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COMMON FIXED POINT THEOREMS USING WEAKLY

COMPATIBLE MAPS IN MULTIPLICATIVE METRIC SPACES

MONIKA VERMA, PARVEEN KUMAR AND NAWNEET HOODA

Abstract. In this paper, we proved some common fixed point theorems using

multiplicative contractive conditions using weak compatible maps in complete
and non-complete Multiplicative metric spaces.

1. Introduction

In the past years, many authors work on Banach’s fixed point theorem in various
spaces such as metric space, Fuzzy metric space, , Partial metric space, probabilistic
metric space and generalized metric spaces. A new type of non-Newton calculus,
called multiplicative calculus, was developed by Grossman and Katz [6]. In this
calculus the operations of subtraction and addition are replaced by division and
multiplication. It is well know that the set of positive real numbers R+ is not
complete according to the usual metric. To overcome this problem, by using the
ideas of Grossman and Katz[5],in 2008, Bashirov et al. [2] defined a new distance
so called a multiplicative distance by using the concept of multiplicative absolute
value. Multiplicative metric space was introduced by Bashirov in 2008. After that,
a huge number of paper appeared where authors use a various contractive condition
used in order to prove a fixed point theorem. But, in the paper [4] on Multiplicative
metric space, T. Doenovic proved that various well known fixed point theorems in
multiplicative metric spaces have equivalent fixed point theorem in metric space.
So, natural question has appeared: Is the multiplicative metric space a generaliza-
tion of the metric space? Based on that, T. Doenovic, S.Radenovic [5] study fixed
point theorems in multiplicative metric space where the contractive condition is
complicated (i.e. rational type contractive condition) and at first, they conclude
that there is not always equivalent theorem in metric space. Open question is the
following one: Is it possible to find a better condition in metric space without addi-
tional conditions? If answer is negative, we realize that in some cases multiplicative
metric space is useful. Inspired by multiplicative calculus, zavsar and evikel [8] de-
fined and developed the topological properties of the multiplicative metric space by
using the same idea of multiplicative distance as follows:
Definition 1.1[2] Let X be a non-empty set. A multiplicative metric is a mapping
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d : X×X → R+ satisfying the following conditions:
(i) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1 if and only if x = y
(ii) d(x, y) = d(y, x) for all x, y ∈ X
(iii) d(x, y) ≤ d(x, z) · d(z, y) for all x, y, z ∈ X (multiplicative triangle inequality).
Then mapping d together with X i.e., (X,d) is a multiplicative metric space.
Example 1.2 [8] Let Rn

+ be the collection of all n-tuples of positive real numbers.
Let d∗ : Rn

+ × Rn
+ −→ R be defined as follows:

d∗(x, y) =

(∣∣∣∣x1

y1

∣∣∣∣∗ · ∣∣∣∣x2

y2

∣∣∣∣∗ . . .

∣∣∣∣xn

yn

∣∣∣∣∗)
where x = (x1, . . . , xn) , y = (y1, . . . , yn) ∈ Rn+ and |.| : R+ → R+ is defined by

|a|∗ =

{
a if a ≥ 1
1
a if a < 1

Then it is obvious that all conditions of multiplicative metric are satisfied.

Example 1.3 [9] Let d : R × R → [1,∞) be defined as d(x, y) = a|x−y|,
where x, y ∈ R and a > 1. Then d(x, y) is multiplicative metric and (X,d) is called
multiplicative metric spaces. We may call it usual multiplicative metric spaces.

Example 1.4 [9] Let (X, d) be a metric space. Define a mapping da on X by

da(x, y) = ad(x,y) where a > 1 is a real number and da(x, y) = ad(x,y) =

{
1 if x = y
a if x ̸= y

The metric da(x, y) is called discrete multiplicative metric and X together with da
i.e., (X,da) is known as discrete multiplicative metric space.

