ISSN: 2090-729X(online)

http://math-frac.org/Journals/EJMAA/

NOTES ON MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS DEFINED BY RAPID OPERATOR

SANTOSH M. POPADE, RAJKUMAR N. INGLE AND P.THIRUPATHI REDDY

ABSTRACT. In this paper, we introduce and study a new class $M_n(\alpha,\beta,\gamma,\mu,\theta)$ of meromorphic univalent functions defined in $U^*=\{z:z\in C \text{ and } 0<|z|<1\}=U\setminus\{0\}$. We obtain coefficients inequalities, distortion theorems, extreme points, closure theorems, radius of convexity estimates and modified Hadamard products.

1. Introduction

Let A denote the class of all functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

in the open unit disc $U = \{z \in \mathcal{C} : |z| < 1\}$. Let S be the subclass of A consisting of univalent functions and satisfy the following usual normalization condition f(0) = f'(0) - 1 = 0. We denote by S the subclass of A consisting of functions f(z) which are all univalent in U. A function $f \in A$ is a starlike function by the order $\alpha, 0 \le \alpha < 1$, if it satisfy

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha, (z \in U).$$
 (2)

We denote this class with $S^*(\alpha)$.

A function $f \in A$ is a convex function by the order $\alpha, 0 \le \alpha < 1$, if it satisfy

$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha, (z \in U). \tag{3}$$

We denote this class with $K(\alpha)$.

Let Σ^* denote the class of meromorphic function of the form

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, \ (a_n \ge 0)$$
 (4)

 $^{2010\} Mathematics\ Subject\ Classification.\ 30C45.$

Key words and phrases. Meromorphic functions, Distortion, Hadamard product.

Submitted May 6, 2019. Revised Aug. 23, 2020.

which are analytic in the punctured unit disc $U^* = \{z : z \in C \text{ and } 0 < |z| < 1\} = Un\{0\}$. Let $g(z) \in \Sigma^*$ be given by

$$g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} b_n z^n, \ (b_n \ge 0)$$
 (5)

then the Hadamard product (or convolution) of f(z) and g(z) is given by

$$(f * g)(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n b_n z^n = (g * f)(z).$$
 (6)

A function $f \in \Sigma^*$ is meromorphic starlike of order $\alpha(0 \le \alpha < 1)$, if

$$-Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha, \ (z \in U). \tag{7}$$

The class of such functions is denoted by $\Sigma^*(\alpha)$. A function $f \in \Sigma^*$ is meromorphic convex of order $\alpha(0 \le \alpha < 1)$, if

$$-Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha, \ (z \in U). \tag{8}$$

The class of such functions is denoted by $\Sigma_k^*(\alpha)$. The classes $\Sigma^*(\alpha)$ and $\Sigma_k^*(\alpha)$ were introduced and studied by Pommerenke [5], Miller [3], Mogra et al. [4], Cho [2], Venkateswarlu et al. [10].

In [1], Atshan and Kulkarni introduced Rapid-operator for analytic functions and Rosy and Sunil Varma [6] modified their operator to meromorphic functions as follows:

Lemma 1.1. For $f \in \Sigma^*$ given by (4), $0 \le \mu \le 1$ and $0 \le \theta \le 1$, if the operator $S^{\theta}_{\mu} : \Sigma^* \to \Sigma^*$ is defined by

$$S_{\mu}^{\theta} f(z) = \frac{1}{(1-\mu)^{\theta}} \int_{0}^{\infty} t^{1+\theta} e^{\frac{-t}{1-\mu}} f(zt) dt$$
 (9)

then

$$S_{\mu}^{\theta} f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} L(n, \mu, \theta) a_n z^n,$$
 (10)

where $L(n,\mu,\theta)=(1-\mu)^{n+1}\frac{\Gamma(n+\theta+2)}{\Gamma(\theta+1)}$ and Γ is the familiar Gamma function.

Motivated by Thirupathi Reddy and Venkateswarlu [8, 9], now we define a new subclass $M_n(\alpha, \beta, \gamma, \mu, \theta)$ of Σ^* .

