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UNIQUENESS PROBLEM FOR DIFFERENTIAL POLYNOMIALS

OF FERMAT-WARING TYPE

RAJESHWARI S. , HUSNA V. AND NAVEEN KUMAR S.H

Abstract. In this paper, we discuss the uniqueness problem for differen-
tial polynomials (Pn(f))(k), (Qn(g))(k) sharing the same values, where P =

fd + a1fd−m + b1fd−m+1 + c1 and Q = gd + a2gd−m + b2gd−m+1 + c2 are
polynomials of Fermat-Waring type. On non-Archimedian field, f and g are
meromorphic functions.

1. Introduction, Notation and Main results

Let H be an algebraically closed field of characteristic zero, complete for a non-
Archimedean absolute value. We denote by A(H) the ring of entire functions in H,
by M(H) the field of meromorphic functions, i.e., the field of fractions of A(H), and

Ĥ = H∪{∞}. We assume that the reader is familiar with the notations in the non-
Archimedean Nevanlinna theory (see [10]]). Let f be a non-constant meromorphic
function on H. For every a ∈ H, define the function daf : H −→ N by

daf (z) =

{
0 if f(z) ̸= a

m if f(z) = a with multiplicity m,

and set d∞f = d01
f

. For f ∈ M(H) and S ⊂ H ∪ {∞}, we define

Ef (S) = ∪a∈S{(z, daf (z)) : z ∈ H}.

In this paper, we consider the differential operator (Pn(f))(k) and (Qn(g))(k)

sharing the same value where P and Q are Fermat-Waring type polynomials. Then
we establish an uniqueness theorem for non-archimedian meromorphic functions
and their differential polynomials.

Now let us describe main results of the paper. Let d,m, n, k ∈ N∗ and a1, b1, c1, a2,
b2, c2, k ∈ H; where H be an algebraically closed field of characteristic zero, complete
for a non-Archimedean absolute value. a1, b1, c1, a2, b2, c2 ̸= 0. We will let

P (z) = zd + a1z
d−m + b1z

d−m+1 + c1 and Q(z) = zd + a2z
d−m + b2z

d−m+1 + c2,
(1.1)
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be a polynomials of degree d of Fermat-Waring type in H[z] without multiple zeros.
We shall prove the following theorems.

Theorem I. Let f and g be two non-constant meromorphic functions on H and
let P (z), Q(z) be defined in (1.1). Assume that n ≥ 3k+5, d ≥ 2m+10 and either
m ≥ 2 or (d,m+1) = 1 and m ≥ 1. If (Pn(f))(k) and (Qn(g))(k) share 1 CM, then
g = hf and for a constant h such that hd = c2

c1
, hnd = 1, hm = b2

b1
, hm+1 = a2

a1
.

Theorem II. Let f and g be two non-constant meromorphic functions on H and
let P (z), Q(z) be defined in (1.1). Assume that d ≥ 2m + 10 and either m ≥ 2 or
(d,m+ 1) = 1 and m ≥ 1. If (P (f) and Q(f) share 0 CM, then g = hf and for a
constant h such that hd = c2

c1
, hm = b2

b1
, hm+1 = a2

a1
.

2. Preliminaries

In order to prove our results, we need the following Lemmas.

Lemma 2.1. ([10]) Let f be a non-constant meromorphic function on H and let
a1, a2, ..., aq, be distinct points of H ∪ {∞}. Then

(q − 2)T (r, f) ≤
q∑

i=1

N1(r,
1

f − ai
)− logr +O(1).

Lemma 2.2. ([10]) Let f be a non-constant meromorphic function on H and let
a1, a2, ..., aq, be distinct points of H

∪
{∞}. Suppose either f − ai has no zeros, or

f −ai has zeros, in which case all the zeros of the functions f −ai have multiplicity
at least mi, i = 1, ..., q. Then

q∑
i=1

(1− 1

mi
) < 2.

Lemma 2.3. ([8]) Let f and g be non-constant meromorphic functions on H. If
Ef (1) = Eg(1), then one of the following three cases holds:

1 T (r, f) ≤ N2(r, f) +N2(r,
1
f ) +N2(r, f) +N2(r,

1
g ) − logr + O(1), and the

same inequality holds for T (r, g);
2 fg = 1;
3 f = g.

Lemma 2.4. ([1]) Let f be a non-constant meromorphic function on H and n, k
be positive integers, n > k and a be a pole of f. Then

1 (fn)(k) = φk

(z−a)np+k , where p = d∞f , φk(a) ̸= 0.

