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GENERALIZED SUBCLASSES OF QUASI-CONVEX FUNCTIONS

DEFINED WITH SUBORDINATION

GAGANDEEP SINGH, GURCHARANJIT SINGH

Abstract. In this paper, certain generalized subclasses of quasi-convex func-
tions in the open unit disc E = {z : |z| < 1} are introduced. Various geometric
properties such as the coefficient estimates, distortion theorems, growth theo-

rems, radius of quasi convexity and relationship with other classes have been
studied for these classes. The results so obtained generalize the results of
several earlier works.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k (1)

which are analytic in the unit disc E = {z : |z| < 1} and further normalized specif-
ically by f(0) = f ′(0)− 1 = 0.
By S, we denote the subclass of A consisting of functions of the form (1) and which
are univalent in E.

Let U be the class of Schwarzian functions

w(z) =
∞∑
k=1

ckz
k,

which are regular in the unit disc E and satisfying the conditions

w(0) = 0, |w(z)| < 1.

For the functions f and g analytic in E, we say that f is subordinate to g (sym-
bolically f ≺ g) if a Schwarzian function w(z) ∈ U can be found for which
f(z) = g(w(z)). This result is known as principle of subordination.
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The well known classes S∗ and K, the classes of starlike and convex functions re-
spectively are defined as

S∗ =

{
f : f ∈ A,Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E

}
and

K =

{
f : f ∈ A,Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
.

Further, Janowski [7] defined with the help of subordination, the following sub-
classes of starlike and convex functions respectively as

S∗(A,B) =

{
f : f ∈ A,

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz
,−1 ≤ B < A ≤ 1, z ∈ E

}
and

K(A,B) =

{
f : f ∈ A,

(zf ′(z))′

f ′(z)
≺ 1 +Az

1 +Bz
,−1 ≤ B < A ≤ 1, z ∈ E

}
.

The classes S∗(A,B) and K(A,B) were studied further by Goel and Mehrok [5].
In particular, S∗(1,−1) ≡ S∗ and K(1,−1) ≡ K.
Subsequently, Noor [10] introduced the class of quasi-convex functions as

C∗ =

{
f : f ∈ A,Re

(
(zf ′(z))′

h′(z)

)
> 0, h ∈ K, z ∈ E

}
.

Note that every quasi-convex function is convex and so univalent. Various sub-
classes of quasi-convex functions were studied by several authors from time to time.
Some recently studied classes relevant to the present work are mentioned below.
By C∗

s , we denote the subclass of quasi-convex functions defined as

C∗
s =

{
f : f ∈ A,Re

(
(zf ′(z))′

g′(z)

)
> 0, g ∈ S∗, z ∈ E

}
.

Selvaraj and Stelin [12] studied the class C∗(α, β), a subclass of quasi-convex func-
tions defined as below:

C∗(α, β) =

{
f : f ∈ A,

(zf ′(z))′

h′(z)
≺ 1 + (2α− 1)βz

1 + βz
, h ∈ K, 0 ≤ α < 1, 0 < β ≤ 1, z ∈ E

}
.

In particular, C∗(0,−1) ≡ C∗.
Further Selvaraj et al. [13] introduced and studied the class C∗

s (α, β), a subclass of
quasi-convex functions defined as

C∗
s (α, β) =

{
f : f ∈ A,

(zf ′(z))′

g′(z)
≺ 1 + (2α− 1)βz

1 + βz
, g ∈ S∗, 0 ≤ α < 1, 0 < β ≤ 1, z ∈ E

}
.

Particularly, C∗
s (0,−1) ≡ C∗

s .
Xiong and Liu [15] established the class C∗(A,B) given below:

C∗(A,B) =

{
f : f ∈ A,

(zf ′(z))′

h′(z)
≺ 1 +Az

1 +Bz
, h ∈ K,−1 ≤ B < A ≤ 1, z ∈ E

}
.

It is obvious that C∗((2α− 1)β, β) ≡ C∗(α, β) and C∗(1,−1) ≡ C∗.
By C∗

s (A,B), we denote a subclass of quasi-convex functions defined as

C∗
s (A,B) =

{
f : f ∈ A,

(zf ′(z))′

g′(z)
≺ 1 +Az

1 +Bz
, g ∈ S∗,−1 ≤ B < A ≤ 1, z ∈ E

}
.
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Obviously C∗
s ((2α− 1)β, β) ≡ C∗

s (α, β) and C∗
s (1,−1) ≡ C∗

s .