Example 1.5 [1] Let X = C∗[a, b] be the collection of all real-valued mul-
tiplicative continuous functions over [a, b] ⊆ R+. Then (X, d) is a multiplicative
metric space with d defined by

d(f, g) = supx∈[a,b]

∣∣∣ f(x)g(x)

∣∣∣∗ for arbitrary f, g ∈ X

Remark 1.6 [9] We note that multiplicative metric and metric spaces are inde-
pendent structures. The mapping d∗ defined above is multiplicative metric but it
is not a metric as it doesn’t satisfy triangular inequality.
For this we consider
d∗
(
1
3 ,

1
2

)
+d∗

(
1
2 , 3
)
= 3

2+6 = 7.5 < 9 = d∗
(
1
3 , 3
)
, where d∗ is defined as in example

1.2.
On the other hand, the usual metric on R is not a multiplicative metric as it doesn’t
satisfy multiplicative triangular inequality,
i.e., d(2, 3) · d(3, 6) = 3 < 4 = d(2, 6).
One can refer to [1] for detailed multiplicative metric topology.
Definition 1.7 [8] Let (X, d) be a multiplicative metric space. A sequence {xn}
in X said to be a
(i) multiplicative convergent sequence to x, if for every multiplicative open ball
Bϵ(x) = {y | d(x, y) < ϵ}, ϵ > 1, there exists a natural number N such that
xn ∈ Bϵ(x) for all n ≥ N, i. e ,d (xn, x) → 1 as n → ∞
(ii) multiplicative Cauchy sequence if for all ϵ > 1, there exists N ∈ N such that
d (xn, xm) < ϵ for all m,n > N i. e ,d (xn, xm) → 1 as n → ∞
A multiplicative metric space is called complete if every multiplicative Cauchy se-
quence in X is multiplicative converging to x ∈ X
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In 2012, Ozavsar gave the concept of multiplicative contraction mapping and proved
some fixed point theorem for these maps in complete multiplicative metric spaces.
Definition 1.8 [8] Let (X, d) be a multiplicative metric space. The map f : X →
X is called a multiplicative contraction if there exists a real constant λ ∈ [0, 1) such
that

d (f (x1) , f (x2)) ≤ d (x1, x2)
λ

for all x, y ∈ X

In 1996, Jungck [7] introduced the concept of weakly compatible mappings and
prove fixed point Theorems using these mappings on metric spaces.
Definition 1.9 [7] Two maps f and g are said to be weakly compatible if they
commute at coincidence points, that is, if fx = gx implies fgx = gfx for x ∈ X.
In similar mode, we use weakly compatible in multiplicative metric spaces.

In 2009, S. Young Cho and M. J. Yoo[3] gives the following results in metric
spaces using compatible maps: Let A,B,S and T be mappings from a complete
metric space (X,d) into itself satisfying the conditions:
(i) A(X) ⊆ T(X),B(X) ⊆ S(X)

(ii) d(Ax,By) ≤ p

(
max

{
d(Ax,Sx),d(By,Ty),[

d(Ax,Ty)+d(By,Sx)]
2 ,d(Sx,Ty)

})
+q(max{d(Ax,Sx),d(By,Ty)})+

r(max{d(Ax,Ty),d(By,Sx)}), for all x, y ∈ X, where 0 < h = p + q + 2r <
1(p, q and r are non-negative real numbers).
(iii) one of A,B,S and T is continuous,
(iv) the pairs A,S and B,T are compatible on X. Then A,B,S and T have a unique
common fixed point in X.

2. Main Results

Now we prove above result of S. Young Cho and M. J. Yoo[3] for weakly compat-
ible mappings in setting of complete and non-complete multiplicative metric spaces
as follow:
Theorem 2.1 Let (X, d) be a complete multiplicative metric space. Let A, B, S
and T be self-mappings of X into itself satisfying the following conditions
(C1) A(X) ⊆ T(X),B(X) ⊆ S(X)
(C2) one of the subspace AX or BX or SX or TX is complete
(C3) the pairs (A,S) and (B,T) are weakly compatible

(C4) d(Ax,By) ≤
(

d(Ax,Sx),d(By,Ty),

max{
√
[d(Ax,Ty) · d(By,Sx)],d(Sx,Ty)

})p

.