2 (fn)(k)

fn−k = hk

(z−a)pk+k , where p = d∞f , hk(a) ̸= 0.

Lemma 2.5. ([1]) Let f be a non-constant meromorphic function on H and n, k
be positive integers, n > 2k, and let P (z) be a polynomial of degree d > 0. Then

1 (n−2k)dT (r, f)+kN(r, P (f))+N(r, 1
((P (f))n)(k)

(P (f))n−k

) ≤ T (r, ((P (f))n)(k))+O(1)

≤ (k + 1)ndT (r, f) +O(1).
2 N(r, 1

((P (f))n)(k)

(P (f))n−k

) ≤ kdT (r, f) +N1(r, P (f)) +O(1)

= kdT (r, f) + kN1(r, f) +O(1) ≤ k(d+ 1)T (r, f) +O(1).
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Lemma 2.6. Let d ≥ 2m+5 and either m ≥ 2 or (d,m+1) = 1 and m ≥ 1, k ̸= 0,
and let P (z), Q(z)be defined by (1.1). Assume that the equation P (f) = kQ(g) has
a non-constant meromorphic solution (f, g). Then g = hf for a constant h such
that hd = 1

k = c2
c1
, hm = b2

b1
, hm+1 = a2

a1
.

Proof. Consider P (f) = Q(g) we get fd + a1f
d−m + b1f

d−m+1 + c1 = k(gd +
a2g

d−m + b2g
d−m+1 + c2)

dT (r, f) +O(1) = dT (r, g),

T (r, f) +O(1) = T (r, g). (2.1)

Equation (2.1) can be rewritten as f1 + f2 = kc2 − c1, where

f1 = fd−m(a1 + b1f + fm)

f2 = −kgd−m(a2 + b2g + gm).

If kc2 − c1 ̸= 0, then by Lemma 2.1, we have

T (r, f1) ≤ N1(r, f1) +N1(r,
1

f1
) +N1(r,

1

f1 − (kc2 − c1)
)− logr +O(1),

dT (r, f) ≤ N1(r, f) +N1(r,
1

f
) +N1(r,

1

fm + b1f + a1
) +N1(r,

1

g
)

+N1(r,
1

gm + b1g + a1
)− logr +O(1)

dT (r, f) ≤ (2m+ 5)T (r, f)− logr +O(1)

(d− 2m− 5)T (r, f) ≤ −logr +O(1),

which contradicts to d ≥ 2m+ 5. Hence kc2 − c1 = 0. Thus , (2.1) becomes

fd + a1f
d−m + b1f

d−m+1 = kgd + ka1g
d−m + kb1g

d−m+1. (2.2)

For simplicity, set h = g/f, and α = 1/k ̸= 0, β1 = b1
kb2

̸= 0, β2 = a1

ka2
̸= 0. Then

we obtain

fm+1(khd − 1) = −(ka2h
d−m − a1)− (kb2h

d−m+1 − b1)

fm+1 =
−a2(h

d−m − β1)− b2(h
d−m+1 − β2)

hd − α
. (2.3)

Assume that h is not a constant. Consider the following possible cases:
CASE 1. m ≥ 1, (m + 1, d) = 1. If hd − α, hd−m − β1 and hd−m+1 − β2 have no
common zeros, then all zeros of hd − α have multiplicity ≥ m+ 1. Then

N1(r,
1

hd − α
) ≤ 1

m+ 1
N(r,

1

hd − α
).

By Lemma 2.1 we obtain

T (r, hd) ≤ N1(r, h
d) +N1(r,

1

hd
) +N1(r,

1

hd − α
)− logr +O(1),

dT (r, h) ≤ 2T (r, h) +
1

m+ 1
N(r,

1

hd − α
)− logr +O(1),

≤ (2 +
d

m+ 1
)T (r, h)− logr +O(1)

(d− 2− d

m+ 1
)T (r, h) ≤ −logr +O(1).

which leads to dm < 2(m+ 1), a contradiction to the condition d ≥ 2m+ 5.



EJMAA-2021/9(2) UNIQUENESS PROBLEM FOR DIFFERENTIAL 161

If hd − α and hd−m − β1, h
d−m−1 − β2 have common zeros, then there exists z0

such that hd(z0) = α, hd−m(z0) = β1 and hd−m−1 − β2.
From (2.3) we get

αfm+1((
h

h(z0)
)d − 1) = −β1a2((

h

h(z0)
)d−m − 1)− β2b2((

h

h(z0)
)d−m+1 − 1).

