
Electronic Journal of Mathematical Analysis and Applications

Vol. 9(2) July 2021, pp. 106-129.

ISSN: 2090-729X(online)

http://math-frac.org/Journals/EJMAA/

————————————————————————————————

INTERVAL OSCILLATION CRITERIA FOR SECOND-ORDER

IMPULSIVE DELAY DIFFERENTIAL EQUATIONS WITH

MIXED NONLINEARITIES

V. MUTHULAKSHMI AND R. MANJURAM

Abstract. In this paper, we study the oscillatory behavior of second-order
forced impulsive delay differential equations with mixed nonlinearities. By

using Riccati transformation technique, integral averaging method and some
inequalities, we obtain sufficient conditions for oscillation of all solutions. Fi-
nally, two examples are presented to illustrate the theoretical results.

1. Introduction

In this paper, we investigate the oscillation of the following second-order impul-
sive delay differential equation with mixed nonlinearities:(
r(t)Φα(x

′(t))
)′
+ p(t)Φα(x(t− τ(t))) +

n∑
i=1

qi(t)Φβi(x(t− τ(t))) = e(t), t ≥ t0, t ̸= tk,

x(tk
+) = akx(tk), x′(tk

+) = bkx
′(tk), k = 1, 2, 3, ... .

(1)
Here,

x(t−k ) := lim
t→t−k

x(t), x(t+k ) := lim
t→t+k

x(t),

x′(t−k ) := lim
h→0−

x(tk + h)− x(tk)

h
, x′(t+k ) := lim

h→0+

x(tk + h)− x(tk)

h
,

where Φ∗(s) := |s|∗−1s, {tk} denotes the impulsive moment sequence with 0 ≤ t0 <
t1 < . . . < tk < . . . , limk→∞ tk = ∞.
Let J ⊂ R be an interval, we define

PLC(J,R) :=
{
h : J → R | h is continuous on each interval (tk, tk+1),

h(t±k ) exists and h(tk) = h(t−k ) for all k ∈ N
}
.

For given t0 and ϕ ∈ PLC(Et0 ,R), we say x ∈ PLC
(
Et0 ,R

)
is a solution of equation

(1) with the initial value ϕ if x(t) satisfies equation (1) for t ≥ t0 and x(t) = ϕ(t)
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for t ∈ Et0 , where Et0 = t0 ∪{t− τ(t) : t− τ(t) < t0, t ≥ t0}. As usual, a nontrivial
solution x(t) of equation (1.1) is called oscillatory if it has arbitrarily large zeros;
otherwise, it is termed nonoscillatory. Equation (1.1) is said to be oscillatory if all
its solutions are oscillatory.

Many evolution processes are characterized by the fact that at certain moments
of time they experience a change of state abruptly. These processes are subject
to short-term perturbations whose duration is negligible in comparison with the
duration of the process. Consequently, it is natural to assume that these perturba-
tions act instantaneously, that is, in the form of impulses. It is known that many
biological phenomena involving thresholds, bursting rhythm models in medicine
and biology, optimal control models in economics, population dynamics, pharma-
cokinetics, information science, electronics, automatic control systems, computer
networking, artificial intelligence, robotics, and telecommunications, do exhibit im-
pulsive effects. Thus impulsive differential equations, that is, differential equations
involving impulse effects, appear as a natural description of observed evolution phe-
nomena of several real world problems. Therefore, it is important and necessary
to study impulsive dynamical systems. For the general theory and applications of
impulsive differential equations, we refer the reader to [4, 5, 11, 18].

Concerning delay differential equations, they are in the form of differential equa-
tion in which the derivative of the unknown function at a certain time is given in
terms of the values of the function at earlier times. Their systems are widely used to
describe many scientific phenomena such as population dynamics, communication
network model, economical systems, propagation and transport [10, 13, 14].

It is well known that most of the differential equations cannot be solvable in
terms of elementary functions. Though there are various analytical methods for
solving nonlinear oscillation systems, qualitative properties of solutions, in partic-
ular, the oscillatory behavior of solutions, of such equations assume importance in
the absence of closed form solutions.

In the absence of impulses and delays, equation (1) reduces to(
r(t)|y′(t)|α−1y′(t)

)′
+p(t)|y(t)|α−1y(t)+

m∑
j=1

qj(t)|y(t)|βj−1y(t) = e(t), t ≥ t0, (2)

which can be considered as a generalization of the nonhomogeneous equation(
r(t)y′(t)

)′
+ f(t, y(t)) = e(t), t ≥ t0. (3)

The oscillation of equations (2) and (3) has been received great attention during
the last 50 years, see, for example, [2, 19, 23], and the references cited therein.

In recent years, a great deal of effort has been spent in getting sufficient condi-
tions for the oscillation of solutions of second order nonlinear impulsive delay differ-
ential equations. Recently, interval oscillation of impulsive delay differential equa-
tions was attracting the interest of many researchers, see [6, 7, 12, 15, 16, 20, 21, 22].
However, for the impulsive equations, almost all of interval oscillation results in the
existing literature were established only for the case of “constant delay ”. Recently,
Zhou and Wang [24] considered the second order nonlinear impulsive differential
equations with variable delay of the form

x′′(t) + p(t)f(x(t− τ(t))) = f(t), t ≥ t0, t ̸= θk,

x(t+) = akx(t), x′(t+) = bkx
′(t), t = tk, k = 1, 2, ...,



108 V. MUTHULAKSHMI AND R. MANJURAM EJMAA-2020/8(2)

and obtained some interval oscillation criteria. To the best of our knowledge, this
is the first research work in this area.

Our purpose here is to obtain some interval oscillation criteria for equation (1).
The results of this study generalize and improve some known results in [7, 12, 15, 20].
Examples are given to illustrate the effectiveness of our main results.

2. Main results

Throughout this paper, assume that the following conditions hold without fur-
ther mention:

(A1) r(t) ∈ C([t0,∞), (0,∞)) is non-decreasing, p(t), qi(t), e(t) ∈ PLC([t0,∞),R),
i = 1, 2 . . . , n;

(A2) β1 > · · · > βm > α > βm+1 > · · · > βn > 0 are constants;
(A3) α is a quotient of odd positive integers, bk ≥ ak > 0, k ∈ N are constants;
(A4) τ(t) ∈ C([t0,∞)) and there exists a non-negative constant τ such that

0 ≤ τ(t) ≤ τ for all t ≥ t0 and tk+1 − tk > τ for all k = 1, 2, . . . .

Let k(s) := max{i : t0 < ti < s}, for cj < dj , let Mj := max{r(t) : t ∈ [cj , dj ]}
and Ωj := {ω ∈ C1[cj , dj ] : ω(t) ̸≡ 0, ω(cj) = ω(dj) = 0}, j = 1, 2. For two
constants c, d /∈ {tk} with c < d and a function ϕ ∈ C([c, d],R), we define an
operator Ψ : C([c, d],R) → R by

Ψd
c [ϕ] =


0, for k(c) = k(d),

ϕ(tk(c)+1)θ(c) +
k(d)∑

i=k(c)+2

ϕ(ti)ε(ti), for k(c) < k(d),

where

θ(c) =
bαk(c)+1 − aαk(c)+1

(aαk(c)+1(tk(c)+1 − c)α)
, ε(ti) =

bαi − aαi
(aαi (ti − ti−1)α)

,

and
t∑
s
= 0 if s > t.

In the discussion of the impulse moments of x(t) and x(t − τ(t)), we need to
consider the following four cases for k(cj) < k(dj),

(s1) tk(cj) + τ < cj and tk(dj) + τ > dj ; (s2) tk(cj) + τ < cj and tk(dj) + τ < dj ;

(s3) tk(cj) + τ > cj and tk(dj) + τ > dj ; (s4) tk(cj) + τ > cj and tk(dj) + τ < dj ,

and the three cases for k(cj) = k(dj),

(s̃1) tk(cj) + τ < cj ; (s̃2) cj < tk(cj) + τ < dj ; (s̃3) tk(cj) + τ > dj , j = 1, 2.