2. Coefficient Estimates

Unless otherwise mentioned, we assume throughout this paper that $0 \le \alpha < 1$, $0 < \beta \le 1$, $\frac{1}{2} \le \gamma \le 1$, $0 \le \mu \le 1$, $0 \le \theta \le 1$, $n \in \mathbb{N}$ and $z \in U^*$.

Theorem 2.1. The function $f(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$ if and only if

$$\sum_{n=1}^{\infty} [n(1+2\beta\gamma-\beta]L(n,\mu,\theta)a_n \le 2\beta\gamma(1-\alpha). \tag{11}$$

Proof. Suppose (11) holds. So

$$\begin{split} &|z^2(S^{\theta}_{\mu}f(z))'+1|-\beta|(2\gamma-1)z^2(S^{\theta}_{\mu}f(z))'+(2\alpha\gamma-1)|\\ &=|\sum_{n=1}^{\infty}nL(n,\mu,\theta)a_nz^{n+1}|-\beta\left|2\gamma(\alpha-1)+\sum_{n=1}^{\infty}n(2\gamma-1)L(n,\mu,\theta)a_nz^{n+1}\right|\\ &\leq\sum_{n=1}^{\infty}nL(n,\mu,\theta)a_nr^{n+1}|-\beta\left\{2\gamma(\alpha-1)+\sum_{n=1}^{\infty}n(2\gamma-1)L(n,\mu,\theta)a_nr^{n+1}\right\}\\ &=\sum_{n=1}^{\infty}n(1+2\beta\gamma-\beta)L(n,\mu,\theta)a_nr^{n+1}-2\beta\gamma(1-\alpha). \end{split}$$

Since the above inequality holds for all r, 0 < r < 1, letting $r \to 1^-$, we have

$$\sum_{n=1}^{\infty} n(1+2\beta\gamma-\beta)L(n,\mu,\theta)a_n - 2\beta\gamma(1-\alpha) \le 0$$

by (11), hence $f(z) \in M_n(\alpha,\beta,\gamma,\mu,\theta)$.

Conversely, suppose that f(z) is in the class $M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then

$$\left| \frac{z^2 (S^{\theta}_{\mu} f(z))' + 1}{(2\gamma - 1) z^2 (S^{\theta}_{\mu} f(z))' + (2\alpha\gamma - 1)} \right| = \left| \frac{\sum_{n=1}^{\infty} nL(n, \mu, \theta) a_n z^{n+1}}{2\gamma (1 - \alpha) - \sum_{n=1}^{\infty} n(2\gamma - 1) L(n, \mu, \theta) a_n z^{n+1}} \right| \le \beta.$$

Using the fact that $Re(z) \leq |z|$ for all z, we have

$$\left| \frac{z^2 (S_{\mu}^{\theta} f(z))' + 1}{(2\gamma - 1)z^2 (S_{\mu}^{\theta} f(z))' + (2\alpha\gamma - 1)} \right| \le \left\{ \frac{\sum_{n=1}^{\infty} nL(n, \mu, \theta) a_n z^{n+1}}{2\gamma (1 - \alpha) - \sum_{n=1}^{\infty} n(2\gamma - 1) L(n, \mu, \theta) a_n z^{n+1}} \right\} \le \beta.$$
(12)

If we choose z to be real so that $z^2(S^{\theta}_{\mu}f(z))'$ is real. Upon cleaning the denominator in (12) and letting $z \to 1^-$ through positive values, we obtain

$$\sum_{n=1}^{\infty} n[1 + 2\beta\gamma - \beta]L(n, \mu, \theta)a_n \le 2\beta\gamma(1 - \alpha).$$

This completes the proof of the theorem.

Corollary 2.1. Let the function f(z) denoted by (1.4) be in the class $M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then

$$a_n \le \frac{2\beta\gamma(1-\alpha)}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)} \ (n \ge 1),$$

with equality for the function

$$f(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}z^{n}.$$
 (13)