(max {d (Ax,Sx) ,d (By,Ty)})q · (max {d (Ax,Ty) ,d (By, Sx)})r
for all x, y ∈ X, where 0 < h = p + q + 2r < 1(p, q and r are non-negative real
numbers). Then A,B,S and T have a unique common fixed point in X.
Proof. Let x0 ∈ X be an arbitrary point · Since B(X) ⊆ S(X), therefore, for
x0 ∈ X, there exists x1 ∈ X such that Tx1 = Ax0 = y1· Now for this x1 there
exists x2 ∈ X such that Sx2 = Bx1 = y2 Similarly, we can inductively define
Bx2n−1 = Sx2n = y2n; Ax2n = Tx2n+1 = y2n+1 for n = 0, 1, 2, . . . Now we prove
{yn} is a Cauchy sequence in X.
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For this we consider

d (y2n+1, y2n+2) = d (Ax2n,Bx2n+1) ≤(
max

{
d (Ax2n,Sx2n) ,d (Bx2n+1,Tx2n+1) ,√

[d (Ax2n,Tx2n+1) · d (Bx2n+1,Sx2n)],d (Sx2n,Tx2n+1)

})p

.

(max {d (Ax2n,Sx2n) ,d (Bx2n+1,Tx2n+1)})q · (max {d (Ax2n,Tx2n+1) ,d (Bx2n+1,Sx2n)})r

d (y2n+1, y2n+2) ≤[ (
max

{
d (y2n+1, y2n) ,d (y2n+2, y2n+1) ,

√
[d (y2n+1, y2n+1) · d (y2n+2, y2n)],d (y2n, y2n+1)

})p
(max {d (y2n+1, y2n) ,d (y2n+2, y2n+1)})q · (max {d (y2n+1, y2n+1) ,d (y2n+2, y2n)})r

]
d (y2n+1, y2n+2) ≤
(
max

{
d (y2n+1, y2n) ,d (y2n+2, y2n+1) ,

√
[d (y2n+1, y2n+1) · d (y2n+1, y2n) · d (y2n+1, y2n+2)],
d (y2n, y2n+1)

})p

(max {d (y2n+1, y2n) ,d (y2n+2, y2n+1)})q
(max {d (y2n+1, y2n+1) ,d (y2n+1, y2n) · d (y2n+1, y2n+2)})r

 .

d (y2n+1, y2n+2) ≤


(
max

{
d (y2n+1, y2n) ,d (y2n+2, y2n+1) ,√

[1.d (y2n+2, y2n) · d (y2n+1, y2n+2)],d (y2n, y2n+1)

)p

(max {d (y2n+1, y2n) ,d (y2n+2, y2n+1)})q
(max {1,d (y2n+2, y2n) · d (y2n+1, y2n+2)})r


(2.1)

In(2.1), if d (y2n+2, y2n+1) > d (y2n+1, y2n) for some positive integer n, then

we have d (y2n+1, y2n+2) ≤ (d (y2n+1, y2n+2))
h
, where h = p + q + 2r < 1, which is

a contradiction.
Thus we have d (y2n+2, y2n+1) ≤ (d (y2n, y2n+1))

h
.

Similarly, we have

d (y2n, y2n+1) ≤ (d (y2n−1, y2n))
h

Thus for every n ∈ N,d (yn, y2n+1) ≤ (d (y2n−1, y2n))
h
.

Continue like this, we have

d (yn, y2n+1) ≤ (d (yn−1, yn))
h ≤ (d (yn−2, yn−1))

h2

≤ . . . ≤ (d (y0, y1))
hn

Let m,n ∈ N such that m > n, we get

d (ym, yn) ≤d (ym, ym−1) . . . d (yn+1, yn)

≤ (d (y1, y0))
hm−1+···hn

≤ (d (y1, y0))
hn

1−h → 1 as m,n → ∞

Hence {yn} is a multiplicative Cauchy sequence. since X is complete so {yn} → z
in X.
Therefore, subsequence {Sx2n} , {Bx2n−1} , {Ax2n} , {Tx2n−1} of {yn} also con-
verges to z in X.
Now suppose S(X) is complete, therefore, let w ∈ S−1z then Sw = z First we claim
that Aw = z.
Let if possible Aw ̸= z.
On putting x = w, y = x2n+1 in inequality (C4) , we get
d (Aw,Bx2n+1) ≤
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max

{
d(Aw,Sw),d (Bx2n+1,Tx2n+1) ,

√
[d (Aw,Tx2n+1) · d (Bx2n+1,Sw)],d (Sw,Tx2n+1)

})p
(max {d(Aw,Sw),d (Bx2n+1,Tx2n+1)})q · (max {d (Aw,Tx2n+1) ,d (Bx2n+1,Sw)})r

]
Letting n → ∞, we have

d(Aw, z) ≤
[

(max{d(Aw, z),d(z, z),
√
[d(Aw, z) · d(z, z)],d(z, z)})p

(max{d(Aw, z),d(z, z)})q · (max{d(Aw, z),d(z, z)})r
]

d(Aw, z) ≤ d(Aw, z)p+q+r, a contradiction. Hence Aw = z.
This implies, z = Sw = Aw.
Therefore, w is coincidence point of A and S.