Combining (s∗) with (s̃∗), we can get 12 cases. Throughout the paper, we study
equation (1) under the case of combination of (s1) with (s̃1) only. The discussions
for other cases are similar and so omitted. We define a function

Dk(t) = t− tk − τ(t), t ∈ [tk, tk+1], k = 1, 2, . . . ,

as in [24], and assume that the following condition holds throughout.

(A5) There is one zero point zk ∈ (tk, tk+1] such that Dk(zk) = 0, Dk(t) < 0 for
t ∈ (tk, zk) and Dk(t) > 0 for t ∈ (zk, tk+1].

First, let us see some lemmas which will be useful to prove our main results.
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Lemma 1. [1] For any given n-tuple {β1, β2, . . . , βn} satisfying β1 > · · · > βm >
α > βm+1 > · · · > βn > 0, there corresponds an n-tuple (η1, η2, . . . , ηn) such that

n∑
i=1

βiηi = α,
n∑

i=1

ηi < 1, 0 < ηi < 1. (4)

Lemma 2. [1] Let γ and δ be positive real numbers with γ > δ. Then

(i) Axγ +B ≥ γδ−δ/γ(γ − δ)(δ/γ)−1Aδ/γB1−δ/γxδ for all A,B, x ≥ 0, (5)

(ii) Cxδ −D ≤ δ−γ/δδ(γ − δ)(γ/δ)−1Cγ/δD1−γ/δxγ for all C, x ≥ 0 and D > 0.(6)

Lemma 3. [8] If X and Y are non-negative real numbers, then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ, λ > 1, (7)

where equality holds if and only if X = Y .

Lemma 4. Assume that for any T ≥ t0, there exist cj , dj /∈ {tk}, j = 1, 2, such
that T < c1 − τ < c1 < d1 ≤ c2 − τ < c2 < d2 and

p(t), qi(t) ≥ 0, t ∈ [c1 − τ, d1] ∪ [c2 − τ, d2]\{tk}, i = 1, 2, 3, ..., n,

e(t) ≤ 0, t ∈ [c1 − τ, d1]\{tk},
e(t) ≥ 0, t ∈ [c2 − τ, d2]\{tk}.

(8)

If x(t) is a non-oscillatory solution of equation (1), then there exist the following

estimations for x(t−τ(t))
x(t) :

(a)
x(t− τ(t))

x(t)
>

(
t− ti − τ(t)

t− ti

)
for t ∈ (zi, ti+1],

(b)
x(t− τ(t))

x(t)
>

(
t− ti

bi(t+ τ(t)− ti)

)
for t ∈ (ti, zi),

(c)
x(t− τ(t))

x(t)
>

(
t− tk(cj) − τ(t)

t− tk(cj)

)
for t ∈ [cj , tk(cj)+1],

(d)
x(t− τ(t))

x(t)
>

(
t− tk(dj) − τ(t)

t− tk(dj)

)
for t ∈ [zk(dj), dj ],

(e)
x(t− τ(t))

x(t)
>

(
t− tk(dj)

bk(dj)(t+ τ(t)− tk(dj)

)
for t ∈ (tk(dj), zk(dj)],

where zi ∈ (ti, ti+1] for i = k(cj) + 1, ..., k(dj)− 1, j = 1, 2.

Proof. Without loss of generality, we assume that x(t) > 0 and x(t− τ(t)) > 0 for
t ≥ t0. In this case, the selected interval of t is [c1, d1]. From equations (1) and (8),
we obtain[
r(t)Φα(x

′(t))
]′
= e(t)− p(t)Φα(x(t− τ(t)))−

n∑
i=1

qi(t)Φβi(x(t− τ(t))) ≤ 0. (9)

Hence r(t)Φα(x
′(t)) is non-increasing on the interval [c1, d1]\{tk}.

Case(a): If zi < t ≤ ti+1, then (t − τ(t), t) ⊂ (ti, ti+1], and hence there is no
impulsive moment in (t− τ(t), t). By mean value theorem, for any s ∈ (t− τ(t), t),
we have

x(s)− x(t+i ) = x′(ξ1)(s− ti) for some ξ1 ∈ (ti, s).
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Since x(t+i ) > 0, we have

x(s) > x′(ξ1)(s− ti), ξ1 ∈ (ti, s).

Since Φα(∗) is a strictly increasing function and since r(s)Φα(x
′(s)) is non-increasing

on (ti, ti+1), we have

Φα(x(s)) > Φα(x
′(ξ1)(s−ti)) =

r(ξ1)Φα(x
′(ξ1))(s− ti)

α

r(ξ1)
≥ r(s)Φα(x

′(s))

r(ξ1)
(s−ti)α.

Further, since r(s) is positive and non-decreasing as mentioned in (A1), the above
inequality becomes

Φα(x(s)) > Φα(x
′(s)(s− ti)) for some ξ1 ∈ (ti, s).

Then, by the definition of Φα(∗), we have

x′(s)

x(s)
<

1

(s− ti)
.

Integrating both sides from t− τ(t) to t, we obtain

x(t− τ(t))

x(t)
>

(
t− ti − τ(t)

t− ti

)
, t ∈ (zi, ti+1]. (10)

Case(b): If ti < t < zi, then t − τ(t) ∈ (ti − τ(t), ti). ie, ti − τ < t − τ(t) < ti <
t < ti+ τ . Then there is an impulsive moment ti in (t− τ(t), t). For any t ∈ (ti, zi),
we have

x(t)− x(t+i ) = x′(ξ2)(t− ti) for some ξ2 ∈ (ti, t).

Using the impulsive condition of equation (1), we get

x(t)− aix(ti) = x′(ξ2)(t− ti), ξ2 ∈ (ti, t).

Then by using the monotone property of r(t)Φα(x
′(t)), we get

Φα(x(t)− aix(ti)) ≤
r(t+i )Φα(x

′(t+i ))

r(ξ2)
(t− ti)

α.

Again, by using the impulsive condition of equation (1) and the monotone property
of r(t), the above inequality becomes

Φα(x(t)− aix(ti)) ≤ Φα(bix
′(ti)(t− ti)).

Since x(ti) > 0, we have

Φα

(
x(t)

x(ti)
− ai

)
≤ Φα

(
bi
x′(ti)

x(ti)
(t− ti)

)
. (11)

In addition, by mean value theorem on [ti − τ(t), ti], we have

x(ti)− x(ti − τ(t)) = x′(ξ3)τ(t) for some ξ3 ∈ (ti − τ(t), ti).

Then as in Case (a), by using the monotone properties of r(t), Φα(t) and r(t)Φα(x
′(t)),

we get
x′(ti)

x(ti)
<

1

τ(t)
. (12)

Thus, from (11) and (12), we have

Φα

(
x(t)

x(ti)
− ai

)
< Φα

(
bi(t− ti)

τ(t)

)
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and hence

Φα

(
x(t)

x(ti)

)
< Φα

(
bi(t− ti)

τ(t)
+ ai

)
.

Therefore, by (A3), we get

x(t)

x(ti)
<
bi(t− ti + τ(t))

τ(t)
. (13)

Now, for some s ∈ (ti − τ(t), ti), we have

x(s)− x(ti − τ(t)) = x′(ξ4)(s− ti + τ(t)) for some ξ4 ∈ (ti − τ(t), s).

Again, by using the monotone properties of r(t), Φα(∗) and r(t)Φα(x
′(t)) as in

Case(a), we get
x′(s)

x(s)
<

1

(s− ti + τ(t))
.

