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ON THE ANALYTICAL AND NUMERICAL SOLUTIONS OF A

MULTI-TERM NONLINEAR DIFFERENTIAL EQUATION WITH

DEVIATED ARGUMENTS

E. A. A. ZIADA

Abstract. In this paper, we apply the two methods; Adomian decomposition
method (ADM) and predictor-corrector method for solving a multi-term Devi-

ated Nonlinear Differential Equation (DNDE). The existence and stability of
a unique solution is proved. Convergence analysis of Adomian Decomposition
Method (ADM) applied to these types of equations is discussed. Convergence
analysis is reliable enough to estimate the maximum absolute truncated error

of Adomian series solution.

1. Introduction

Deviated Nonlinear Differential Equations (DNDEs) arises in the context of non-
linear control, such as occurs in physiological systems and optical or neural network
systems with delayed feedback [ [1] -[9]]. In this paper, two methods are used to
solve DNDEs. The first method is Adomian Decomposition Method (ADM) [ [10]
-[15]], this method has many advantages, it is efficiently works with different types
of linear and nonlinear equations in deterministic or stochastic fields and gives an
analytic solution for all these types of equations without linearization or discretiza-
tion. The second method is the predictor-corrector method. The contribution of
the work reported in this paper can be summarized in the following six points:

• Introducing the sufficient condition that guarantees the existence of a unique
solution to our problem (see Theorem 1).

• Based on the above point and using Adomian polynomials formula suggested
in [16], convergence of ADM is discussed (see Theorem 2).

• Using point two, the maximum absolute truncated error of the Adomian’s
series solution is estimated (see Theorem 3).

• Stability of the solution is discussed (see Theorem 4).
• Comparison between the results of the two methods (see the numerical exam-

ples).
• Preparation of an algorithm using MATHEMATICA package to solve the given

numerical examples.
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2. The Problem

Consider the following DNDE,

dx (t)

dt
= f (t, x (t) , x (ϕ1(t)) , . . . , x (ϕn(t))) , t ∈ [0, T ] (1)

x(0) = x0, t ≤ 0, (2)

ϕi(t) ≤ t, i = 1, 2, · · · , n.

where x (t) ∈ C (J) , J = [0, T ] and f satisfies Lipschitz condition with Lipschitz
constant k such as,

|f (t, x1, x2, . . . , xn)− f (t, y1, y2, . . . , yn)| ≤ k
n∑

i=1

|xi − yi| (3)

which implies that

|f (t, x (t) , x (ϕ1(t)) , . . . , x (ϕn(t)))− f (t, y (t) , y (ϕ1(t)) , . . . , y (ϕn(t)))|

≤ k
n∑

i=1

|x (ϕi(t))− y (ϕi(t))|

Operating with L−1 to both sides of equation (1), where L−1 (.) =
∫ t

0
(.) dt, we get

x (t) = x0 +

∫ t

0

f (s, x (s) , x (ϕ1(s)) , . . . , x (ϕn(s))) ds, (4)

3. The first method: ADM method

The solution algorithm of equation (4) using ADM is,

x0 (t) = x0, (5)

xm (t) =

∫ t

0

Am−1 (s) ds. (6)

whereAm are Adomian polynomials of the nonlinear term f (t, x (t) , x (ϕ1(t)) , . . . , x (ϕn(t)))
which take the form,

Am =
1

m!

dm

dλm

[
f

(
t,

∞∑
i=0

λixi (t) ,
∞∑
i=0

λixi (ϕ1(t)) , . . . ,
∞∑
i=0

λixi (ϕn(t))

)]
λ=0

and the solution of problem (1)-(2) will be,

x(t) =
∞∑
i=0

xi(t) (7)

4. Existence and uniqueness

Define the mapping F : E → E where E is the Banach space (C (J) , ∥·∥), the
space of all continuous functions on J with the norm ∥x∥ = max

t∈J
e−Nt |x(t)| , N > 0.

Theorem 1: Let f satisfies the Lipschitz condition (3) then the DNDE has a
unique solution x ∈ E.
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Proof: The mapping F : E → E is defined as,

Fx (t) = x0 +

∫ t

0

f (s, x (s) , x (ϕ1(s)) , . . . , x (ϕn(s))) ds.