Apart from the classes defined above, some more interesting subclasses of quasi
convex functions have also been studied recently by Altintas and Kilic [2], Altintas
and Aydogan [3] and Mahmood et al. [8, 9].
To avoid repetition, it is laid down once for all that

− 1 ≤ D ≤ B < A ≤ C ≤ 1, z ∈ E.

Motivated by the above work, we introduce the following generalized subclasses of
quasi-convex functions:
Definition 1 C∗(A,B;C,D) be the class of functions f ∈ A of the form (1) which
satisfy the condition

(zf ′(z))′

h′(z)
≺ 1 + Cz

1 +Dz
,

where h(z) = z +
∑∞

k=2 bkz
k ∈ K(A,B).

The following observations are obvious:
(i) C∗(1,−1;C,D) ≡ C∗(C,D).
(ii) C∗(1,−1; (2α− 1)β, β) ≡ C∗(α, β).
(iii) C∗(1,−1; 1,−1) ≡ C∗.
Definition 2 Let C∗

s (A,B;C,D) denote the class of functions f ∈ A of the form
(1) and satisfying the condition that

(zf ′(z))′

g′(z)
≺ 1 + Cz

1 +Dz
,

where g(z) = z +
∑∞

k=2 dkz
k ∈ S∗(A,B).

We have the following observations:
(i) C∗

s (1,−1;C,D) ≡ C∗
s (C,D).

(ii) C∗
s (1,−1; (2α− 1)β, β) ≡ C∗

s (α, β).
(iii) C∗

s (1,−1; 1,−1) ≡ C∗
s .

The paper is concerned with the study of the classes C∗(A,B;C,D) and C∗
s (A,B;C,D).

We obtain the coefficient estimates, distortion theorems, growth theorems, radius
of quasi convexity and relationship with other classes for the functions in these
classes. By giving the particular values to the parameters A, B, C and D, the
results proved by various authors follows as special cases.

2. Preliminary Results

Lemma 1 [6] If P (z) =
1 + Cw(z)

1 +Dw(z)
= 1 +

∑∞
k=1 pkz

k, then

|pn| ≤ (C −D), n ≥ 1.

Lemma 2 [5] If g(z) ∈ S∗(A,B), then for A− (n− 1)B ≥ (n− 2), n ≥ 3,

|dn| ≤
1

(n− 1)!

n∏
j=2

(A− (j − 1)B).

Lemma 3 [5] If g(z) ∈ S∗(A,B), then for |z| = r < 1,

r(1−Br)
A−B

B ≤ |g(z)| ≤ r(1 +Br)
A−B

B , B ̸= 0;

re−Ar ≤ |g(z)| ≤ reAr, B = 0.
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Lemma 4 [14] If h(z) ∈ K(A,B), then for A− (n− 1)B ≥ (n− 2), n ≥ 3,

|bn| ≤
1

n!

n∏
j=2

(A− (j − 1)B).

Lemma 5 [14] If h(z) ∈ K(A,B), then for |z| = r < 1,

1

A

[
1− (1−Br)

A
B

]
≤ |h(z)| ≤ 1

A

[
(1 +Br)

A
B − 1

]
, B ̸= 0;

1

A

[
1− e−Ar

]
≤ |h(z)| ≤ 1

A

[
eAr − 1

]
, B = 0.

Lemma 6 [4] If P (z) =
1 + Cw(z)

1 +Dw(z)
,−1 ≤ D < C ≤ 1, w(z) ∈ U ,

then for |z| = r < 1, we have

Re
zP ′(z)

P (z)
≥


− (C −D)r

(1− Cr)(1−Dr)
, if R1 ≤ R2,

2

√
(1−D)(1− C)(1 + Cr2)(1 +Dr2)− (1− CDr2)

(C −D)(1− r2)

+
C +D

C −D
, if R1 ≥ R2,

where R1 =

√
(1− C)(1 + Cr2)

(1−D)(1 +Dr2)
and R2 =

1− Cr

1−Dr
.

Lemma 7 [1, 11] Let N and D be analytic in E, D maps E onto a many sheeted
starlike region, N(0) = 0 = D(0). Then

N ′(z)

D′(z)
≺ 1 +Az

1 +Bz
⇒ N(z)

D(z)
≺ 1 +Az

1 +Bz
.

Lemma 8 Let h(z) ∈ K(A,B) and define

G(z) =

∫ z

0

h(t)

t
dt.