Integrating both sides from t− τ(t) to ti, we have

x(t− τ(t))

x(ti)
>
t− ti
τ(t)

for t ∈ (ti, zi). (14)

Thus, from (13) and (14), we have

x(t− τ(t))

x(t)
>

(
t− ti

bi(t− ti + τ(t))

)
for t ∈ (ti, zi). (15)

For other cases, the proof is similar and hence omitted. This concludes the lemma.
�

Theorem 1. Assume that for any T ≥ t0, there exist cj , dj /∈ {tk} , j = 1, 2, such
that T < c1 − τ < c1 < d1 ≤ c2 − τ < c2 < d2 and (8) holds. If there exist
ωj(t) ∈ Ωj(cj , dj), j = 1, 2, such that, for k(cj) < k(dj),{∫ tk(cj)+1

cj

Wj(t)

(
t− tk(cj) − τ(t)

t− tk(cj)

)α

dt

+

k(dj)−1∑
i=k(cj)+1

[∫ zi

ti

Wj(t)

(
t− ti

bi(t− ti + τ(t))

)α

dt+

∫ ti+1

zi

Wj(t)

(
t− ti − τ(t)

t− ti

)α

dt

]

+

∫ zk(dj)

tk(dj)

Wj(t)

(
t− tk(dj)

bk(dj)(t− tk(dj) + τ(t)

)α

dt+

∫ dj

zk(dj)

Wj(t)

(
t− tk(dj) − τ(t)

t− tk(dj)

)α

dt

−
∫ dj

cj

(r(t)
∣∣ω′

j(t)
∣∣α+1

)dt

}
> MjΨ

dj
cj [ω

α+1
j ], (16)

and for k(cj) = k(dj),∫ dj

cj

(
Wj(t)

(
t− cj

t− cj + τ(t)

)α

− r(t)
∣∣ω′

j(t)
∣∣α+1

)
dt > 0, (17)

where Wj(t) = Q(t)ωα+1
j (t) and

Q(t) =

(
p(t) + η−η0

0

n∏
i=1

η−ηi

i qηi

i (t)|e(t)|η0

)
, (18)

and ηi > 0 are chosen according to given β1, β2, . . . , βn as in Lemma 1 satisfying
(4). Then equation (1) is oscillatory.
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Proof. To arrive at a contradiction, let us suppose that x(t) is a non-oscillatory
solution of equation (1). Without loss of generality, we assume that x(t) > 0 and
x(t − τ(t)) > 0 for t ≥ t0. In this case, the interval of t selected for the following
discussion is [c1, d1]. We define

u(t) = r(t)
Φα(x

′(t))

xα(t)
for t ∈ [c1, d1]. (19)

Then

u′(t) = −

p(t)xα(t− τ(t))

xα(t)
+

n∑
i=1

qi(t)Φβi(x(t− τ(t)))

xα(t)
+

|e(t)|
xα(t)

− αu(t)
x′(t)

x(t)
,

(20)

for all t ̸= tk, t ≥ t0, and u(t
+
k ) =

bk
ak
u(tk) for all k ∈ N.

From our assumption, we can choose c1, d1 ≥ t0 such that p(t) ≥ 0 and qi(t) ≥ 0
for t ∈ [c1 − τ, d1], i = 1, 2, . . . , n, and e(t) ≤ 0 for t ∈ [c1 − τ, d1]. Also, by Lemma

1, there exist ηi > 0, i = 1, . . . , n, such that
n∑

i=1

βiηi = α and
n∑

i=1

ηi < 1.

Now, define η0 := 1−
n∑

i=1

ηi and let

u0 := η−1
0

∣∣∣e(t)x(t− τ(t))

xα(t)

∣∣∣x−1(t− τ(t)),

ui := η−1
i qi(t)

x(t− τ(t))

xα(t)
xβi−1(t− τ(t)) for i = 1, 2, . . . , n .

Then, by the arithmetic-geometric mean inequality (see Beckenbach and Bellman
[3])

n∑
i=0

ηiui ≥
n∏

i=0

uηi

i , ui ≥ 0,

we have

|e(t)|
xα(t)

+

n∑
i=1

qi(t)Φβi(x(t− τ(t)))

xα(t)
≥ η−η0

0

|e(t)|η0

xαη0(t)

n∏
i=1

(
η−ηi

i qηi

i (t)
xβiηi(t− τ(t))

xαηi(t)

)
.

(21)
Using (21) in (20), we get

u′(t) ≤ −p(t)x
α(t− τ(t))

xα(t)
− η−η0

0

|e(t)|η0

xαη0(t)

n∏
i=1

(
η−ηi

i qηi

i (t)
xβiηi(t− τ(t))

xαηi(t)

)
−αu(t)x

′(t)

x(t)
, t ̸= tk. (22)
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Since

1

xαη0(t)

n∏
i=1

(
xβiηi(t− τ(t))

xαηi(t)

)
=

1

xαη0(t)

x
n∑

i=1
βiηi

(t− τ(t))

x
α

n∑
i=1

ηi

(t)


=

1

xαη0(t)

(
xα(t− τ(t))

xα(1−η0)(t)

)
=
xα(t− τ(t))

xα(t)
,

equation (22) becomes

u′(t) ≤ −p(t)x
α(t− τ(t))

xα(t)
− η−η0

0 |e(t)|η0

n∏
i=1

η−ηi

i qηi

i (t)

(
xα(t− τ(t))

xα(t)

)
−αu(t)x

′(t)

x(t)
, t ̸= tk. (23)

Now, from (19), we have

αu(t)
x′(t)

x(t)
= αu(t)

x′(t)

x(t)

(
r(t)Φα(x

′(t))

r(t)Φα(x′(t))

)1/α

=
α

r1/α(t)
u(t)

(
r(t)Φα(x

′(t))

xα(t)

)1/α
(

x′(t)

(r(t)Φα(x′(t)))
1/α

)
=

α

r1/α(t)
u(t)

α+1
α .

Hence, (23) becomes

u′(t) ≤ −

[
p(t) + η−η0

0

n∏
i=1

η−ηi

i qηi

i (t)|e(t)|η0

](
xα(t− τ(t))

xα(t)

)
− α

r1/α(t)
u(t)

α+1
α

= −Q(t)

(
x(t− τ(t))

x(t)

)α

− α

r1/α(t)
u(t)

α+1
α , t ̸= tk, (24)

where Q(t) is as in (18).

To estimate x(t−τ(t))
x(t) , we first consider the case k(c1) < k(d1). In this case, the

impulsive moments in [c1, d1] are tk(c1)+1, tk(c1)+2, . . . , tk(d1), and the zero points
of Di(t) in intervals (ti, ti+1) are zi, i = k(c1) + 1, . . . , k(d1)− 1. Multiplying both
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sides of (24) by ωα+1
1 (t) and integrating it from c1 to d1, we get∫ tk(c1)+1

c1

u′(t)ωα+1
1 (t)dt+

∫ tk(c1)+2

tk(c1)+1

u′(t)ωα+1
1 (t)dt+ · · ·+

∫ d1

tk(d1)

u′(t)ωα+1
1 (t)dt

≤

{
−
∫ tk(c1)+1

c1

α

r1/α(t)
u(t)

α+1
α ωα+1

1 (t)dt−
∫ tk(c1)+2

tk(c1)+1

α

r1/α(t)
u(t)

α+1
α ωα+1

1 (t)dt

− · · · −
∫ d1

tk(d1)

α

r1/α(t)
u(t)

α+1
α ωα+1

1 (t)dt−
∫ tk(c1)+1

c1

(
x(t− τ(t))

x(t)

)α

W1(t)dt

−
k(d1)−1∑

i=k(c1)+1

[∫ zi

ti

(
x(t− τ(t))

x(t)

)α

W1(t)dt+

∫ ti+1

zi

(
x(t− τ(t))

x(t)

)α

W1(t)dt

]

−
∫ zk(d1)

tk(d1)

(
x(t− τ(t))

x(t)

)α

W1(t)dt−
∫ d1

zk(d1)

(
x(t− τ(t))

x(t)

)α

W1(t)dt

}
. (25)

Using integration by parts, we have

k(d1)∑
i=k(c1)+1

ωα+1
1 (ti)[u(ti)− u(t+i )]

≤

{∫ d1

c1

[
(α+ 1) |ωα

1 (t)ω
′
1(t)| |u(t)| −

α

r1/α(t)
|u(t)|(α+1)/α

ωα+1
1 (t)

]
dt

−
∫ tk(c1)+1

c1

(
x(t− τ(t))

x(t)

)α

W1(t)dt

−
k(d1)−1∑

i=k(c1)+1

[∫ zi

ti

(
x(t− τ(t))

x(t)