(2.2)

since z = Aw ∈ A(X) ⊆ T (X), therefore, there exists v ∈ X such that z = Tv
Next we claim that Bv = z.
Let if possible Bv ̸= z. On putting x = x2n, y = v in inequality (C4) , we have

d (Ax2n,Bv) ≤

[ (
max

{
d (Ax2n,Sx2n) ,d(Bv,Tv),

√
[d (Ax2n,Tv) · d (Bv,Sx2n)],d (Sx2n,Tv)

})p
(max {d (Ax2n,Sx2n) ,d(Bv,Tv)})q · (max {d (Ax2n,Tv) ,d (Bv,Sx2n)})r

]
Letting n → ∞, we have

d(z,Bv) = d (Ax2n,Bv) ≤
[

(max{d(z, z),d(Bv, z),
√
[d(z, z) · d(Bv, z)],d(z, z)})p

(max{d(z, z),d(Bv, z)})q · (max{d(z, z),d(Bv, z)})r
]

d(Bv, z) ≤ d(Bv, z)p+q+r, a contradiction.
Therefore, z = Tv = Bv.
Hence v is coincidence point of B and T.

(2.3)

Since the pairs (A,S) and (B,T) are weakly compatible and u sing(2.2), (2.3), we
have

Sz = SAw = ASw = Az (2.4)

and

Tz = TBv = BTv = Bz. (2.5)

Next we claim that Az = z.
Let if possible Az ̸= z then using inequality (C4) and on putting x = z, y = x2n+1,
we have
d (Az,Bx2n+1) ≤[ (

max
{
d(Az,Sz),d (Bx2n+1,Tx2n+1) ,

√
[d (Az,Tx2n+1) · d (Bx2n+1,Sz)],d (Sz,Tx2n+1)

})p
(max {d(Az,Sz),d (Bx2n+1,Tx2n+1)})q · (max {d (Az,Tx2n+1) ,d (Bx2n+1,Sz)})r

]
.

Letting n → ∞, we have d(Az, z) ≤
[

(max{1, 1,
√
[d(Az, z) · d(z,Az)],d(Az, z)})p

(max{1, 1})q · (max{d(Az, z),d(z,Az)})r
]

d(Av, z) ≤ d(Av, z)p+r, a contradiction.
So ,we have Az = z
Now using (2.4) , we have

Sz = Az = z (2.6)

Next, we claim that Bz = z
Let if possible Bz ̸= z then on putting x = x2n, y = z in inequality (C4) , we have

d (Ax2n,Bz) ≤

[ (
max

{
d (Ax2n,Sx2n) ,d(Bz,Tz),

√
[d (Ax2n,Tz) · d (Bz,Sx2n)],d (Sx2n,Tz)

})p
(max {d (Ax2n,Sx2n) ,d(Bz,Tz)})q · (max {d (Ax2n,Tz) ,d (Bz,Sx2n)})r

]
.
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Letting n → ∞, we have

d(z,Bz) ≤
[

(max{1, 1,
√
[d(z,Bz) · d(Bz, z)],d(z,Bz)})p

(max{1, 1})q · (max{d(z,Bz),d(Bz, z)})r
]

d(Bz, z) ≤ d(Bz, z)p+r, a contradiction.
Therefore, Bz = z.
Now, from (2.5) we conclude that

Tz = Bz = z. (2.7)

Thus, from (2.6) and (2.7), z is the common fixed point of A,B, S and T .
The proofs for cases in which A(X),B(X),T(X), are assumed complete are similar
to completeness of S(X), therefore omitted.
Uniqueness can easily follows from inequality (C4) .
Cor. 2.2 On putting S = T then Theorem 2.1 can be written as
Theorem 2.3 Let (X, d) be a complete multiplicative metric space.
Let A,B, S be self-mappings of X into itself satisfying the following conditions
(C5) A(X) ⊆ S(X),B(X) ⊆ S(X)
(C6) one of the subspace AX or BX or SX is complete
(C7) the pairs (A,S) and (B,S) are weakly compatible