Then G(z) ∈ K(A,B).
Proof As

G(z) =

∫ z

0

h(t)

t
dt,

so we have

(zG′(z))′

G′(z)
=

zh′(z)

h(z)
. (2)

But h(z) ∈ K(A,B), so
(zh′(z))′

h′(z)
≺ 1 +Az

1 +Bz
. (3)

Using (2), (3) and Lemma 7, it yields

(zG′(z))′

G′(z)
=

zh′(z)

h(z)
≺ 1 +Az

1 +Bz
,

which proves Lemma 8.
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3. The class C∗(A,B;C,D)

Theorem 1 Let f(z) ∈ C∗(A,B;C,D), then for A− (n− 1)B ≥ (n− 2), n ≥ 2,

|an| ≤
1

n(n!)

n∏
j=2

(A− (j − 1)B) +
(C −D)

n2

1 + n−1∑
k=2

1

(k − 1)!

k∏
j=2

(A− (j − 1)B)

 .

(4)
The bounds are sharp.
Proof. In Definition 1, using Principle of subordination, we have

(zf ′(z))′ = h′(z)

(
1 + Cw(z)

1 +Dw(z)

)
, w(z) ∈ U. (5)

On expanding (5), it yields
1 + 4a2z + 9a3z

2 + ...+ n2anz
n−1 + ...

= (1+2b2z+3b3z
2+ ...+nbnz

n−1+ ...)(1+ p1z+ p2z
2+ ...+ pn−1z

n−1+ ...). (6)

Equating the coefficients of zn−1 in (6), we have

n2an = nbn + (n− 1)p1bn−1 + (n− 2)p2bn−2...+ 2pn−2b2 + pn−1. (7)

Applying triangle inequality and Lemma 1 in (7), it gives

n2|an| ≤ n|bn|+ (C −D) [(n− 1)|bn−1|+ (n− 2)|bn−2|...+ 2|b2|+ 1] . (8)

Using Lemma 4 in (8), the result (4) is obvious.
For n = 2, equality sign in (4) hold for the functions fn(z) defined as

(zf ′
n(z))

′ = (1 +Bδ1z)
(A−B)

B

(
1 + Cδ2z

n

1 +Dδ2zn

)
, |δ1| = 1, |δ2| = 1. (9)

On putting A = 1, B = −1 in Theorem 1, we get the following result due to Xiong
and Liu [15].
Corollary 1 Let f(z) ∈ C∗(C,D), then

|an| ≤
1

n
+

(n− 1)(C −D)

2n
.

For A = 1, B = −1, C = (2α − 1)β,D = β, Theorem 1 agrees with the following
result due to Selvaraj and Stelin [12].
Corollary 2 Let f(z) ∈ C∗(α, β), then

|an| ≤
1

n
[1 + β(1− α)(n− 1)] .

For A = 1, B = −1, C = 1, D = −1, Theorem 1 coincides with the following result
due to Noor [10].
Corollary 3 Let f(z) ∈ C∗, then

|an| ≤ 1.

Theorem 2 If f(z) ∈ C∗(A,B;C,D), then for |z| = r, 0 < r < 1, we have
for D ̸= −1, B ̸= 0,

1

r

∫ r

0

(
1− Ct

1−Dt

)
(1−Bt)

A−B
B dt ≤ |f ′(z)| ≤ 1

r

∫ r

0

(
1 + Ct

1 +Dt

)
(1 +Bt)

A−B
B dt; (10)∫ r

0

[
1

s

∫ s

0

(
1− Ct

1−Dt

)
(1−Bt)

A−B
B dt

]
ds ≤ |f(z)| ≤

∫ r

0

[
1

s

∫ s

0

(
1 + Ct

1 +Dt

)
(1 +Bt)

A−B
B dt

]
ds,

(11)
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and for D = −1, B ̸= 0,

1

r

∫ r

0

(
1− Ct

1 + t

)
(1−Bt)

A−B
B dt ≤ |f ′(z)| ≤ 1

r

∫ r

0

(
1 + Ct

1− t

)
(1 +Bt)

A−B
B dt; (12)∫ r

0

[
1

s

∫ s

0

(
1− Ct

1 + t

)
(1−Bt)

A−B
B dt

]
ds ≤ |f(z)| ≤

∫ r

0

[
1

s

∫ s

0

(
1 + Ct

1− t

)
(1 +Bt)

A−B
B dt

]
ds.

(13)
Estimates are sharp.
Proof. From (5), we have

|(zf ′(z))′| = |h′(z)|
∣∣∣∣ 1 + Cw(z)

1 +Dw(z)

∣∣∣∣ , w(z) ∈ U. (14)

It is easy to show that the transformation

(zf ′(z))′

h′(z)
=

1 + Cw(z)

1 +Dw(z)

maps |w(z)| ≤ r onto the circle∣∣∣∣ (zf ′(z))′

h′(z)
− 1− CDr2

1−D2r2

∣∣∣∣ ≤ (C −D)r

(1−D2r2)
, |z| = r.