)α

W1(t)dt+

∫ ti+1

zi

(
x(t− τ(t))

x(t)

)α

W1(t)dt

]

−
∫ zk(d1)

tk(d1)

(
x(t− τ(t))

x(t)

)α

W1(t)dt−
∫ d1

zk(d1)

(
x(t− τ(t))

x(t)

)α

W1(t)dt

}
. (26)

Letting

λ = 1 +
1

α
, X =

(
α

r1/α(t)

)α/α+1

|ωα
1 (t)| |u(t)| and Y = [αr(t)]α/α+1 |ω′

1(t)|
α
,

and using Lemma 3, we get

(α+ 1) |ωα
1 (t)ω

′
1(t)| |u(t)| −

α

r1/α(t)
|u(t)|(α+1)/α

ωα+1
1 (t) ≤ r(t) |ω′

1(t)|
α+1

. (27)

Meanwhile, for t = tk, k = 1, 2, . . . ,

u(t+k ) =

(
bk
ak

)α

u(tk). (28)

Then the left hand side of the inequality (26) becomes

k(d1)∑
i=k(c1)+1

ωα+1
1 (ti)[u(ti)− u(t+i )] =

k(d1)∑
i=k(c1)+1

aαi − bαi
aαi

ωα+1
1 (ti)u(ti). (29)
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Substituting (27) and (29) in (26), we get

k(d1)∑
i=k(c1)+1

aαi − bαi
aαi

ωα+1
1 (ti)u(ti)

≤

{∫ d1

c1

r(t) |ω′
1(t)|

α+1
dt−

∫ tk(c1)+1

c1

(
x(t− τ(t))

x(t)

)α

W1(t)dt

−
k(d1)−1∑

i=k(c1)+1

[∫ zi

ti

(
x(t− τ(t))

x(t)

)α

W1(t)dt+

∫ ti+1

zi

(
x(t− τ(t))

x(t)

)α

W1(t)dt

]

−
∫ zk(d1)

tk(d1)

(
x(t− τ(t))

x(t)

)α

W1(t)dt−
∫ d1

zk(d1)

(
x(t− τ(t))

x(t)

)α

W1(t)dt

}
. (30)

On the other hand, for t ∈ (ti−1, ti] ⊂ [c1, d1], i = k(c1) + 2, . . . , k(d1), we have

x(t)− x(ti−1) = x′(ξ)(t− ti−1), ξ ∈ (ti−1, t).

In view of x(ti−1) > 0 and the monotone properties of Φα(t), r(t)Φα(x
′(t)) and r(t)

we obtain

r(t)Φα(x
′(t))

Φα(x(t))
≤ r(ξ)

(t− ti−1)α
.

Letting t→ t−i , we get

u(ti) =
r(ti)Φα(x

′(ti))

Φα(x(ti))
≤ M1

(ti − ti−1)α
, i = k(c1) + 2, . . . , k(d1). (31)

Making a similar analysis on (c1, tk(c1)+1], we get

u(tk(c1)+1) =
r(tk(c1)+1)Φα(x

′(tk(c1)+1))

Φα(x(tk(c1)+1))
≤ M1

(tk(c1)+1 − c1)α
. (32)

Thus from (31), (32) and (A3), we obtain

k(d1)∑
i=k(c1)+1

bαi − aαi
aαi

ωα+1
1 (ti)u(ti)

≤M1

ωα+1
1 (tk(c1)+1)θ(c1) +

k(d1)∑
i=k(c1)+2

ωα+1
1 (ti)ε(ti)

 =M1Ψ
d1
c1

[
ωα+1
1

]
. (33)
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Hence, from (30), (33) and Lemma 4, we obtain{∫ tk(c1)+1

c1

W1(t)

(
t− tk(c1) − τ(t)

t− tk(c1)

)α

dt

+

k(d1)−1∑
i=k(c1)+1

[∫ zi

ti

W1(t)

(
t− ti

bi(t− ti + τ(t))

)α

dt+

∫ ti+1

zi

W1(t)

(
t− ti − τ(t)

t− ti

)α

dt

]

+

∫ zk(d1)

tk(d1)

W1(t)

(
t− tk(d1)

bk(d1)(t− tk(d1) + τ(t)

)α

dt

+

∫ d1

zk(d1)

W1(t)

(
t− tk(d1) − τ(t)

t− tk(d1)

)α

dt−
∫ d1

c1

r(t) |ω′
1(t)|

α+1
dt

}
≤M1Ψ

d1
c1 [ω

α+1
1 ].

(34)

This contradicts (16).
If k(c1) = k(d1), then there are no impulse moments in [c1, d1]. Multiplying both

sides of (24) by ωα+1
1 (t) and integrating it from c1 to d1, we obtain∫ d1

c1

u′(t)ωα+1
1 (t)dt ≤ −

∫ d1

c1

α

r1/α(t)
|u(t)|(α+1)/α

ωα+1
1 (t)dt

−
∫ d1

c1

(
x(t− τ(t))

x(t)

)α

W1(t)dt.

Using integration by parts on the left hand side and noting the condition ω1(c1) =
ω1(d1) = 0, we obtain∫ d1

c1

[
(α+ 1)ωα

1 (t)ω
′
1(t)u(t)−

α

r1/α(t)
|u(t)|(α+1)/α

ωα+1
1 (t)

]
dt

−
∫ d1

c1

(
x(t− τ(t))

x(t)

)α

W1(t)dt ≥ 0.

It follows that∫ d1

c1

[
(α+ 1) |ωα

1 (t)ω
′
1(t)| |u(t)| −

α

r1/α(t)
ωα+1
1 (t) |u(t)|(α+1)/α

]
dt

−
∫ d1

c1

(
x(t− τ(t))

x(t)

)α

W1(t)dt ≥ 0. (35)

Letting

λ = 1 +
1

α
, X =

(
α

r1/α(t)

)α/α+1

|ωα
1 (t)| |u(t)| and Y = [αr(t)]α/α+1 |ω′

1(t)|
α
,

and using Lemma 3, we get

(α+ 1) |ωα
1 (t)ω

′
1(t)| |u(t)| −

α

r1/α(t)
|u(t)|(α+1)/α

ωα+1
1 (t) ≤ r(t) |ω′

1(t)|
α+1

. (36)

Thus from (35) and (36), we have∫ d1

c1

[
r(t) |ω′

1(t)|
α+1 −

(
x(t− τ(t))

x(t)

)α

W1(t)

]
dt ≥ 0. (37)
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Now let us estimate x(t−τ(t))
x(t) on [c1, d1]. If t ∈ [c1, d1] then t−τ(t) ∈ [c1−τ(t), d1−

τ(t)], and then there are no impulsive moment in (t−τ(t), t). For any t ∈ (t−τ(t), t),
we have

x(t)− x(c1 − τ(t)) = x′(ξ)(t− c1 + τ(t)) for some ξ ∈ (c1 − τ(t), t).

By using the monotone properties of r(t),Φα(∗) and r(t)Φα(x
′(t)), we get

Φα(x(t)) ≥
r(t)Φα(x

′(t))

r(t)
(t− c1 + τ(t))α = Φα(x

′(t)(t− c1 + τ(t))).

Then, by the definition of Φα(∗), we have

x′(t)

x(t)
<

1

(t− c1 + τ(t))
.

Integrating both sides of the above inequality from t− τ(t) to t, we obtain

x(t− τ(t))

x(t)
>

(
t− c1

t− c1 + τ(t)

)
for t ∈ [c1, d1]. (38)

From (37) and (38), we obtain∫ d1

c1

[
W1(t)

(
t− c1

t− c1 + τ(t)

)α

− r(t) |ω′
1(t)|

α+1
]
dt ≤ 0.

This again contradicts our assumption.
When x(t) is eventually negative, we can consider the interval [c2, d2], and reach

a similar contradiction. Thus the proof is complete. �

Following Kong [9] and Philos [17], we consider the following class of functions:
Let D = {(t, s) : t0 ≤ s ≤ t}, H1,H2 ∈ C1(D,R). A pair of functions (H1, H2)
is said to belong to a function class H, if H1(t, t) = H2(t, t) = 0, H1(t, s) > 0,
H2(t, s) > 0 for t > s and there exist h1, h2 ∈ Lloc(D,R) such that

∂H1(t, s)

∂t
= h1(t, s)H1(t, s),

∂H2(t, s)

∂s
= −h2(t, s)H2(t, s).