3. Distortion Theorems

Theorem 3.1. Let the function $f(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then for $0 < |z| = \gamma < 1$, we have

$$\frac{1}{r} - \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)}r \le |f(z)| \le \frac{1}{r} - \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)}r \le |f(z)| \le \frac{1}{r} - \frac{(1+2\beta\gamma-\beta)(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)}r \le |f(z)| \le \frac{1}{r} - \frac{(1+\alpha)(1-\alpha)}{(1+\alpha)(1-\alpha)}r \le |f(z)| \le \frac{1}{r} - \frac{(1+\alpha)(1-\alpha)}{(1+\alpha)(1-\alpha)}r \le |f(z)| \le \frac{1}{r} - \frac{(1+\alpha)(1-\alpha)}{(1+\alpha)(1-\alpha)}r \le |f(z)| \le \frac{1}{r} - \frac{(1+\alpha)(1-\alpha)(1-\alpha)}{(1+\alpha)(1-\alpha)}r \le |f(z)| \le \frac{1}{r} - \frac{(1+\alpha)(1-\alpha)(1-\alpha)}{(1+\alpha)(1-\alpha)}r \le |f(z)| \le \frac{1}{r} - \frac{(1+\alpha)(1-\alpha)}{(1+\alpha)(1-\alpha)}r \le |f(z)| \le \frac{1}{r} - \frac{(1+\alpha)(1-\alpha)(1-\alpha)}{(1+\alpha)(1-\alpha)}r \le$$

with equality for the function

$$f(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)}z^n.$$
 (15)

Proof. Suppose that f is in $M_n(\alpha, \beta, \gamma, \mu, \theta)$. In view of Theorem 2.3, we have

$$(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)\sum_{n=1}^{\infty}a_n$$

$$\leq \sum_{n=1}^{\infty}n[1+2\beta\gamma-\beta]L(n,\mu,\theta)a_n$$

$$\leq 2\beta\gamma(1-\alpha).$$

Then

$$\sum_{n=1}^{\infty} a_n \le \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)}.$$
 (16)

Consequently, we obtain

$$|f(z)| = \left| \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \right| \le \frac{1}{|z|} + \sum_{n=1}^{\infty} a_n |z|^n$$

$$\le \frac{1}{r} + r \sum_{n=1}^{\infty} a_n$$

$$\le \frac{1}{r} - \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)} r. \tag{17}$$

Also,

$$|f(z)| = \left| \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \right| \ge \frac{1}{|z|} - \sum_{n=1}^{\infty} a_n |z|^n$$

$$\ge \frac{1}{r} - r \sum_{n=1}^{\infty} a_n$$

$$\ge \frac{1}{r} - \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)} r. \tag{18}$$

Hence, (3.1) follows.

Theorem 3.2. Let the function $f \in M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then for 0 < |z| = r < 1, we have

$$\frac{1}{r^2} - \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2))} \le |f'(z)|$$

$$\le \frac{1}{r^2} + \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2))}$$
(19)

with equality for the function f(z) given by (15).

Proof. From Theorem 2.1 and (3.3), we have,

$$\sum_{n=1}^{\infty} n a_n \le \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)}.$$
 (20)

The remaining part of the proof is similar to the proof of Theorem 3.1, so we omit the details. \Box

4. Closure Theorems

Let the functions $f_j(z)$ be defined for j = 1, 2, ..., m by

$$f_j(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_{n,j} z^n, \ (a_{n,j} \ge 0).$$
 (21)

Theorem 4.1. Let $f_j(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta), (j = 1, 2,m)$. Then the function

$$h(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{m} \sum_{j=1}^{\infty} a_{n,j} \right) z^n$$
 (22)

is in $M_n(\alpha, \beta, \gamma, \mu, \theta)$.

Proof. Since $f_j(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta), (j = 1, 2,m)$, it follows from Theorem 2.1, that

$$\sum_{n=1}^{\infty} n[1 + 2\beta\gamma - \beta] L(n, \mu, \theta) a_{n,j} \le 2\beta\gamma(1 - \alpha),$$

for every j = 1, 2,, m. Hence

$$\sum_{n=1}^{\infty} n[1+2\beta\gamma-\beta]L(n,\mu,\theta) \left(\frac{1}{m}\sum_{j=1}^{\infty} a_{n,j}\right)$$
$$=\frac{1}{m}\sum_{j=1}^{\infty} \left[\sum_{n=1}^{\infty} n[1+2\beta\gamma-\beta]L(n,\mu,\theta)a_{n,j}\right] \leq 2\beta\gamma(1-\alpha).$$

From Theorem 2.1, it follows that $h(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$. This completes the proof.