Since (m+ 1, d) = 0, the equations zd − 1 = 0, zd−m − 1 = 0 and zd−m+1 = 0 have
different roots, except for z = 1. Let ri, i = 1, ..., 3d − 2m − 3, be all the roots of
them. Then all zeros of h

h(z0)
−ri have multiplicities ≥ m+1. Therefore, by Lemma

2.2, we obtain

(1− 1

m+ 1
)(3d− 2m− 3) < 2, 3dm < 2m2 + 6m+ 3,

which contradicts d ≥ 2m+ 5,m ≥ 1. Thus, h is a constant.
CASE 2. m ≥ 2. Note that equation zd − α = 0 has d simple zeros, equation
zd−m−β1 = 0 has d−m simple zeros, and equation zd−m+1−β2 = 0 has d−m+1
common simple zeros. Therefore, the equation zd − α has atleast m distinct roots,
which are not roots of zd−m−β1 and zd−m+1−β2 = 0. Let r1, r2, ..., rm be all these
roots. Then all zeros of h− rj , j = 1, ...,m, have multiplicities ≥ m+1. By Lemma
2.2, we have (m + 1)(1 − 1

m+1 ) < 2. Therefore, m < 2. From m ≥ 2, we obtain a
contradiction. Thus h is a constant. �

3. Proof of Theorem I

We have

P (f) = (f − e1)...(f − ed), ej ̸= 0 ∈ H
(P (f))n = (f − e1)

n...(f − ed)
n,

Q(g) = (g − k1)...(g − kd), ki ̸= 0 ∈ H
(Q(g))n = (g − k1)

n...(g − kd)
n

Set

X1 = (Pn(f))(k), X2 = (Qn(g))(k), Y1 = P (f),

Y2 = Q(g), F =
X1

Y n−k
1

, G =
X2

Y n−k
2

Then

Y1 = (f − e1)...(f − ed), Y2 = (g − k1)...(g − kd)

X1 = (Y n
1 )(k) = FY n−k

1 , X2 = (Y n
2 )(k) = GY n−k

2 .

Applying Lemma 2.3 to (Y n
1 )(k), (Y n

2 )(k) we have one of the following possibilities:
CASE 1.

T (r,X1) ≤ N2(r,X1) +N2(r,
1

X1
) +N2(r,

1

X2
) +N2(r,X2)− logr +O(1),

T (r,X2) ≤ N2(r,X1) +N2(r,
1

X1
) +N2(r,

1

X2
) +N2(r,X2)− logr +O(1).
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We see that, if a is a pole of X1, then Y1(a) = ∞ with ν∞X1
(a) ≥ n+k ≥ 2. Therefore

N1(r, Y1) = N1(r, (f − e1)...(f − ed)) = N1(r, f) ≤ T (r, f) +O(1),

N1(r,
1

Y1
) = Σd

i=1N1(r,
1

f − ei
) ≤ dT (r, f) +O(1)

N2(r,X1) = 2N1(r, Y1) ≤ 2T (r, f) +O(1)

N2(r,
1

X1
) ≤ N2(r,

1

Y n−k
1

) +N1(r,
1

F
) = 2N1(r,

1

Y1
) +N1(r,

1

F
)

≤ 2dT (r, f) +N(r,
1

F
) ≤ 2dT (r, f) + kN1(r, Y1)

+ kdT (r, f) +O(1) = d(k + 2)T (r, f) + kN1(r, Y1) +O(1).

Similarly

N2(r,X2) ≤ 2T (r, g) +O(1)

N2(r,
1

X2
) ≤ 2dT (r, g) +N(r,

1

G
)

= d(k + 2)T (r, g) + kN1(r, Y2) +O(1).

Combining the above two inequalities, we get

T (r,X1) ≤ (2 + 2d+ kd)T (r, f) + (2 + 2d)T (r, g) + kN1(r, Y1) +N(r,
1

G
)− logr +O(1),

T (r,X2) ≤ (2 + 2d+ kd)T (r, g) + (2 + 2d)T (r, f) + kN1(r, Y2) +N(r,
1

F
)− logr +O(1),

T (r,X1) + T (r,X2) ≤ (4 + 4d+ kd)(T (r, f) + T (r, g)) +KN1(r, Y1) +N(r,
1

G
)

+ kN1(r, Y2) +N(r,
1

F
)− 2logr +O(1).