We assume that there exist cj , dj , δj /∈ {tk}, k = 1, 2, . . . , (j = 1, 2) such that
T < c1 − τ < c1 < δ1 < d1 ≤ c2 − τ < c2 < δ2 < d2 for any T ≥ t0. Notice that
whether there are or not impulse moments of x(t) in [cj , δj ] and [δj , dj ], we should
consider the following four cases,

(S1) k(cj) < k(δj) < k(dj); (S2) k(cj) = k(δj) < k(dj);

(S3) k(cj) < k(δj) = k(dj); (S4) k(cj) = k(δj) = k(dj), j = 1, 2.

Moreover in the discussion of impulse moments of x(t − τ(t)), it is necessary to
consider the following two cases,

¯(S1) tk(δj) + τ > δj ; ¯(S2) tk(δj) + τ ≤ δj , j = 1, 2.

In the following theorem, we only consider the case of combination of (S1) with
¯(S1). For the other cases, similar conclusions can be given, and hence their proofs
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are omitted.
For convenience, we define

Π1,j =:
1

H1(δj , cj)

{∫ tk(cj)+1

cj

H̃1(t, cj)

(
t− tk(cj) − τ(t)

t− tk(cj)

)α

dt

+

k(δ1)−1∑
i=k(cj)+1

[ ∫ zi

ti

H̃1(t, cj)

(
t− ti

bi(t− ti + τ(t))

)α

dt

+

∫ ti+1

zi

H̃1(t, cj)

(
t− ti − τ(t)

t− ti

)α

dt

]
+

∫ zk(δj)

tk(δj)

H̃1(t, cj)

(
t− tk(δj)

bk(δj)(t− tk(δj) + τ(t))

)α

dt

+

∫ δj

zk(δj)

H̃1(t, cj)

(
t− tk(δj) − τ(t)

(t− tk(δj))

)α

dt

− 1

(α+ 1)α+1

∫ δj

cj

r(t)H1(t, cj) |h1(t, cj)|α+1
dt

}
, (39)

and

Π2,j =:
1

H2(dj , δj)

{∫ tk(δj)+1

δj

H̃2(dj , t)

(
t− tk(δj) − τ(t)

t− tk(δj)

)α

dt

+

k(dj)−1∑
i=k(δj)+1

[ ∫ zi

ti

H̃2(dj , t)

(
t− ti

bi(t− ti + τ(t))

)α

dt

+

∫ ti+1

zi

H̃2(dj , t)

(
t− ti − τ(t)

t− ti

)α

dt

]
+

∫ zk(dj)

tk(dj)

H̃2(dj , t)

(
t− tk(dj)

bk(dj)(t− tk(dj) + τ(t))

)α

dt

+

∫ dj

zk(dj)

H̃2(dj , t)

(
t− tk(dj) − τ(t)

(t− tk(dj))

)α

dt

− 1

(α+ 1)α+1

∫ dj

δj

r(t)H2(dj , t) |h2(dj , t)|α+1
dt

}
, (40)

where H̃1(t, cj) = H1(t, cj)Q(t), H̃2(dj , t) = H2(dj , t)Q(t), (j = 1, 2) and Q(t) is
defined as in (18).

Theorem 2. Assume that for any T ≥ t0, there exist cj , dj , δj /∈ {tk}, j = 1, 2,
such that T < c1 − τ < c1 < δ1 < d1 ≤ c2 − τ < c2 < δ2 < d2 and (8) holds. If
there exists (H1,H2) ∈ H such that

Π1,j +Π2,j >
Mj

H1(δj , cj)
Ψδj

cj [H1(., cj)] +
Mj

H2(dj , δj)
Ψ

dj

δj
[H2(dj , .)], j = 1, 2, (41)

then equation (1) is oscillatory.

Proof. To arrive at a contradiction, let us suppose that x(t) is a non-oscillatory
solution of equation (1). Without loss of generality, we assume that x(t) > 0 and
x(t − τ(t)) > 0 for t ≥ t0. In this case, the interval of t selected for the following
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discussion is [c1, d1]. Continuing as in the proof of Theorem 1, we can get (24).
Multiplying both sides of (24) by H1(t, c1) and integrating it from c1 to δ1, we have∫ δ1

c1

H1(t, c1)u
′(t)dt ≤ −

∫ δ1

c1

H1(t, c1)
α

r1/α(t)
|u(t)|(α+1)/α

dt

−
∫ δ1

c1

H̃1(t, c1)

(
x(t− τ(t))

x(t)

)α

dt. (42)

Noticing the impulsive moments tk(c1)+1, tk(c1)+2, . . . , tk(δ1) in [c1, δ1] and using
integration by parts on the left-hand side of the above inequality, we obtain∫ δ1

c1

H1(t, c1)u
′(t)dt =

k(δ1)∑
i=k(c1)+1

[u(ti)− u(t+i )]H1(ti, c1) + u(δ1)H(δ1, c1)

−

(∫ tk(c1)+1

c1

+

∫ tk(c1)+2

tk(c1)+1

+...+

∫ δ1

tk(δ1)

)
u(t)h1(t, c1)H1(t, c1)dt. (43)

From (28) and (43), we have∫ δ1

c1

H1(t, c1)u
′(t)dt =

k(δ1)∑
i=k(c1)+1

(
aαi − bαi
aαi

)
H1(ti, c1)u(ti) +H1(δ1, c1)u(δ1)

−
∫ δ1

c1

u(t)h1(t, c1)H1(t, c1)dt. (44)

Substituting (44) in (42), we have∫ δ1

c1

H̃1(t, c1)

(
x(t− τ(t))

x(t)

)α

dt

≤
k(δ1)∑

i=k(c1)+1

(
bαi − aαi
aαi

)
H1(ti, c1)u(ti)−H1(δ1, c1)u(δ1)

+

∫ δ1

c1

H1(t, c1)

[
|h1(t, c1)| |u(t)| −

α

r1/α(t)
|u(t)|(1+α)/α

]
dt. (45)

Letting

λ = 1 +
1

α
, X =

αα/α+1 |u(t)|
[r(t)]1/α+1

and Y =
[
α(α+ 1)−(α+1)r(t)

]α/α+1

|h1(t, c1)|α ,

and using by Lemma 3, (45) becomes∫ δ1

c1

H̃1(t, c1)

(
x(t− τ(t))

x(t)

)α

dt

≤
k(δ1)∑

i=k(c1)+1

(
bαi − aαi
aαi

)
H1(ti, c1)u(ti)−H1(δ1, c1)u(δ1)

+
1

(α+ 1)α+1

∫ δ1

c1

r(t)H1(t, c1) |h1(t, c1)|α+1
dt. (46)

Similar to the proof of Theorem 1, we need to divide the interval [c1, δ1] into several

sub intervals for estimating the function x(t−τ(t))
x(t) . Using Lemma 4, we get the
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estimation for the left hand side of the above inequality as follows:

∫ δ1

c1

H̃1(t, c1)

(
x(t− τ(t))

x(t)

)α

dt

>

{∫ tk(c1)+1

c1

H̃1(t, c1)

(
t− tk(c1) − τ(t)

t− tk(c1)

)α

dt

+

k(δ1)−1∑
i=k(c1)+1

[ ∫ zi

ti

H̃1(t, c1)

(
t− ti

bi(t− ti + τ(t))

)α

dt

+

∫ ti+1

zi

H̃1(t, c1)

(
t− ti − τ(t)

t− ti

)α

dt

]
+

∫ zk(δ1)

tk(δ1)

H̃1(t, c1)

(
t− tk(δ1)

bk(δ1)(t− tk(δ1) + τ(t))

)α

dt

+

∫ δ1

zk(δ1)

H̃1(t, c1)

(
t− tk(δ1) − τ(t)

(t− tk(δ1))

)α

dt

}
. (47)