Theorem 4.2. The class $M_n(\alpha, \beta, \gamma, \mu, \theta)$ is closed under convex linear combinations.

Proof. Let $f_j(z), (j = 1, 2)$ defined by (4.1) be in the class $M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then it is sufficient to show that

$$h(z) = \xi f_1(z) + (1 - \xi) f_2(z), \ (0 \le \xi \le 1)$$
(23)

is in the class $M_n(\alpha, \beta, \gamma, \mu, \theta)$. Since

$$h(z) = \frac{1}{z} + \sum_{n=1}^{\infty} [\xi a_{n,1} + (1-\xi)a_{n,2}]z^n,$$
 (24)

then, we have from Theorem 2.1, that

$$\sum_{n=1}^{\infty} n[1 + 2\beta\gamma - \beta] L(n, \mu, \theta) [\xi a_{n,1} + (1 - \xi)a_{n,2}]$$

$$\leq 2\xi\beta\gamma(1-\alpha) + 2\beta\gamma(1-\xi)(1-\alpha) = 2\beta\gamma(1-\alpha)$$

So,
$$h(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$$
.

Theorem 4.3. Let $0 \le \rho < 1$. Then

$$M_n(\alpha, \beta, \gamma, \mu, \theta) < M_n(\alpha, \beta, 1, \mu, \theta) = M_n(\alpha, \beta, \mu, \theta),$$

where

$$\rho = 1 - \frac{\gamma(1+\beta)(1-\alpha)}{(1+2\beta\gamma - \beta)}.$$
 (25)

Proof. Let $f(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then

$$\sum_{n=1}^{\infty} \frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)} a_n \le 1.$$
 (26)

We need to find the value of ρ such that

$$\sum_{n=1}^{\infty} \frac{n(1+\beta)}{2\beta(1-\rho)} L(n,\mu,\theta) a_n \le 1.$$
 (27)

In view of equations (26) and (27), we have

$$\frac{n[1+\beta]}{2\beta(1-\rho)}L(n,\mu,\theta) \leq \frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)},$$

that is

$$\rho \le 1 - \frac{\gamma(1+\beta)(1-\alpha)}{(1+2\beta\gamma-\beta)},$$

which completes the proof of theorem.

Theorem 4.4. Let $f_0(z) = \frac{1}{z}$ and

$$f_n(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)} z^n, \ n \ge 1.$$
 (28)

Then f(z) is in the class $M_n(\alpha, \beta, \gamma, \mu, \theta)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z), \tag{29}$$

where $\mu_n \geq 0$ and $\sum_{n=0}^{\infty} \mu_n = 1$.

Proof. Assume that

$$f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2\beta\gamma(1-\alpha)}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)} \mu_n z^n.$$
 (30)

Then it follows that

$$\sum_{n=1}^{\infty} \frac{2\beta\gamma(1-\alpha)}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)} \mu_n \cdot \frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)}$$
$$= \sum_{n=1}^{\infty} \mu_n = 1 - \mu_0 \le 1,$$

which implies that $f(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$.

Conversely, assume that the function f(z) defined by (1.4) be in the class $M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then

$$a_n \le \frac{2\beta\gamma(1-\alpha)}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}.$$

Setting

$$\mu_n = \frac{n[1 + 2\beta\gamma - \beta]L(n, \mu, \theta)}{2\beta\gamma(1 - \alpha)}, \ n \ge 1$$

and

$$\mu_0 = 1 - \sum_{n=1}^{\infty} \mu_n,$$

we can see that f(z) can be expressed in the form (29).

This completes the proof of the theorem.

5. Integral Operators

Theorem 5.1. Let the function $f(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then the integral operator

$$F_c(z) = c \int_0^1 u^c f(uz) dz, \ (0 < u \le 1; c > 0)$$
 (31)

is in the class $\in M_n(\xi, \beta, \gamma, \mu, \theta)$, where

$$\xi = 1 - \frac{2\beta \gamma c (1 - \alpha)}{(1 + 2\beta \gamma - \beta)(c + 2)L(1, \mu, \theta)}.$$
 (32)

The result is sharp for the function f(z) given by (15).

