
set K = {kn tk1 < ko < ]{13 < } with 5f (K) = 1 such that fFTI\]—liInJL‘kn = L.
Then there is a positive integer N such that n > N,

=0

an—L,z (5) >1- n.
Put K (n,e) =={neN:F, _1,()<1—-n}and K' = {knyt1,kNn+2,...} . Then
df(K') =1 and K (n,e) € N — K’ which implies that ¢; (K (1,¢)) = 0. Hence
frrn-st-limz = L, as desired. O

Definition 8. Let (X, F,«) be a FTN space. Then, a sequence x = {zy} is said to
be frpy-statistically Cauchy with respect to the fuzzy norm F if, for every e > 0,
d>0,n€(0,1) and nonzero z € X

: _ <1-—

TR EN: Py sy (0) S 1))
k f (k)

We define it as fprn-st-Cauchy.

=0.

Theorem 6. Let (X, F,*) be a FTN space, f an unbounded modulus. Then fryy-
statistically convergent if and only if it is frpy-statistically Cauchy sequence.

Proof. Suppose that fprx-st-limz = L. hoose r > 0 such that (1 —r)* (1 —7) >
1 — 7. Then, for all € > 0 and nonzero z in X, we get limy W =0,
where

S (r,e) = {kGN:ka_L,Z (g) Slfr}.
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(| re)])

o =

This implies that limy,
where

)

SC(T,E) = {k‘EN:ka_L,Z (g) >1—r}.

Let N € S¢ (r,e). Then Fy, 1. (£) > 1—r. Now, let
B(ne)={keN:Fp_oy.:(e) <1-n}.
We need to show that B (1,e) C S (r,e).Let k € B(n,e). Then Fy, 5y .» (6) <1—7

(e
and hence Fy, 1, . (%) <1l-—rie ke S(re). Otherwise, if Fy, 1 . (%) >1—r
then

g g
1- n> ka—xN,z (5) > ka—L,z (5) * F:CN—L,Z (5)
>1-r)x(1—-71)>1-—mn,

which is not possible. Thus B (n,e) C S(r,e), which implies that z = {x} is
frrN-st-convergent.

Suppose that © = {xx} is fprn-st-Cauchy but not fpry-st-convergent. Then
there exists N € N such that limy W = 0 where

B(n,e)={keN:Fy _4y..() <1-—n}.

From acceptance,

M (n,e) = {keN;ka,L,z (5> > 1—77},

2
C
i.e. hmk W = ]_' Since
9
Foy—an .z (e) > 2Fy,—L.- (5) >1-—n,

F(|BEme)])
f(k)

if Fppor.2 (%) > 1_777 Therefore limy, =0,i.e. limy W = 1, which

leads to a contradiction, since x = {z} was frpry-statistically Cauchy sequence.
Thus z = {z)} must be frry-statistically convergent, as desired. The theorem is
proved. O

Corollary 7. Let (X, F,*) be a FTN space, f an unbounded modulus. Then if
x = {xk} is frry-statistically Cauchy sequence then it has a Cauchy subsequence
with respect to the fuzzy norm F.
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