This implies that
1− Cr

1−Dr
≤

∣∣∣∣ 1 + Cw(z)

1 +Dw(z)

∣∣∣∣ ≤ 1 + Cr

1 +Dr
. (15)

Let F (z) = zf ′(z).
As h(z) ∈ K(A,B), so from Lemma 5, we have

(1−Br)
A−B

B ≤ |h′(z)| ≤ (1 +Br)
A−B

B , B ̸= 0. (16)

Using (15) and (16) in (14), it yields(
1− Cr

1−Dr

)
(1−Br)

A−B
B ≤ |F ′(z)| ≤

(
1 + Cr

1 +Dr

)
(1 +Br)

A−B
B , B ̸= 0. (17)

On integrating (17) from 0 to r, the results (10) and (12) are obvious.
Again integrating (10) and (12) from 0 to r, the results (11) and (13) can be easily
obtained.
Sharpness follows if we take fn(z) defined in (9).
On putting A = 1, B = −1 in Theorem 2, it gives the following result due to Xiong
and Liu [15].
Corollary 4 Let f(z) ∈ C∗(C,D), then
for D ̸= −1,

C −D

r(1 +D)2
log

1−Dr

1 + r
+

1 + C

(1 +D)(1 + r)
≤ |f ′(z)| ≤ C −D

r(1 +D)2
log

1− r

1 +Dr
+

1 + C

(1 +D)(1− r)
;∫ r

0

[
C −D

t(1 +D)2
log

1−Dt

1 + t
+

1 + C

(1 +D)(1 + t)

]
dt ≤ |f(z)|

≤
∫ r

0

[
C −D

t(1 +D)2
log

1− t

1 +Dt
+

1 + C

(1 +D)(1− t)

]
dt

and for D = −1,

− 1 + C

2r(1 + r)2
+

C

r(1 + r)
+

1

2r
(1−C) ≤ |f ′(z)| ≤ 1 + C

2r(1− r)2
− C

r(1− r)
+

1

2r
(C−1);
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0

[
− 1 + C

2t(1 + t)2
+

C

t(1 + t)
+

1

2t
(1− C)

]
dt ≤ |f(z)|

≤
∫ r

0

[
1 + C

2t(1− t)2
− C

t(1− t)
+

1

2t
(C − 1)

]
dt.

For A = 1, B = −1, C = (2α − 1)β,D = β, Theorem 2 agrees with the following
result due to Selvaraj and Stelin [12].
Corollary 5 Let f(z) ∈ C∗(α, β), then
for β ̸= 1,

L1 ≤ |f ′(z)| ≤ L2

and

L3 ≤ |f(z)| ≤ L4,

where

L1 =
−2β(1− α)

(1− β)2r
log

(
1 + r

1 + βr

)
+

1 + (1− 2α)β

(1− β)(1 + r)
,

L2 =
2β(1− α)

(1− β)2r
log

(
1− r

1− βr

)
+

1 + (1− 2α)β

(1− β)(1− r)
,

L3 =
−2β(1− α)

(1− β)2

∫ r

0

1

t
log

(
1 + t

1 + βt

)
dt+

1 + (1− 2α)β

(1− β)
log(1 + r),

L4 =
2β(1− α)

(1− β)2

∫ r

0

1

t
log

(
1− t

1− βt

)
dt− 1 + (1− 2α)β

(1− β)
log(1− r),

and for β = 1,
1 + αr

(1 + r)2
≤ |f ′(z)| ≤ 1− αr

(1− r)2
;

(1− α)
r

1 + r
+ αlog(1 + r) ≤ |f(z)| ≤ (1− α)

r

1− r
− αlog(1− r).

For A = 1, B = −1, C = 1, D = −1, Theorem 2 coincides with the following result
due to Noor [10].
Corollary 6 Let f(z) ∈ C∗, then

1

(1 + r)2
≤ |f ′(z)| ≤ 1

(1− r)2

and
r

1 + r
≤ |f(z)| ≤ r

1− r
.