Proof. Let $f(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then

$$F_c(z) = c \int_0^1 u^c f(u, z) dz = \frac{1}{z} + \sum_{n=1}^\infty \frac{c}{n + c + 1} a_n z^n.$$
 (33)

It is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{nc}{(n+c+1)(1-\xi)} a_n \le 1.$$
 (34)

Since $f(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$, then

$$\sum_{n=1}^{\infty} \frac{n(1+2\beta\gamma-\beta)L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)} a_n \le 1.$$
 (35)

From (34) and (35), we have

$$\frac{nc}{(n+c+1)(1-\xi)} \le \frac{n(1+2\beta\gamma-\beta)L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)}.$$

Then

$$\xi \le 1 - \frac{2\beta\gamma c(1-\alpha)}{n(1+2\beta\gamma-\beta)(n+c+1)L(n,\mu,\theta)}.$$

Since

$$H(n) = 1 - \frac{2\beta\gamma c(1-\alpha)}{n(1+2\beta\gamma-\beta)(n+c+1)L(n,\mu,\theta)}$$

is an increasing function of $n \ (n \ge 1)$, we obtain

$$\xi \le H(1) = 1 - \frac{2\beta \gamma c(1-\alpha)}{(1+2\beta \gamma - \beta)(c+2)L(1,\mu,\theta)}$$

and hence the proof of theorem 5.1 is completed

6. Radius of Convexity

Theorem 6.1. Let the function $f(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$. Then f(z) is meromorphically convex of order δ $(0 \le \delta < 1)$ in 0 < |z| < r, where

$$r \le \left\{ \frac{(1 + 2\beta\gamma - \beta)(1 - \delta)L(n, \mu, \theta)}{2\beta\gamma(n + 2 - \delta)(1 - \alpha)} \right\}^{1/n + 1}.$$
 (36)

The result is sharp.

Proof. We must show that

$$\left| 2 + \frac{zf''(z)}{f'(z)} \right| \le 1 - \delta \text{ for } 0 < |z| < r,$$
 (37)

where r is given by (36). Indeed, we find from (6.2) that

$$\left| 2 + \frac{zf''(z)}{f'(z)} \right| \le \sum_{n=1}^{\infty} \frac{n(n+1)a_n|z|^{n+1}}{1 - \sum_{n=1}^{\infty} na_n|z|^{n+1}}.$$

This will be bounded by $1 - \delta$, if

$$\sum_{n=1}^{\infty} \frac{n(n+2-\delta)}{1-\delta} a_n r^{n+1} \le 1.$$
 (38)

But by using Theorem 2.1, (38) will be true, if

$$\frac{n(n+2-\delta)}{1-\delta}r^{n+1} \le \frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)}.$$

Then

$$r \leq \left\{ \frac{(1+2\beta\gamma-\beta)(1-\delta)L(n,\mu,\theta)}{2\beta\gamma(n+2-\delta)(1-\alpha)} \right\}^{1/n+1}.$$

This completes the proof of theorem.

7. Modified Hadamard Product

For $f_j(z)$ (j=1,2) defined by (21), the modified Hadamard product of $f_1(z)$ and $f_2(z)$ defined by

$$(f_1 * f_2)(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_{n,1} a_{n,2} z^n = (f_2 * f_1)(z).$$
(39)

Theorem 7.1. Let $f_j(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$ (j = 1, 2). Then $(f_1 * f_2)(z) \in M_n(\phi, \beta, \gamma, \mu, \theta)$, where

$$\phi = 1 - \frac{2\beta\gamma(1-\alpha)^2}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)}.$$
 (40)

The result is sharp for the function $f_i(z)$ given by

$$f_j(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{(1+2\beta\gamma-\beta)(1-\mu)^2(\theta+1)(\theta+2)} z \ (j=1,2).$$
 (41)

Proof. Using the technique for Schild and Silverman [7], we need to find the largest ϕ such that

$$\sum_{n=1}^{\infty} \frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\phi)} a_{n,1} a_{n,2} \le 1.$$
 (42)

Since $f_j(z) \in M_n(\alpha, \beta, \gamma, \mu, \theta)$, (j = 1, 2), we readily see that

$$\sum_{n=1}^{\infty} \frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)} a_{n,1} \le 1$$
(43)

and

$$\sum_{n=1}^{\infty} \frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)} a_{n,2} \le 1.$$
(44)