(C8) d(Ax,By) ≤
[

d(Ax,Sx),d(By,Sy),

(max{
√

[d(Ax,Sy) · d(By,Sx)],d(Sx,Sy)

})p

for all x, y ∈

X, where 0 < h = p + q + 2r < 1(p, q and r are non-negative real numbers).
Then A,B,S have a unique common fixed point in X.
Cor. 2.4 On putting A = B = I then Theorem 2.1 can be written as
Theorem 2.5 Let (X,d) be a complete multiplicative metric space . Let S and T
be self-mappings of X into itself satisfying the following conditions
(C9) one of the subspace SX or TX is complete
(C10) the pairs (S,T) is weakly compatible

(C11) d(Ax,By) ≤
[

d(Ax,Sx),d(By,Ty),

(max{
√
[d(Ax,Ty) · d(By,Sx)],d(Sx,Ty)

})p

for all x, y ∈

X, where 0 < h = p + q + 2r < 1(p, q and r are non-negative real numbers).
Then A,B,S and T have a unique common fixed point in X.
Now we prove common fixed points for weakly compatible mappings on multiplica-
tive metric spaces without completeness of space X as follow:
Theorem 2.6 Let A,B, S and T be self-mappings of a multiplicative metric space
(X, d) satisfying the conditions
(C1) , (C2) , (C3) and (C4)
Then A,B,S and T have unique common fixed point.
Proof. From Theorem 2.1, {yn} is a multiplicative Cauchy sequence.
Suppose S(X) is complete there exists u ∈ S(X) such that
y2n+1 = Sx2n+2 = Bx2n+1 → u as n → ∞
Consequently, we can find v ∈ X such that

Sv = u. (2.8)

Since {yn} is a Cauchy sequence containing a convergent subsequence {y2n+1} ,
therefore, the sequence {yn} also converges, implying thereby, the convergence of
{y2n} being a subsequence of the convergent sequence {yn} .
Thus we have y2n = Ax2n+2 = Tx2n+1 → u as n → ∞
We claim Av = u.
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Let if possible Av ̸= u then putting x = v, y = x2n+1 in inequality (C4) we get
d (Av, y2n+1) = d (Av,Bx2n+1) <[ (

max
{
d(Av,Sv),d (Bx2n+1,Tx2n+1) ,

√
[d (Av,Tx2n+1) · d (Bx2n+1,Sv)],d (Sv,Tx2n+1)

})p
(max {d(Av,Sv),d (Bx2n+1,Tx2n+1)})q · (max {d (Av,Tx2n+1) ,d (Bx2n+1,Sv)})r

]
Letting n → ∞, we have

d(Av,u) ≤
[

(max{d(Av,u),d(u,u),
√
[d(Av,u) · d(u,u)],d(u,u)})p

(max{d(Av,u),d(u,u)})q · (max{d(Av,u),d(u,u)})r
]

d(Av,u) ≤ d(Av,u)p+q+r, a contradiction. Hence

Sv = Av = u. (2.9)

Hence v is coincidence point of A and S.
Since u = Av ∈ AX ⊆ TX there exists w ∈ X such that

u = Tw. (2.10)

We claim Bw = u.
Let if possible Bw ̸= u then on putting x = v, y = w in inequality (C4) we have
d(u,Bw) = d(Av,Bw) ≤[

(max{d(Av,Sv),d(Bw,Tw),
√
[d(Av,Tw) · d(Bw,Sv)],d(Sv,Tw)})p

(max{d(Av,Sv),d(Bw,Tw)})q · (max{d(Av,Tw),d(Bw,Sv)})r
]

d(u,Bw) = d(Av,Bw) ≤
[

(max{d(u,u),d(Bw,u),
√
[d(u,u) · d(Bw,u)],d(u,u)})p

(max{d(u,u),d(Bw,u)})q · (max{d(u,u),d(Bw,u)})r
]

d(u,Bw) ≤ d(Bw,u)p+q+r, a contradiction implies,

u = Bw. (2.11)