Theorem 3 Let F (z) = zf ′(z), where f(z) ∈ C∗(A,B;C,D), then

Re
(zF ′(z))′

F ′(z)
≥



1−Ar

1−Br
− (C −D)r

(1− Cr)(1−Dr)
, if R1 ≤ R2,

1−Ar

1−Br
+ 2

√
(1−D)(1− C)(1 + Cr2)(1 +Dr2)− (1− CDr2)

(C −D)(1− r2)

+
C +D

C −D
, if R1 ≥ R2,

(18)
where R1 and R2 are defined in Lemma 6.
Proof. As f(z) ∈ C∗(A,B;C,D), we have

(zf ′(z))′

h′(z)
=

1 + Cw(z)

1 +Dw(z)
= P (z).
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Here F (z) = zf ′(z). So on differentiating it logarithmically, we get

(zF ′(z))′

F ′(z)
=

(zh′(z))′

h′(z)
+

zP ′(z)

P (z)
. (19)

Now for h ∈ K(A,B), we have

Re

(
(zh′(z))′

h′(z)

)
≥ 1−Ar

1−Br
. (20)

So using Lemma 6 and inequality (20) in equation (19), the result (18) is obvious.
Sharpness follows if we take fn(z) to be same as in (9).
On putting A = 1, B = −1 in Theorem 3, it gives the following result due to Xiong
and Liu [15].
Corollary 7 Let F (z) = zf ′(z), where f(z) ∈ C∗(C,D), then

Re
(zF ′(z))′

F ′(z)
≥



1− r

1 + r
− (C −D)r

(1− Cr)(1−Dr)
, if R1 ≤ R2,

1− r

1 + r
+ 2

√
(1−D)(1− C)(1 + Cr2)(1 +Dr2)− (1− CDr2)

(C −D)(1− r2)

+
C +D

C −D
, if R1 ≥ R2,

where R1 and R2 are defined in Lemma 6.
For A = 1, B = −1, C = (2α − 1)β,D = β, Theorem 3 gives the following result
due to Selvaraj and Stelin [12].
Corollary 8 Let F (z) = zf ′(z), where f(z) ∈ C∗(α, β), then

Re
(zF ′(z))′

F ′(z)
≥


1− r

1 + r
− 2(1− α)βr

(1 + βr)[1 + (2α− 1)βr]
, if 0 < r ≤ r∗,

1− r

1 + r
+ γ − α

1− α
, if r∗ < r < 1,

where

γ =

√
(1 + β)[1 + (2α− 1)β](1− βr2)[1− (2α− 1)βr2]− [1 + (1− 2α)β2r2]

(1− α)β(1− r2)
and r∗ is the unique root of the equation

(2α− 1)β2r4 − 2(2α− 1)β2r3 − [1 + 4αβ + (2α− 1)β2]r2 − 2r + 1 = 0

in the interval (0, 1].
Theorem 4 If f(z) ∈ C∗(A,B;C,D) with respect to the function h(z) ∈ K(A,B)
and let

F (z) =

∫ z

0

f(t)

t
dt,G(z) =

∫ z

0

h(t)

t
dt.

Then F (z) ∈ C∗(A,B;C,D) with respect to the function G(z).
Proof. Since f(z) ∈ C∗(A,B;C,D) with respect to the function h(z) ∈ K(A,B),
so

(zf ′(z))′

h′(z)
≺ 1 + Cz

1 +Dz
. (21)

From Lemma 8, it is clear that G(z) ∈ K(A,B). Again, we have

(zF ′(z))′

G′(z)
=

zf ′(z)

h(z)
. (22)
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Following (21), (22) and Lemma 8, we have

(zF ′(z))′

G′(z)
≺ 1 + Cz

1 +Dz
,

which proves the theorem.

4. The class C∗
s (A,B;C,D)

Theorem 5 Let f(z) ∈ C∗
s (A,B;C,D), then for A− (n− 1)B ≥ (n− 2), n ≥ 2,

|an| ≤
1

n!

n∏
j=2

(A−(j−1)B)+
(C −D)

n2

1 + n−1∑
k=2

k

(k − 1)!

k∏
j=2

(A− (j − 1)B)

 . (23)

The results are sharp.
Proof. From Definition 2, using Principle of subordination, we have

(zf ′(z))′ = g′(z)

(
1 + Cw(z)

1 +Dw(z)

)
, w(z) ∈ U. (24)

On expanding (24), it yields
1 + 4a2z + 9a3z

2 + ...+ n2anz
n−1 + ...