By Lemma 2.5, we obtain

(n− 2k)dT (r, f) + kN(r, Y1) +N(r,
1

F
) ≤ T (r,X1) +O(1),

(n− 2k)dT (r, g) + kN(r, Y2) +N(r,
1

G
) ≤ T (r,X2) +O(1).

Thus

(n− 2k)d[T (r, f) + T (r, g)] + kN(r, Y1) +N(r,
1

F
) + kN(r, Y2) +N(r,

1

G
)

≤ T (r,X1) + T (r,X2) +O(1),

(n− 2k)d[T (r, f) + T (r, g)] + kN(r, Y1) +N(r,
1

F
) + kN(r, Y2) +N(r,

1

G
)

≤ (4 + 4d+ kd)[T (r, f) + T (r, g)] + kN1(r, Y1)

+N(r,
1

G
) + kN1(r, Y2) +N(r,

1

F
)− 2logr +O(1).

Therefore

(n− 2k)d[T (r, f) + T (r, g)] ≤ (4 + 4d+ kd)(T (r, f) + T (r, g))− 2logr +O(1),

((n− 2k)d− 4− 4d− kd)(T (r, f) + T (r, g)) ≤ −2logr +O(1).

Since n ≥ 3k + 5 > 2k + 4+4d+kd
d , we obtain a contradiction.

CASE 2. (P (f)n)(k)(Q(g)n)(k) = 1. Then we have Y1 = P (f) = (f−e1)...(f−ed).
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Y1 = Y n−k
1 F, Y2 = G(g). Therefore

(f − e1)
n−k...(f − ed)

n−k.X1(Y
n
2 )(k) = (Y n

1 )(k)(Y n
2 )(k) = 1.

Because n ≥ 3k + 5 we see that, if z0 is a zero of f − ei with 1 ≤ i ≤ d, then z0 is
a zero of Y1, and therefore, z0 is a zero of (Y n

p )(k) and then z0 is a pole of (Y n
2 )(k)

and v∞
(Y n

2 )(k)(z0) = (n− k)veif (z0). Thus, z0 is a pole of g and by Lemma 2.4 we get

v∞(Y n
2 )(k)(z0) = ndv∞g (z0) + k ≥ nd+ k.

So, veif (z0) =
ndv∞

g (z0)+k

n−k ≥ nd+k
n−k , i = 1, 2, ...d. Applying Lemma 2.2, we obtain

d∑
i=1

(1− n− k

nd+ k
) < 2.

From this we have n(d2 − 3d) < 2k(1 − d), and so we obtain a contradiction to
d ≥ 12.
CASE 3. (P (f)n)(k) = (Q(g)n)(k). Then (P (f))n − s = (Q(g))n, where s is a
polynomial of degree < k. We prove s ≡ 0. If it is not the case, then

(P (f)n)

s
− 1 =

(g − k1)
n...(g − kd)

n

s
,

(g − k1)
n...(g − kd)

n

s
+ 1 =

(f − k1)
n...(f − k2)

n

s

Set I =
Y n
1

s , J =
Y n
2

s . Since f, g are not constants, and so are Y1, Y2, Y
n
1 , Y n

2 , I, J.
Applying Lemma 2.1 to I with values ∞, 0, 1, we get

T (r, I) ≤ N1(r, I) +N1(r,
1

I
) +N1(r,

1

I − 1
)− logr +O(1).

On the other hand,

T (r, Y n
1 ) = nT (r, Y1) +O(1) ≤ T (r, I) + T (r, s) ≤ T (r, I) + (k − 1)logr +O(1)

nT (r, Y1)− (k − 1)logr ≤ T (r, I) +O(1), ndT (r, f)− (k − 1)logr ≤ T (r, I) +O(1)

N1(r, I) ≤ N1(r, Y
n
1 ) +N1(r,

1

s
) ≤ N1(r, f) + (k − 1)logr ≤ T (r, f) + (k − 1)logr,

N1(r,
1

I
) ≤ N1(r,

1

Y n
1

) = N1(r,
1

Y1
) ≤ T (r, Y1) +O(1) = dT (r, f) +O(1),

N1(r,
1

I − 1
) = N1(r,

1

J
) ≤ N1(r,

1

Y n
2

) = N1(r,
1

Y2
) ≤ T (r, Y2) +O(1) = dT (r, g) +O(1),

ndT (r, f)− (k − 1)logr ≤ T (r, f) + (k − 1)logr + d(T (r, f) + T (r, g)) +O(1).