Using(2.8) and (2.9), we get

u = Av = Sv (2.12)

i.e., v is coincidence point of A and S.
From (2.10) and (2.11), we have

u = Bw = Tw (2.13)

i.e., w is coincidence point of B and T
i.e., Av = Sv = Bw = Tw = u since the pairs (A,S) and (B,T) are weakly com-
patible then from (2.8),(2.9),(2.10) and (2.11) we have
Su = S(Av) = A(Sv) = Au = w1( say ) Tu = T(Bw) = B(Tw) = Bu = w2( say )
From inequality (C4) , we have
From (2.10) and (2.11), we have u = Bw = Tw i.e., w is coincidence point of B
and T i.e., Av = Sv = Bw = Tw = u since the pairs (A,S) and (B,T) are weakly
compatible then from (2.8),(2.9),(2.10) and (2.11) we have Su = S(Av) = A(Sv) =
Au = w1( say ) and Tu = T(Bw) = B(Tw) = Bu = w2( say )
From inequality (C4) , we have
d (w1,w2) = d(Au,Bu) ≤[

(max{d(Au,Su),d(Bu,Tu),
√
[d(Au,Tu) · d(Bu,Su)],d(Su,Tu)})p

(max{d(Au,Su),d(Bu,Tu)})q · (max{d(Au,Tu),d(Bu,Su)})r
]
.

d (w1,w2) = d(Au,Bu) ≤[
(max{d(Au,Su),d(Bu,Tu),

√
[d(Au,Tu) · d(Bu,Su)],d(Su,Tu)})p

(max{d(Au,Su),d(Bu,Tu)})q · (max{d(Au,Tu),d(Bu,Su)})r
]
.
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d (w1,w2) ≤

[ (
max

{
d (w1, w1) ,d (w2, w2) ,

√
[d (w1, w2) · d (w2, w1)],d (w1, w2)

})p
(max {d (w1, w1) ,d (w2, w2)})q · (max {d (w1, w2) ,d (w2, w1)})r

]
d (w1, w2) ≤ d (w1, w2)

p+r
, a contradiction. i.e., w1 = w2.

Therefore, we have

Su = Au = Tu = Bu (2.14)

Again using inequality (C4) and u sing(2.14), we have on putting x = v, y = u in
inequality (C4) , we have

d(Av,Bu) ≤
[

(max{d(Av,Sv),d(Bu,Tu),
√

[d(Av,Tu) · d(Bu,Sv)],d(Sv,Tu)})p
(max{d(Av,Sv),d(Bu,Tu)})q · (max{d(Av,Tu),d(Bu,Sv)})r

]
d(Av,Bu) ≤

[
(max{1, 1,

√
[d(Av,Bu) · d(Bu,Av)],d(Av,Bu)})p

(max{1, 1})q · (max{d(Av,Bu),d(Bu,Av)})r
]

d(Av,Bu) ≤ d(Av,Bu)p+r, a contradiction.
This implies that Av = Bu, that is, u = Bu.
Therefore, we have u = Tu = Su = Au = Bu.
Hence u is a common fixed point of A,B,S and T.
Now we prove that u is the common fixed point of A,B,S and T.
The proof for cases in which A(X), B(X), T(X) is complete are similar and are
therefore omitted.
The following corollary follows immediately from Theorem 2.1 and 2.6.
Corollary 2.7. Let (X, d) be a complete multiplicative metric space. Let A,B,S and T
be self- mappings of X into itself satisfying conditions (C1) , (C2) , (C3) .
Suppose that
(C12)

d(Ax,By) ≤
[

(max{d(Ax,Sx),d(By,Ty),
√
[d(Ax,Ty)],

√
[d(By,Sx)],d(Sx,Ty)})p

(max{d(Ax,Sx),d(By,Ty)})q · (max{d(Ax,Ty),d(By,Sx)})r
]

or all x, y ∈ X, where 0 < h = p + q + 2r < 1(p, q and r are non-negative real
numbers).
Then A,B,S and T have a unique common fixed point in X.
Example 2.8 Let X = [0,∞) and (X, d) be multiplicative metric space de-
fined by d(x, y) = e|x−y| for all x, y ∈ X. Define self maps A,B,S and T on X by
Ax = 1

2x,Bx = x Sx = 3x,Tx = 2x.
Then the self maps A,B,S and T satisfy (C1) , (C2) , (C3) and (C4) conditions of
Theorem 2.2 and have a unique common fixed point at x = 0
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