Comparing (46) and (47), we have

{∫ tk(c1)+1

c1

H̃1(t, c1)

(
t− tk(c1) − τ(t)

t− tk(c1)

)α

dt

+

k(δ1)−1∑
i=k(c1)+1

[ ∫ zi

ti

H̃1(t, c1)

(
t− ti

bi(t− ti + τ(t))

)α

dt

+

∫ ti+1

zi

H̃1(t, c1)

(
t− ti − τ(t)

t− ti

)α

dt

]
+

∫ zk(δ1)

tk(δ1)

H̃1(t, c1)

(
t− tk(δ1)

bk(δ1)(t− tk(δ1) + τ(t))

)α

dt

+

∫ δ1

zk(δ1)

H̃1(t, c1)

(
t− tk(δ1) − τ(t)

(t− tk(δ1))

)α

dt

− 1

(α+ 1)α+1

∫ δ1

c1

r(t)H1(t, c1) |h1(t, c1)|α+1
dt

}

<

k(δ1)∑
i=k(c1)+1

(
bαi − aαi
aαi

)
H1(ti, c1)u(ti)−H1(δ1, c1)u(δ1). (48)

Multiplying both sides of (24) by H2(d1, t), and using similar analysis as above,
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we can obtain {∫ tk(δ1)+1

δ1

H̃2(d1, t)

(
t− tk(δ1) − τ(t)

t− tk(δ1)

)α

dt

+

k(d1)−1∑
i=k(δ1)+1

[ ∫ zi

ti

H̃2(d1, t)

(
t− ti

bi(t− ti + τ(t))

)α

dt

+

∫ ti+1

zi

H̃2(d1, t)

(
t− ti − τ(t)

t− ti

)α

dt

]
+

∫ zk(d1)

tk(d1)

H̃2(d1, t)

(
t− tk(d1)

bk(d1)(t− tk(d1) + τ(t))

)α

dt

+

∫ d1

zk(d1)

H̃2(d1, t)

(
t− tk(d1) − τ(t)

(t− tk(d1))

)α

dt

− 1

(α+ 1)α+1

∫ d1

δ1

r(t)H2(d1, t) |h2(d1, t)|α+1
dt

}

<

k(d1)∑
i=k(δ1)+1

(
bαi − aαi
aαi

)
H2(d1, ti)u(ti) +H2(d1, δ1)u(δ1). (49)

Dividing (48) and (49) by H1(δ1, c1) and H2(d1, δ1) respectively, and adding them,
we get

Π1,1 +Π2,1 <

 1

H1(δ1, c1)

k(δ1)∑
i=k(c1)+1

(
bαi − aαi
aαi

)
H1(ti, c1)u(ti)

+
1

H2(d1, δ1)

k(d1)∑
i=k(δ1)+1

(
bαi − aαi
aαi

)
H2(d1, ti)u(ti)

 . (50)

On the other hand, similar to (33), we have

k(δ1)∑
i=k(c1)+1

(
bαi − aαi
aαi

)
H1(ti, c1)u(ti) ≤M1Ψ

δ1
c1 [H1(., c1)], (51)

and

k(d1)∑
i=k(δ1)+1

(
bαi − aαi
aαi

)
H2(d1, ti)u(ti) ≤M1Ψ

d1

δ1
[H2(d1, .)]. (52)

Substituting (51) and (52) in (50), we obtain a contradiction to the condition (41).
When x(t) is eventually negative, we can consider the interval [c2, d2] and reach

a similar contradiction. Hence the proof is complete. �

As shown in [20] for the sub-linear terms case, we can also remove the sign
condition imposed on the coefficients of the sub-half-linear terms to obtain interval
oscillation criteria. More precisely, we consider(

r(t)Φα(x
′(t))

)′
+ p(t)Φα(x(t− τ(t))) +R(x, t) = e(t), t ≥ t0, t ̸= tk,

x(tk
+) = akx(tk), x′(tk

+) = bkx
′(tk), k = 1, 2, 3, ...,

(53)
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where

R(x, t) =

m∑
i=1

qi(t)Φβi(x− τ(t)) +

n∑
k=m+1

qk(t)Φβk
(x− τ(t)).

When some or all of the functions qi(t), i = m + 1, . . . , n, are nonpositive, we can
get the following results.

Theorem 3. Assume that for any T ≥ t0, there exist cj , dj /∈ {tk} , j = 1, 2, such
that T < c1 − τ < c1 < d1 ≤ c2 − τ < c2 < d2 and

p(t), qi(t) ≥ 0, t ∈ [c1 − τ, d1] ∪ [c2 − τ, d2]\{tk}, i = 1, 2, 3, ...,m,

e(t) ≤ 0, t ∈ [c1 − τ, d1]\{tk},
e(t) ≥ 0, t ∈ [c2 − τ, d2]\{tk}.

(54)

If there exist ωj(t) ∈ Ωj(cj , dj), j = 1, 2, and positive numbers πi and ψk with

m∑
i=1

πi +
n∑

k=m+1

ψk = 1, (55)

such that, for k(cj) < k(dj),{∫ tk(cj)+1

cj

˜Wj(t)

(
t− tk(cj) − τ(t)

t− tk(cj)

)α

dt

+

k(dj)−1∑
i=k(cj)+1

[∫ zi

ti

˜Wj(t)

(
t− ti

bi(t− ti + τ(t))

)α

dt+

∫ ti+1

zi

˜Wj(t)

(
t− ti − τ(t)

t− ti

)α]

+

∫ zk(dj)

tk(dj)

˜Wj(t)

(
t− tk(dj)

bk(dj)(t− tk(dj) + τ(t)

)α

dt

+

∫ dj

zk(dj)

˜Wj(t)

(
t− tk(dj) − τ(t)

t− tk(dj)

)α

dt

−
∫ dj

cj

(r(t)
∣∣ω′

j(t)
∣∣α+1

)dt

}
> MjΨ

dj
cj [ω

α+1
j ], (56)

and for k(cj) = k(dj),∫ dj

cj

(
˜Wj(t)

(
t− cj

t− cj + τ(t)

)α

− r(t)
∣∣ω′

j(t)
∣∣α+1

)
dt > 0, (57)

where ˜Wj(t) = Θ(t)ωα+1
j (t), j = 1, 2, and

Θ(t) =

(
p(t) +

m∑
i=1

Γi(t)−
n∑

k=m+1

Υk(t)

)
, (58)

Γi(t) = βi(βi − α)(α/βi)−1α−α/βiπ
1−(α/βi)
i [qi(t)]

α/βi |e(t)|1−(α/βi), i = 1, 2, . . . ,m,

Υk(t) = βk(α− βk)
(α/βk)−1α−α/βkψ

1−(α/βk)
k [q̃k(t)]

α/βk |e(t)|1−(α/βk),

k = m+ 1, . . . , n, with q̃k(t) = max{−qk(t), 0}, then equation (53) is oscillatory.