By the Cauchy Schwarz inequality, we have

$$\sum_{n=1}^{\infty} \frac{n[1+2\beta\gamma - \beta]}{2\beta\gamma(1-\alpha)} \sqrt{a_{n,1}a_{n,2}} \le 1.$$
 (45)

Thus it is sufficient to show that

$$\frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\phi)}a_{n,1}a_{n,2} \leq \frac{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}{2\beta\gamma(1-\alpha)}\sqrt{a_{n,1}a_{n,2}} \qquad (46)$$

or equivalently

$$\sqrt{a_{n,1}a_{n,2}} \le \frac{1-\phi}{(1-\alpha)}. (47)$$

Connecting with (45), it is sufficient to prove that

$$\frac{2\beta\gamma(1-\alpha)}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)} \le \frac{(1-\phi)}{(1-\alpha)}.$$
 (48)

It follows from (48) that

$$\phi \leq 1 - \frac{2\beta\gamma(1-\alpha)^2}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}.$$

Now defining the function G(n) by

$$G(n) = 1 - \frac{2\beta\gamma(1-\alpha)^2}{n[1+2\beta\gamma-\beta]L(n,\mu,\theta)}.$$

We see that G(n) is an increasing function of $n(n \ge 1)$. Therefore, we conclude that

$$\phi \le G(1) = 1 - \frac{2\beta\gamma(1-\alpha)^2}{[1+2\beta\gamma-\beta](1-\mu)^2(\theta+1)(\theta+2)}$$

which evidently completes the proof of the theorem.

Acknowledgement

The author would like to thank the anonymous referees for their valuable suggestions which improved the presentation of the paper.

References

- W. G. Atshan and S.R. Kulkarni, Subclasse of meromorphic functions with positive coefficients defined by Ruscheweyh derivative, I.J.Rajasthan Acad. Phys. Sci., Vol. 6, No.2, 129-140, 2007.
- [2] N. E. Cho, On certain class of meromorphic functions with positive coefficients, J.Inst. Math. Comput. Sci., Vol. 3, No. 2, 119-125, 1990.
- [3] J. E. Miller, Convex meromorphic mapping and related functions, Proc. Am.Math. Soc., Vol. 25, 220-228, 1970.
- [4] M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Aust. Math. Soc., Vol. 32, 161-176, 1985.
- [5] Ch. Pommerenke, On meromorphic starlike functions., Pac. J. Math., Vol. 13, 221-235, 1963.
- [6] T. Rosy and S. Varma, Geometry, On a subclass of meromorphic functions defined by Hilbert space operator, Vol. 2013 Article ID 671826, 4 pages, 2013.
- [7] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficient, Ann. Univ. Marie Curie-Sklodowska Sect. A, Vol.29, 99-107, 1975.
- [8] P. Thirupathi Reddy and B. Venkateswarlu, A new subclass of meromorphic function with positive coefficients defined by rapid-operator, Int. J. Open Problems Compt. Math., Vol. 12 , No. 2, 15-28, 2019.
- [9] P. Thirupathi Reddy, B. Venkateswarlu and S. Sreelakshmi, A certain subclass of meromorphic with positive coefficients associated with rapid operator, Konuralp J. of Math., Vol. 7, No. 1, 38-45, 2019.
- [10] B. Venkateswarlu, P. Thirupathi Reddy and N. Rani, Certain subclass of meromorphically uniformly convex functions with positive Coefficients, Mathematica (Cluj), Vol. 61(84), No. 1, 85-97, 2019.

SANTOSH M. POPADE

Department of Mathematics, Sant Tukaram College of Arts & Science, Parbhani - 431 401, Maharastra, India.

E-mail address: smpopade2007@gmail.com

Rajkumar N. Ingle

Department of Mathematics, Bahirji Smarak Mahavidyalay, Bashmathnagar - 431 512, Dist., Hingoli, Maharastra, India.

E-mail address: ingleraju11@gmail.com

P.Thirupathi Reddy

DEPARTMENT OF MATHEMATICS, KAKATIYA UNIVERSITY, WARANGAL- 506 009, TELANGANA, INDIA

 $E ext{-}mail\ address: reddypt2@gmail.com}$