= (1+2d2z+3d3z
2+ ...+ndnz

n−1+ ...)(1+p1z+p2z
2+ ...+pn−1z

n−1+ ...) (25)

Equating the coefficients of zn−1 in (25), we have

n2an = ndn + (n− 1)p1dn−1 + (n− 2)p2dn−2...+ 2pn−2d2 + pn−1. (26)

Applying triangle inequality and Lemma 1 in (26), it gives

n2|an| ≤ n|dn|+ (C −D) [(n− 1)|dn−1|+ (n− 2)|dn−2|...+ 2|d2|+ 1] . (27)

Using Lemma 2 in (27), the result (23) is obvious.
For n = 2, equality sign in (23) hold for the functions fn(z) defined by

(zf ′
n(z))

′ = (1 +Bδ1z)
(A−B)

B

(
1 +Aδ1z

n

1 +Bδ1zn

)(
1 + Cδ2z

n

1 +Dδ2zn

)
, |δ1| = 1, |δ2| = 1. (28)

On putting A = 1, B = −1 in Theorem 5, we get the following result:
Corollary 9 Let f(z) ∈ C∗

s (C,D), then

|an| ≤ 1 +
(C −D)(n− 1)(2n− 1)

6n
.

For A = 1, B = −1, C = (2α − 1)β,D = β, Theorem 5 gives the following result
due to Selvaraj et al. [13].
Corollary 10 Let f(z) ∈ C∗

s (α, β), then

|an| ≤ [1− 2(1− α)β] +
[(1− α)β(n+ 1)(2n+ 1)]

3n
.

For A = 1, B = −1, C = 1, D = −1, Theorem 5 gives the following result:
Corollary 11 Let f(z) ∈ C∗

s , then

|an| ≤
2n2 + 1

3n
.

Theorem 6 If f(z) ∈ C∗
s (A,B;C,D), then for |z| = r, 0 < r < 1, we have

for D ̸= −1, B ̸= 0,

1

r

∫ r

0

(
1− Ct

1−Dt

)(
1−At

1−Bt

)
(1−Bt)

A−B
B dt ≤ |f ′(z)|
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≤ 1

r

∫ r

0

(
1 + Ct

1 +Dt

)(
1 +At

1 +Bt

)
(1 +Bt)

A−B
B dt; (29)∫ r

0

[
1

s

∫ s

0

(
1− Ct

1−Dt

)(
1−At

1−Bt

)
(1−Bt)

A−B
B dt

]
ds ≤ |f(z)|

≤
∫ r

0

[
1

s

∫ s

0

(
1 + Ct

1 +Dt

)(
1 +At

1 +Bt

)
(1 +Bt)

A−B
B dt

]
ds, (30)

and for D = −1, B ̸= 0,

1

r

∫ r

0

(
1− Ct

1 + t

)(
1−At

1−Bt

)
(1−Bt)

A−B
B dt ≤ |f ′(z)|

≤ 1

r

∫ r

0

(
1 + Ct

1− t

)(
1 +At

1 +Bt

)
(1 +Bt)

A−B
B dt; (31)∫ r

0

[
1

s

∫ s

0

(
1− Ct

1 + t

)(
1−At

1−Bt

)
(1−Bt)

A−B
B dt

]
ds ≤ |f(z)|

≤
∫ r

0

[
1

s

∫ s

0

(
1 + Ct

1− t

)(
1 +At

1 +Bt

)
(1 +Bt)

A−B
B dt

]
ds. (32)

Estimates are sharp.
Proof. From (24), we have

|(zf ′(z))′| = |g′(z)|
∣∣∣∣ 1 + Cw(z)

1 +Dw(z)

∣∣∣∣ , w(z) ∈ U. (33)

As in Theorem 2, we have

1− Cr

1−Dr
≤

∣∣∣∣ 1 + Cw(z)

1 +Dw(z)

∣∣∣∣ ≤ 1 + Cr

1 +Dr
. (34)

Let F (z) = zf ′(z).
As g(z) ∈ S∗(A,B), so from Lemma 3, we have(

1−Ar

1−Br

)
(1−Br)

A−B
B ≤ |g′(z)| ≤

(
1 +Ar

1 +Br

)
(1 +Br)

A−B
B , B ̸= 0. (35)

Therefore from (34) and (35), it yields(
1− Cr

1−Dr

)(
1−Ar

1−Br

)
(1−Br)

A−B
B ≤ |F ′(z)| ≤

(
1 + Cr

1 +Dr

)(
1 +Ar

1 +Br

)
(1+Br)

A−B
B , B ̸= 0.