Proof. Suppose that equation (53) has a nonoscillatory solution x(t). Without
loss of generality, we assume that x(t) is eventually positive on [c1, d1]. If x(t) is
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eventually negative, then one can repeat the proof on the interval [c2, d2]. Clearly,
from the definition of R(x, t) in (53) , we have

R(x, t)− e(t) =
m∑
i=1

[qi(t)Φβi
(x(t− τ(t))) + πi|e(t)|]

−
n∑

k=m+1

[−qk(t)Φβk
(x(t− τ(t)))− ψk|e(t)|] ,

this gives

R(x, t)− e(t) ≥
m∑
i=1

[qi(t)Φβi(x(t− τ(t))) + πi|e(t)|]

−
n∑

k=m+1

[q̃k(t)Φβk
(x(t− τ(t)))− ψk|e(t)|] . (59)

Applying Lemma 2 to each summation on the right side of (59) with

A = qi(t), B = πi|e(t)|, γ = βi, δ = α, for βi > α and i = 1, . . . ,m,

and

C = q̃k(t), D = ψi|e(t)|, δ = βk, γ = α, for βk < α and k = m+ 1, . . . , n,

we get

R(x, t)− e(t) ≥
m∑
i=1

Γi(t)Φα(x(t− τ(t)))−
n∑

k=m+1

Υi(t)Φα(x(t− τ(t))). (60)

From equation (53) and inequality (60), we have

(r(t)ϕα(x
′(t)))′ + p(t)ϕαx(t− τ(t)) +

m∑
i=1

Γi(t)Φα(x(t− τ(t)))

−
n∑

k=m+1

Υi(t)Φα(x(t− τ(t))) ≤ 0.(61)

Defining u(t) as in (19), and continuing as in the proof of Theorem 1, we get

u′(t) ≤ −Θ(t)

(
x(t− τ(t))

x(t)

)α

− 1

r1/α(t)
u

α+1
α (t) for t ∈ [c1, d1], (62)

where Θ(t) is as in (58). The remainder of the proof is the same as that of Theorem
1, hence omitted. �

Theorem 4. Assume that for any T ≥ t0, there exist cj , dj , δj /∈ {tk}, j = 1, 2,
such that T < c1 − τ < c1 < δ1 < d1 ≤ c2 − τ < c2 < δ2 < d2 and (54) holds. If
there exist (H1,H2) ∈ H and positive numbers πi and ψk with (55), such that

Π1,j +Π2,j >
Mj

H1(δj , cj)
Ψδj

cj [H1(., cj)] +
Mj

H2(dj , δj)
Ψ

dj

δj
[H2(dj , .)], j = 1, 2, (63)

where H̃1(t, cj) = H1(t, cj)Θ(t), H̃2(dj , t) = H2(dj , t)Θ(t), j = 1, 2, and Θ(t) is
defined as in (58) with q̃k(t) = max{−qk(t), 0}, then equation (53) is oscillatory.

Proof. Continuing as in the proof of Theorem 3, we can get (62). The remainder
of the proof is the same as that of Theorem 2, and hence is omitted. �



124 V. MUTHULAKSHMI AND R. MANJURAM EJMAA-2020/8(2)

3. Examples

In this section, we give two examples to illustrate our main results.

Example 1. Consider the following impulsive differential equation with variable
delay

(Φα(x
′(t)))

′
+ γ0(1 + sin t)Φα

(
x
(
t− π

12
sin3 t

))
+ γ1 exp(−t/2)Φβ1

(
x
(
t− π

12
sin3 t

))
+ γ2t

2Φβ2

(
x
(
t− π

12
sin3 t

))
= e(t), t ≥ t0, t ̸= tk,i,

x(t+k,i) = ak,ix(tk,i), x′(t+k,i) = bk,ix
′(tk,i),

where tk,i = 2kπ +
3π

8
+ (−1)i−2

(π
4

)
, i = 1, 2, and k = 1, 2, . . . .

(64)

Here,

r(t) = 1, p(t) = γ0(1 + sin t), q1(t) = γ1 exp(−t/2), q2(t) = γ2t
2,

and

e(t) =

 − sin 2t, t ∈
[
2kπ, 2kπ + π

6

]
,

1 + sin t, t ∈
[
2kπ + π

6 , 2kπ + 4π
3

]
,

where γ0, γ1 and γ2 are positive constants.
If we choose η0 = 1/2, β1 = 19/2, β2 = 5/2 and α = 3, then by Lemma 1, we

can easily find η1 = η2 = 1/4. For any T > 0, if we choose k large enough such
that T < c1 = 2kπ + π

12 < d1 = 2kπ + π
6 and c2 = 2kπ + π

4 < d2 = 2kπ + 4π
3 ,

then there are impulsive moments tk,1 = 2kπ + π
8 in [c1, d1] and tk,2 = 2kπ + 5π

8

in [c2, d2]. From tk,2 − tk,1 = π
2 > π

12 and tk+1,1 − tk,2 = 3π
2 > π

12 for all k ∈ N,
we know that the condition tk+1 − tk > τ is satisfied. Also the variable delay
τ(t) = π

12 sin
3 t satisfies 0 ≤ τ(t) ≤ τ = π

12 . If we take Dk,i(t) = t− tk,i − τ(t), then

D′
k,i(t) = 1− π

4 sin2 t cos t > 0 for all t and there exist zero points zk,i of Dk,i(t) in

(tk,i, di). Moreover, we also see that the condition (8) is satisfied. Let

ωj(t) = sin 12t ∈ Ωj(cj , dj) for j = 1, 2.

For t ∈ [c1, d1], by simple calculation, we get zk,1 ∈ (tk,1, d1) and zk,1 ≈ 0.408. In

view of
k(dj)−1∑

i=k(cj)+1

= 0 as k(cj) + 1 > k(dj)− 1, j = 1, 2, the left hand side of (16) is

the following∫ π/8

π/12

W1(t)

(
t+ 11π/8− π/12 sin3(t)

t− 11π/8)

)3

dt

+

∫ 0.408

π/8

W1(t)

(
t− π/8

bk,1(t− π/8 + π/12 sin3(t))

)3

dt

+

∫ π/6

0.408

W1(t)

(
t− π/8− π/12 sin3(t)

t− 11π/8)

)3

dt− 124
∫ π/6

π/12

(
cos4 12t

)
dt

≈
[
0.0722γ0 + 0.0714γ

1/4
1 γ

1/4
2

]
+ b−3

k,1

[
0.0009γ0 + 0.0014γ

1/4
1 γ

1/4
2

]
− 648π.(65)
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On the other hand, the right hand side of (16) is

Ψd1
c1 [ω

α+1
1 ] = ωα+1

1 (tk(c1)+1)
bαk(c1)+1 − aαk(c1)+1

(aαk(c1)+1(tk(c1)+1 − c1)α)

+

k(d1)∑
i=k(c1)+2

ωα+1
1 (ti)

bαi − aαi
(aαi (ti − ti−1)α)

= sin4 12(2kπ + π/8)

(
bk,1 − ak,1

ak,1(2kπ + π/8− (2kπ + π/12))

)3

=

(
24

π

)3(
bk,1 − ak,1

ak,1

)3

. (66)

Thus for t ∈ [c1, d1], if we choose γ0, γ1 and γ2 large enough so that

0.0722γ0 + 0.0714γ
1/4
1 γ

1/4
2 + b−3

k,1

[
0.0009γ0 + 0.0014γ

1/4
1 γ

1/4
2

]
− 648π

>

(
24

π

)3(
bk,1 − ak,1

ak,1

)3

, (67)

then (16) will be satisfied.
Similarly for t ∈ [c2, d2], we can get the following condition

2.4899γ0 + 2.8481γ
1/4
1 γ

1/4
2 + b−3

k,2

(
0.0074γ0 + 0.0011γ

1/4
1 γ

1/4
2

)
− 8424π

>

(
8

3π

)3(
bk,2 − ak,2

ak,2

)3

. (68)

Thus it is clear that the condition (16) is satisfied by properly choosing γ0, γ1, γ2,
and so by Theorem 1, equation (64) is oscillatory.

Example 2. Consider the following impulsive differential equation with variable
delay

(Φα(x
′(t)))

′
+ κ0p(t)Φα

(
x
(
t− π

16
cos2(πt)

))
+ κ1q1(t)Φβ1

(
x
(
t− π

16
cos2(πt)

))
+ κ2q2(t)Φβ2

(
x
(
t− π

16
cos2(πt)

))
= e(t), t ≥ t0, t ̸= tn,i,

x(t+n,i) = an,ix(tn,i), x′(t+n,i) = bn,ix
′(tn,i),

(69)
where κ0, κ1 and κ2 are positive constants, and

tn,1 = 2nπ +
π

8
, tn,2 = 2nπ +

3π

8
, tn,3 = 2nπ +

13π

8
and tn,4 = 2nπ +

17π

8
.

In addition let,

p(t) =


e12t, t ∈

[
2nπ + π

12 , 2nπ + π
6

]
,

e4t, t ∈
[
2nπ + π

6 , 2nπ + π
2

]
,

sin2 t, t ∈
[
2nπ + 3π

2 , 2nπ + 5π
2

]
,

q1(t) = 3 + cos(t/2),
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q2(t) =

 cos(t/4), t ∈
[
2nπ + π

12 , 2nπ + π
2

]
,

cos t, t ∈
[
2nπ + 3π

2 , 2nπ + 5π
2

]
,

and

e(t) =


− sin 2t, t ∈

[
2nπ + π

12 , 2nπ + π
2

]
,

sin2 t, t ∈
[
2nπ + 3π

2 , 2nπ + 5π
2

]
.