From this, and noting that logr ≤ T (r, f), we get

(nd− 2(k − 1))T (r, f) ≤ T (r, f) + d(T (r, f) + T (r, g)) +O(1).

Applying Lemma 2.1 to J with values ∞, 0,−1, and noting that logr ≤ T (r, g), we
obtain

T (r, J) ≤ N1(r, J) +N1(r,
1

J
) +N1(r,

1

J + 1
)− logr +O(1).

we get

(nd− 2(k − 1))T (r, g) ≤ T (r, g) + d(T (r, f) + T (r, g))− logr +O(1).

So

(nd−2(k−1))(T (r, f)+T (r, g)) ≤ T (r, f)+T (r, g)+2d(T (r, f)+T (r, g))−2logr+O(1).
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(nd− 2d− 2k + 1)(T (r, f) + T (r, g)) + 2logr ≤ O(1).

We obtain a contradiction to n ≥ 3k + 5 > 2d+2k−1
d . So s = 0. Then (P (f))n =

(Q(g))n. Therefore P (f) = kQ(g), kn = 1. From this and by Lemma 2.6, we obtain
the conclusion of Theorem I.
Proof of Theorem II. Set

Y1 = P (f) = fd + a1f
d−m + b1f

d−m+1 + c1.

Y2 = Q(g) = gd + a2g
d−m + b2g

d−m+1 + c2.

U = −fd−m(fm + b1f + a1)

c1
, V = −gd−m(gm + b2g + a1)

c2
.
Since P (f) and Q(g) share 0 CM. we get EU (1) = EV (1). Applying Lemma 2.3 to
U, V, we have one of the following possibilities.
CASE 1.

T (r, U) ≤ N2(r, U) +N2(r,
1

U
) +N2(r, V ) +N2(r,

1

V
)− logr +O(1).

T (r, V ) ≤ N2(r, V ) +N2(r,
1

V
) +N2(r, U) +N2(r,

1

U
)− logr +O(1).

More over

T (r, U) = dT (r, f) +O(1),
N1(r, U) = N1(r, f) ≤ T (r, f) +O(1),
N2(r, U) = 2N1(r, f) ≤ 2T (r, f) +O(1)

N2(r,
1
U ) ≤ 2N1(r,

1
f ) +N2(r,

1
fm+b1f+a1

) ≤ 2T (r, f) + (m+ 1)T (r, f) +O(1)

Similarly N2(r, V ) ≤ 2T (r, g)+O(1), N2(r,
1
V ) ≤ 2T (r, g)+(m+1)T (r, g)+O(1).

Therefore

T (r, V ) = dT (r, f) +O(1) ≤ 4(T (r, f) + T (r, g)) + (m+ 1)(T (r, f) + T (r, g))− logr +O(1).

Similarly

T (r, V ) = dT (r, g) +O(1) ≤ 4(T (r, f) + T (r, g)) + (m+ 1)(T (r, f) + T (r, g))− logr +O(1)

Combining the above inequalities we get

d(T (r, f) + T (r, g)) ≤ 8(T (r, f) + T (r, g)) + (2m+ 2)(T (r, f) + T (r, g))− 2logr +O(1)

(d− 2m− 10)(T (r, f) + T (r, g)) + 2logr ≤ O(1).

We obtain a contradiction to d ≥ 2m+ 10.
CASE 2. UV = 1. i.e., fd−m(fm + b1f + a1)g

d−m(gm + b2g + a2) =
c1
c2
.

Note that equation zm + b1z + a1 = 0 has (m+1) simple zeros. Let r1, r2, ...rm be
all these roots. Therefore

fd−m(fm + b1f + a1)g
d−m(gm + b2g + a2) =

c1
c2

. (3.1)

From (3.1) it follows that all zeros of f − rj , j = 1, 2, ...m, has multiplicities ≥ d,

and all zeros of f have multiplicities ≥ d
d−m+1 . By Lemma 2.2 we have 1− d−m+1

d +

(m+ 1)(1− 1
d ) < 2. Then m < 2. Since m ≥ 1, we obtain a contradiction.

CASE 3. U = V, i.e., fd−m(fm+b1f+a1)
c1

= gd−m(gm+b2g+a1)
c2

then

fd + a1f
d−m + b1f

d−m+1 + C1 =
C1

C2
gd + a1g

d−m + b1g
d−m+1 + C2. (3.2)
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Applying Lemma 2.6 to (3.2), we obtain the conclusion of Theorem II.
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