Let x (t) , y (t) ∈ E, then

Fx (t)−Fy (t) =

∫ t

0

f (s, x (s) , x (ϕ1(s)) , . . . , x (ϕn(s)))−f (s, y (s) , y (ϕ1(s)) , . . . , y (ϕn(s))) ds

which implies that

|Fx (t)− Fy (t)| =

∣∣∣∣∫ t

0

f (s, x (s) , x (ϕ1(s)) , . . . , x (ϕn(s)))

− f (s, y (s) , y (ϕ1(s)) , . . . , y (ϕn(s))) ds
∣∣∣

e−Nt |Fx (t)− Fy (t)| ≤ e−Nt

∫ t

0

|f (s, x (s) , x (ϕ1(s)) , . . . , x (ϕn(s)))

−f (s, y (s) , y (ϕ1(s)) , . . . , y (ϕn(s)))| ds

max
t∈J

e−Nt |Fx (t)− Fy (t)| ≤ k
n∑

i=1

max
t∈J

∫ t

0

e−N(t−ϕi(s))e−Nϕi(s) |x (ϕi(s))− y (ϕi(s))| ds

∥Fx− Fy∥ ≤ nk ∥x− y∥
∫ t

0

e−N(t−ϕi(s))ds

≤ nk ∥x− y∥
∫ t

0

e−N(t−s)ds

≤ nk

(
1− e−Nt

N

)
∥x− y∥

≤ nk

N
∥x− y∥

Now choose N large enough such that β = nk
N < 1, then we get

∥Fx− Fy∥ ≤ ∥x− y∥ ,

therefore the mapping F is contraction and there exists a unique solution x ∈ C (J)
of the problem (1)- (2) and this completes the proof. �
Theorem 2: The series solution (7) of the problem (1)- (2) using ADM converges
if |x1 (t)| < c, c is a positive constant .

Proof: Define the sequence {Sp} such that, Sp =
p∑

i=0

xi(t) is the sequence of partial

sums from the series solution
∞∑
i=0

xi(t) since,

f (t, x (t) , x (ϕ1(t)) , . . . , x (ϕn(t))) =
∞∑
i=0

Ai (t) ,

so we can write [ [16]],

f (t, Sp (t) , Sp (ϕ1(t)) , . . . , Sp (ϕn(t))) =

p∑
i=0

Ai (t) ,



330 E. A. A. ZIADA EJMAA-2020/8(1)

From equations (5) and (6) we have,

∞∑
i=0

xi(t) = x0 +

∫ t

0

( ∞∑
i=0

Ai−1 (s)

)
ds

Let Sp and Sq be two arbitrary partial sums with p > q, then we get,

Sp =

p∑
i=0

xi(t) = x0 +

∫ t

0

(
p∑

i=0

Ai−1 (s)

)
ds

Now, we are going to prove that {Sp} is a Cauchy sequence in this Banach space
E.

Sp (t)− Sq (t) =

∫ t

0

(
p∑

i=0

Ai−1 (s)

)
ds−

∫ t

0

(
q∑

i=0

Ai−1 (s)

)
ds

=

∫ t

0

 p∑
i=q+1

Ai−1 (s)

 ds

=

∫ t

0

p−1∑
i=q

Ai (s)

 ds

=

∫ t

0

[f (s, Sp−1 (s) , Sp−1 (ϕ1(s)) , . . . , Sp−1(ϕn(s))

−f (s, Sq−1 (s) , Sq−1 (ϕ1(s)) , . . . , Sq−1(ϕn(s))] ds

|Sp (t)− Sq (t)| =

∣∣∣∣∫ t

0

[f (s, Sp−1 (s) , Sp−1 (ϕ1(s)) , . . . , Sp−1(ϕn(s))

− f (s, Sq−1 (s) , Sq−1 (ϕ1(s)) , . . . , Sq−1(ϕn(s))] ds|

e−Nt |Sp (t)− Sq (t)| ≤ e−Nt

∫ t

0

|f (s, Sp−1 (s) , Sp−1 (ϕ1(s)) , . . . , Sp−1(ϕn(s))