For any t0 > 0, we choose n large enough such that t0 < 2nπ+ π
12 and let [c1, d1] =[

2nπ + π
12 , 2nπ + π

2

]
, [c2, d2] =

[
2nπ + 3π

2 , 2nπ + 5π
2

]
, δ1 = 2nπ + π

6 and δ2 =

2nπ + 5π
3 . It is easy to see that condition (8) is satisfied. Moreover, we easily see

that there exist zero point zn,i (i = 1, 2, 3, 4) of Dn,i(t) = t − tn,i − π
12 cos

2(πt) in
(tn,1, δ1), (tn,2, d1), (tn,3, δ2) and (tn,4, d2) respectively. Let H1(t, s) = H2(t, s) =
(t − s)2. Then h1(t, s) = −h2(t, s) = 2

(t−s) . Next, if we choose η0 = 1/2, β1 =

5/2, β2 = 1/2 and α = 1, then one can easily find η1 = 3/8 and η2 = 1/8.
Also by a simple calculation, we get

Π1,1 =
1

H1(
π
6 ,

π
12 )

{∫ π/8

π/12

H1(t, π/12)Q(t)

(
t+ 13π/8− π/16 cos2(πt)

t+ 13π/8

)
dt

+

∫ 0.408

π/8

H1(t, π/12)Q(t)

(
t− π/8

bn,1(t− π/8) + π/16 cos2(πt)

)
dt

+

∫ π/6

0.408

H1(t, π/12)Q(t)

(
t− π/8− π/16 cos2(πt)

t− π/8

)
dt

− 1

22

∫ π/6

π/12

H1(t, π/12) |h1(t, π/12)|2 dt
}

≈ κ0

(
23.2539 +

0.1532

bn,1

)
+ κ1

3/8κ2
1/8

(
0.3035 +

0.0044

bn,1

)
− 3.8197, (70)

and

Π2,1 =
1

H2(
π
2 ,

π
6 )

{∫ 3π/8

π/6

H2(π/2, t)Q(t)

(
t− π/8− π/16 cos2(πt)

t− π/8

)
dt

+

∫ 1.265

3π/8

H2(π/2, t)Q(t)

(
t− 3π/8

bn,2(t− 3π/8 + π/16 cos2(πt))

)
dt

+

∫ π/2

1.265

H2(π/2, t)Q(t)

(
t− 3π/8− π/16 cos2(πt)

t− 3π/8

)
dt

− 1

(2)2

∫ π/2

π/6

H2(π/2, t) |h2(π/2, t)|2 dt
}

≈ κ0

(
7.8212 +

0.3295

bn,2

)
+ κ1

3/8κ2
1/8

(
1.1289 +

0.0082

bn,2

)
− 0.9549. (71)

From (70) and (71), we get

Π1,1 +Π2,1 ≈ κ0

(
31.0751 +

0.1532

bn,1
+

0.3295

bn,2

)
+κ1

3/8κ2
1/8

(
1.4324 +

0.0044

bn,1
+

0.0082

bn,2

)
− 4.7746, (72)
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which gives the left hand side of (41).
On the other hand,

M1

H1(δ1, c1)
Ψδ1

c1 [H1(., c1)] =
1

H1(π/6, π/12)
H1(π/8, π/12)×

(
bn,1 − an,1

an,1(π/8− π/12)

)
≈ 1.9098

(
bn,1 − an,1

an,1

)
, (73)

and

M1

H2(d1, δ1)
Ψd1

δ1
[H2(d1, .)] =

1

(π/2− π/6)2
(π/2− 3π/8)2 ×

(
bn,2 − an,2

an,2(3π/8− π/6))

)
≈ 0.2148

(
bn,2 − an,2

an,2

)
. (74)

From (73) and (74), we have the right hand side of (41) as

M1

H1(δ1, c1)
Ψδ1

c1 [H1(., c1)] +
M1

H2(d1, δ1)
Ψd1

δ1
[H2(d1, .)]

≈ 1.9098

(
bn,1 − an,1

an,1

)
+ 0.2148

(
bn,2 − an,2

an,2

)
. (75)

Thus (41) is satisfied for j = 1, if

κ0

(
31.0751 +

0.1532

bn,1
+

0.3295

bn,2

)
+ κ1

3/8κ2
1/8

(
1.4324 +

0.0044

bn,1
+

0.0082

bn,2

)
> 4.7716 + 1.9098

(
bn,1 − an,1

an,1

)
+ 0.2148

(
bn,2 − an,2

an,2

)
. (76)

Similarly for t ∈ [c2, d2], we have

Π1,2 +Π2,2 ≈ κ0

(
0.2871 +

0.0012

bn,3
+

0.0016

bn,4

)
+κ1

3/8κ2
1/8

(
−0.6978 +

0.0042

bn,3
+

0.0124

bn,4

)
− 2.2917 (77)

and

M2

H1(δ2, c2)
Ψδ2

c2 [H1(., c2)] +
M2

H2(d2, δ2)
Ψd2

δ2
[H2(d2, .)]

≈ 1.4324

(
bn,3 − an,3

an,3

)
+ 0.1406

(
bn,4 − an,4

an,4

)
. (78)

Thus (41) is satisfied for j = 2, if

κ0

(
0.2871 +

0.0012

bn,3
+

0.0016

bn,4

)
+ κ1

3/8κ2
1/8

(
−0.6978 +

0.0042

bn,3
+

0.0124

bn,4

)
> 2.2917 + 1.4324

(
bn,3 − an,3

an,3

)
+ 0.1406

(
bn,4 − an,4

an,4

)
. (79)

Note that all the conditions of Theorem 2 are thus verified and it is possible to
choose the constants so that (76) and (79) are also satisfied. Hence, by Theorem
2, equation (69) is oscillatory.
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4. Conclusion

In this paper, we have established interval oscillation results for equation (1)
using Riccati transformation technique. Our results generalize and improve the
results in the existing literature as follows:

• When α = 1 and τ(t) = τ, Theorem 1 reduces to Theorem 2.2 and Theorem
2 reduces Theorem 2.4 of [12].

• When τ(t) = 0, our results reduces to the results of [7] for the case ρ(t) = 1.
• When τ(t) = 0 and α = 1, Theorem 1 reduces to Theorem 2.1 of [15].
• When ak = bk = 1 for all k = 1, 2, 3, ..., τ(t) = 0 and α = 1, our results
reduces to the results of [20] for the case ρ(t) = 1.

.

Acknowledgements

This work was supported by UGC-Special Assistance Programme (No.F.510/7/
DRS-1/2016(SAP-1)) and R. Manjuram was supported by University Grants Com-
mission, New Delhi 110 002, India (Grant No. F1-17.1/2013-14/RGNF-2013-14-
SCTAM-38915/(SA-III/Website)).

References

[1] R. P. Agarwal, D. R. Anderson and A. Zafer, Interval oscillation criteria for second-order
forced delay dynamic equations with mixed nonlinearities, Comput. Math. Appl. Vol.59, 977-

993, 2010.
[2] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory for Second Order Linear,

Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic, Dordrecht,
2002.

[3] E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1961.
[4] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions,

Hindawi, New York, 2006.
[5] S. G. Deo and S. G. Pandit, Differential Systems Involving Impulses, Springer, New York,

1982.
[6] Y. Duan, P. Tian and S. Zhang, Oscillation and stability of nonlinear neutral impulsive delay

differential equations, J. Appl. Math. Comput. Vol.11, No. 1 - 2, 243-253, 2003.

[7] Z. Guo, X. Zhou and W. Ge, Interval oscillation criteria for second-order forced impulsive
differential equations with mixed nonlinearities, J. Math. Anal. Appl. Vol.381, 187-201, 2011.
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