(36)
On integrating (36) from 0 to r, the result (29) and (31) are obvious.
Again integrating (29) and (31) from 0 to r, the results (30) and (32) can be easily
obtained.
Sharpness follows if we take fn(z) defined in (28).
On putting A = 1, B = −1 in Theorem 6, it gives the following result:
Corollary 12 Let f(z) ∈ C∗

s (C,D), then
for D ̸= −1,
L1 ≤ |f ′(z)| ≤ L2 and L3 ≤ |f(z)| ≤ L4, where

L1 =
(D − 1)

r(D + 1)3
log

∣∣∣∣ 1 + r

1−Dr

∣∣∣∣+[
(D − 1)

D(D + 1)2
− C

D

]
1

1 + r
+
1

2

[
1 +

C

D
− (D − 1)

D(D + 1)

]
(2 + r)

(1 + r)2
,

L2 =
(D − 1)

r(D + 1)3
log

∣∣∣∣1 +Dr

1− r

∣∣∣∣+[
(D − 1)

D(D + 1)2
− C

D

]
1

1− r
+
1

2

[
1 +

C

D
− (D − 1)

D(D + 1)

]
(2− r)

(1− r)2
,
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L3 =

∫ r

0

[
(D − 1)

t(D + 1)3
log

∣∣∣∣ 1 + t

1−Dt

∣∣∣∣+ [
(D − 1)

D(D + 1)2
− C

D

]
1

1 + t
+

1

2

[
1 +

C

D
− (D − 1)

D(D + 1)

]
(2 + t)

(1 + t)2

]
dt,

L4 =

∫ r

0

[
(D − 1)

t(D + 1)3
log

∣∣∣∣1 +Dt

1− t

∣∣∣∣+ [
(D − 1)

D(D + 1)2
− C

D

]
1

1− t
+

1

2

[
1 +

C

D
− (D − 1)

D(D + 1)

]
(2− t)

(1− t)2

]
dt,

and for D = −1,
C

1 + r
− (3C + 1)(2 + r)

2(1 + r)2
+

2(C + 1)(3 + 3r + r2)

3(1 + r)3

≤ |f ′(z)| ≤ C

1− r
− (3C + 1)(2− r)

2(1− r)2
+

2(C + 1)(3− 3r + r2)

3(1− r)3
,

∫ r

0

[
C

1 + t
− (3C + 1)(2 + t)

2(1 + t)2
+

2(C + 1)(3 + 3t+ t2)

3(1 + t)3

]
dt ≤ |f(z)|

≤
∫ r

0

[
C

1− t
− (3C + 1)(2− t)

2(1− t)2
+

2(C + 1)(3− 3t+ t2)

3(1− t)3

]
dt.

For A = 1, B = −1, C = (2α − 1)β,D = β, Theorem 6 gives the following result
due to Selvaraj et al. [13].
Corollary 13 Let f(z) ∈ C∗

s (α, β), then
for β ̸= 1,

L1 ≤ |f ′(z)| ≤ L2

and

L3 ≤ |f(z)| ≤ L4,

where

L1 =
2β(1− α)(1 + β)

(1− β)3r
log

[
1 + r

1 + βr

]
+
(1− 2α)β2 + 2β(3α− 2)− 1

(1− β)2
1

1 + r
+
[1 + (1− 2α)β]

(1− β)

r + 2

(1 + r)2
,

L2 =
−2β(1− α)(1 + β)

(1− β)3r
log

[
1− r

1− βr

]
+
(1− 2α)β2 + 2β(3α− 2)− 1

(1− β)2
1

1− r
−2

[1 + (1− 2α)β]

(1− β)

r − 2

(1− r)2
,

L3 =
2β(1− α)(1 + β)

(1− β)3

∫ r

0

1

t
log

[
1 + t

1 + βt

]
dt+

[1 + (1− 2α)β]

(1− β)

r

1 + r
−4(1− α)β

(1− β)2
log(1+r),

L4 =
−2β(1− α)(1 + β)

(1− β)3

∫ r

0

1

t
log

[
1 + t

1 + βt

]
dt+

[1 + (1− 2α)β]

(1− β)

r

1− r
+
4(1− α)β

(1− β)2
log(1−r),

and for β = 1,

M1 ≤ |f ′(z)| ≤ M2,

where

M1 =
4(1− α)(r2 + 3r + 3)

3(1 + r)3
− (2− 3α)

r + 2

(1 + r)2
+ (1− 2α)

1

1 + r
,

M2 =
4(1− α)(r2 − 3r + 3)

3(1− r)3
− (2− 3α)

r − 2

(1− r)2
+ (1− 2α)

1

1− r
,

and
(1− α)

3
log(1 + r) +

(5α− 2)r

3(1 + r)
+

2(1− α)r(r + 2)

3(1 + r)2

≤ |f(z)| ≤ − (1− α)

3
log(1− r) +

(5α− 2)r

3(1− r)
− 2(1− α)r(r − 2)

3(1− r)2
.
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For A = 1, B == −1, C = 1, D = −1, Theorem 6 gives the following result:
Corollary 14 Let f(z) ∈ C∗

s , then

r2 + 3

3(1 + r)3
≤ |f ′(z)| ≤ r2 + 3

3(1− r)3

and
1

3

[
log|1 + r|+ 2r

(1 + r)2

]
≤ |f(z)| ≤ 1

3

[
−log|1− r|+ 2r

(1− r)2

]
.