−f (s, Sq−1 (s) , Sq−1 (ϕ1(s)) , . . . , Sq−1(ϕn(s))| dτ

max
t∈J

e−Nt |Sp (t)− Sq (t)| ≤ k
n∑

i=1

max
t∈J

∫ t

0

e−N(t−ϕi(s))e−Nϕi(s) |Sp−1 (ϕi(s))− Sq−1 (ϕi(s))| dτ

∥Sp − Sq∥ ≤ nk

N
∥Sp−1 − Sq−1∥

≤ β ∥Sp−1 − Sq−1∥

Let p = q + 1 then,

∥Sq+1 − Sq∥ ≤ β ∥Sq − Sq−1∥ ≤ β2 ∥Sq−1 − Sq−2∥ ≤ · · · ≤ βq ∥S1 − S0∥

From the triangle inequality we have,

∥Sp − Sq∥ ≤ ∥Sq+1 − Sq∥+ ∥Sq+2 − Sq+1∥+ · · ·+ ∥Sp − Sp−1∥
≤

[
βq + βq+1 + · · ·+ βp−1

]
∥S1 − S0∥

≤ βq
[
1 + β + · · ·+ βp−q−1

]
∥S1 − S0∥

≤ βm

[
1− βp−q

1− β

]
∥x1∥
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Since, 0 < β < 1, and p > q then, (1− βp−q) ≤ 1. Consequently,

∥Sp − Sq∥ ≤ βq

1− β
∥x1∥

≤ βq

1− β
max
t∈J

e−Nt |x1 (t)|

but, |x1 (t)| < c and as q → ∞ then, ∥Sp − Sq∥ → 0 and hence, {Sp} is a Cauchy

sequence in this Banach space E so, the series
∞∑
i=0

xi(t) converges. �

Theorem 3: The maximum absolute truncation error of the series solution (7) to
the problem (1)- (2) is estimated to be,∥∥∥∥∥x−

q∑
i=0

xi

∥∥∥∥∥ ≤ βq

1− β
∥x1∥

Proof: From Theorem 2 we have,

∥Sp − Sq∥ ≤ βq

1− β
max
t∈J

e−Nt |x1 (t)|

but, Sp =
p∑

i=0

xi(t) as p → ∞ then, Sp → x(t) so,

∥x− Sq∥ ≤ βq

1− β
∥x1∥

so, the maximum absolute truncation error in the interval J is,∥∥∥∥∥x−
q∑

i=0

xi

∥∥∥∥∥ ≤ βq

1− β
∥x1∥

and this completes the proof. �

5. Stability of the solution

Theorem 4: The solution of the problem (1)- (2) is uniformly stable.

Proof: Let x (t) be a solution of

x (t) = x0 +

∫ t

0

f (s, x (s) , x (ϕ1(s)) , . . . , x (ϕn(s))) ds

and let x̃ (t) be a solution of the above problem such that x̃ (0) = x̃0, then

x (t)− x̃ (t) = x0 − x̃0

+

∫ t

0

[f (s, x (s) , x (ϕ1(s)) , . . . , x (ϕn(s)))− f (s, x̃ (s) , x̃ (ϕ1(s)) , . . . , x̃ (ϕn(s)))] ds

|x (t)− x̃ (t)| ≤ |x0 − x̃0|

+

∫ t

0

|f (s, x (s) , x (ϕ1(s)) , . . . , x (ϕn(s)))− f (s, x̃ (s) , x̃ (ϕ1(s)) , . . . , x̃ (ϕn(s)))| ds
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e−Nt |x (t)− x̃ (t)| ≤ e−Nt |x0 − x̃0|

+k
n∑

i=1

∫ t

0

e−N(t−ϕi(s))e−Nϕi(s) |x (ϕi(s))− x̃ (ϕi(s))| ds

max
t∈J

e−Nt |x (t)− x̃ (t)| ≤ max
t∈J

e−Nt |x0 − x̃0|

+k

n∑
i=1

max
t∈J

∫ t

0

e−N(t−ϕi(s))e−Nϕi(s) |x (ϕi(s))− x̃ (ϕi(s))| ds

∥x− x̃∥ ≤ |x0 − x̃0|+ nk ∥x− x̃∥
∫ t

0

e−N(t−s)ds

≤ |x0 − x̃0|+
nk

N
∥x− x̃∥(

1− nk

N

)
∥x− x̃∥ ≤ |x0 − x̃0|

∥x− x̃∥ ≤
(
1− nk

N

)−1

|x0 − x̃0|

therefore, if |x0 − x̃0| < δ (ϵ) , then ∥x− x̃∥ < ϵ, which completes the proof. �

6. The second method: Predictor-corrector method

Adams-type-predictor corrector method has been introduced in many references,
see for example ([7]-[8]). In this section, we use Adams-type-predictor corrector
method to solve the equations (1)-(2). The product trapezoidal quadrature formula
is used tj .(j = 0, 1, .......k+1) taken with respect to the weight function (tk+1−.)α−1

and the following approximation is applied:

∫ k+1

t0

g (u)du ≈
∫ k+1

t0

gk+1(u)du

=
k+1∑
i=0

ãj,k+1g (tj),

where,

ãj,k+1 =

h

2

 k2 − (k − 1)(k + 1), J = 0
(k − J + 2)2 + (K − J)2 − 2(K − J + 1)2, 1 ≤ J ≤ K

1

 ,

and h is the step size, this yields the corrector-formula, i.e. the fractional variant
of the one-step Adams Moulton method; the corrector formula is:

xk+1 = a(tk+1) +

[
k∑

i=0

ãj,k+1f (tj , x(tj)) + ãk+1,k+1f (tk+1, x
P (tk+1))

]
The remaining problem is the determination of the predictor formula that is need

to calculate the XP
k+1. The idea used to generalize the one step Adams–Bashforth

method is the same as the one described above for the Adams-Moulton technique.
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The integral on the right hand side of equation (4) is replaced by the following
product rectangular rule:

∫ k+1

t0

g(u)du =
k∑

i=0

bj,k+1g(tj),

where,

bj,k+1 = h [(k + 1− J)− (K − J)]

Thus, the Predictor xP
k+1 is determined by the fractional Adams-Bashforth method:

xP
k+1 = a(tk+1) +

[
k∑

i=0

bj,k+1f(tj , x(tj))

]

7. Numerical examples

Example 1 Consider the following DNDE,

dx (t)

dt
=

(
2t+

t2

20
+ t4

)
− x2 (t)− 1

5
x

(
t

2

)
, t > 0

x(t) = 0, t ≤ 0. (8)

which has the exact solution
(
t2
)
. Applying ADM to equation (8), we have

x0 (t) =

∫ t

0

(
2τ +

τ2

20
+ τ4

)
dτ, (9)

xi (t) =

∫ t

0

(
−Ai−1 (τ)−

1

5
xi−1

(τ
2

))
dτ, i ≥ 1. (10)

where Ai is Adomian polynomials of the nonlinear term x2 (t). From equations (9)-

(10), the solution of problem (8) is,x(t) =
m∑
i=0

xi(t).

Table 1 shows the absolute error of ADM series solution (m = 5) and PECE
solution.

Table1: Absolute Error

t ∥xExact − xADM∥ ∥xExact − xPECE∥
0.1 1.04321×10−20 0.0000113735
0.2 1.18713×10−16 0.0000429191
0.3 7.53583×10−14 0.000115753
0.4 1.05908×10−11 0.000258145
0.5 5.95277×10−10 0.000506916
0.6 1.79337×10−8 0.000929852
0.7 3.44187×10−7 0.00160836
0.8 4.70735×10−6 0.00270368
0.9 0.0000495637 0.0043627
1 0.000424683 0.0069078



334 E. A. A. ZIADA EJMAA-2020/8(1)

Example 2 Consider the following nonlinear DE,

dx (t)

dt
=

(
3t2 + t9 + 0.57884375t3

)
− x3 (t)− 1

2
x (0.9t)− 1

4
x (0.95t) , t > 0

x(t) = 0, t ≤ 0. (11)

which has the exact solution
(
t3
)
. Applying ADM to equation (11), we have

x0 (t) =

∫ t

0

(
3τ2 + τ9 + 0.57884375τ3

)
dτ, (12)

xi (t) =

∫ t

0

(
−Ai−1 (τ)−

1

2
xi−1 (0.9τ)−

1

4
xi−1 (0.95τ)

)
dτ, i ≥ 1. (13)

where Ai is Adomian polynomials of the nonlinear term x3 (t). From equations
(12)- (13), the solution of problem (11) is,

x(t) =

m∑
i=0

xi(t).

Table 2 shows the absolute error of ADM series solution (m = 5) and PECE
solution.

Table2: Absolute Error

t ∥xExact − xADM∥ ∥xExact − xPECE∥
0.1 7.94505×10−7 0.0000148558
0.2 0.0000125885 0.0000609259
0.3 0.0000631091 0.000135945
0.4 0.000197459 0.000231983
0.5 0.000476659 0.000344733
0.6 0.000973614 0.000508431
0.7 0.00176027 0.000892094
0.8 0.00286937 0.0020606
0.9 0.00412554 0.00573262
1 0.00229944 0.0178213
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