Theorem 7 Let F (z) = zf ′(z), where f(z) ∈ C∗
s (A,B;C,D), then

Re
(zF ′(z))′

F ′(z)
≥



1−Ar

1−Br
− (A−B)r

1−B2r2
− (C −D)r

(1− Cr)(1−Dr)
, if R1 ≤ R2,

1−Ar

1−Br
− (A−B)r

1−B2r2

+2

√
(1−D)(1− C)(1 + Cr2)(1 +Dr2)− (1− CDr2)

(C −D)(1− r2)
+

C +D

C −D
, if R1 ≥ R2,

(37)
where R1 and R2 are defined in Lemma 6.
Proof. As f(z) ∈ C∗

s (A,B;C,D), we have

(zf ′(z))′

g′(z)
=

1 + Cw(z)

1 +Dw(z)
= P (z).

Here F (z) = zf ′(z). So on differentiating it logarithmically, we get

(zF ′(z))′

F ′(z)
=

(zg′(z))′

g′(z)
+

zP ′(z)

P (z)
. (38)

Now for g ∈ S∗(A,B), we have

Re

(
(zg′(z))′

g′(z)

)
≥ 1−Ar

1−Br
− (A−B)

1−B2r2
. (39)

So using Lemma 6 and inequality (39) in equation (38), the result (37) is obvious.
Sharpness follows if we take fn(z) to be same as in (28).
On putting A = 1, B = −1 in Theorem 7, it gives the following result:
Corollary 15 Let F (z) = zf ′(z), where f(z) ∈ C∗

s (C,D), then

Re
(zF ′(z))′

F ′(z)
≥



1− r

1 + r
− 2r

1− r2
− (C −D)r

(1− Cr)(1−Dr)
, if R1 ≤ R2,

1− r

1 + r
− 2r

1− r2

+2

√
(1−D)(1− C)(1 + Cr2)(1 +Dr2)− (1− CDr2)

(C −D)(1− r2)
+

C +D

C −D
, if R1 ≥ R2,

where R1 and R2 are defined in Lemma 6.
For A = 1, B = −1, C = (2α − 1)β,D = β, Theorem 7 gives the following result
due to Selvaraj et al. [13].
Corollary 16 Let F (z) = zf ′(z), where f(z) ∈ C∗(α, β), then

Re
(zF ′(z))′

F ′(z)
≥


1− r

1 + r
− 2r

1− r2
− 2(1− α)βr

(1 + βr)[1 + (2α− 1)βr]
, if 0 ≤ r ≤ r∗,

1− r

1 + r
− 2r

1− r2
+ γ − α

1− α
, if r∗ < r < 1,
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where γ =

√
(1 + β)[1 + (2α− 1)β](1− βr2)[1− (2α− 1)βr2]− [1 + (1− 2α)β2r2]

(1− α)β(1− r2)
and and r∗ is the unique root of the equation

(2α− 1)β2r4 − 2(2α− 1)β2r3 − [1 + 4αβ + (2α− 1)β2]r2 − 2r + 1 = 0

in the interval (0, 1].
Theorem 8 If f(z) ∈ C∗

s (A,B;C,D) with respect to the function g(z) ∈ S∗(A,B)
and let

F (z) =

∫ z

0

f(t)

t
dt,G(z) =

∫ z

0

h(t)

t
dt.

Then F (z) ∈ C∗
s (A,B;C,D) with respect to the function G(z).

Proof. Since f(z) ∈ C∗
s (A,B;C,D) with respect to the function g(z) ∈ S∗(A,B),

so
(zf ′(z))′

g′(z)
≺ 1 + Cz

1 +Dz
. (40)

From Lemma 8, it is easy to show that G(z) ∈ S∗(A,B). Again, we have

(zF ′(z))′

G′(z)
=

zf ′(z)

g(z)
. (41)

Following (40), (41) and Lemma 8, we have

(zF ′(z))′

G′(z)
≺ 1 + Cz

1 +Dz
,

which proves the theorem.
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