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EXISTENCE OF ITERATED PROXIMATE ORDER AND

ITERATED PROXIMATE TYPE OF AN ENTIRE FUNCTION

SUTAPA MONDAL, CHINMAY GHOSH AND SANJIB KUMAR DATTA

Abstract. In this paper we introduced iterated proximate order ( iterated

lower proximate order), iterated proximate type ( iterated lower proximate
type) of an entire function and proved the corresponding existence theorems.

1. Introduction

If f(z) is an entire function of finite order ρ and Mf (r) = sup
|z|=r

|f(z)| , it is proved

(Valiron [4] ) that there exists a positive continuous function ρ(r) with the following
properties:

(i) ρ(r) is differentiable for sufficiently large values of r except at isolated points
where ρ′(r − 0), ρ′(r + 0) exist;

(ii) lim
r→∞

ρ(r) = ρ;

(iii) lim
r→∞

ρ′(r)r log r = 0;

(iv) lim sup
r→∞

logMf (r)
rρ = 1.

Such a function is called a proximate order for the entire function f(z). Shah [2]
gave a simple proof of the existence of proximate order of an entire function. Lahiri
[1] generalised the idea for a meromorphic function.

There are two other indicators of growth of an entire function f(z),the type T
and the lower type t. They are defined for all ρ, 0 < ρ < ∞ as

lim sup
r→∞

logMf (r)

rρ
= T,

lim inf
r→∞

logMf (r)

rρ
= t.

Definition 1 [3] A function T (r) is said to be a proximate type of an entire
function f(z) of order ρ(0 < ρ < ∞) and finite type T if it satisfies the following
properties:
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(i) T (r) is real valued, continuous and piecewise differentiable for sufficiently
large values of r;

(ii) lim
r→∞

T (r) = T ;

(iii) lim
r→∞

rT ′(r) = 0, where T ′(r) is either the right or the left hand derivative

at points where they are different;

(iv) lim sup
r→∞

Mf (r)
exp{rρT (r)} = 1.

Srivastava and Juneja [3] gave the proof of the existence of proximate type of an
entire function.

Definition 2 [5] Tu, Chen, Zheng introduced the definition of iterated p order
ρp of an entire function f for p ∈ N as

ρp = lim sup
r→∞

logp+1 Mf (r)

log r
. (1)

Similarly, the iterated p lower order λp of an entire function f for p ∈ N as

λp = lim inf
r→∞

logp+1 Mf (r)

log r
. (2)

Definition 3 [5] The finiteness degree of the order of an entire function f is
defined by

i(f) =

 0 for f polynomial,
min {p ∈ N : ρp < ∞} for f transcendental for which some p ∈ N with ρp < ∞ exists.

∞ for f with ρp = ∞ for all p ∈ N.

Then it is clear that i(f) and i(g) are positive integers.
Definition 4 Also one can define the iterated p type Tp of an entire function f

as

Tp = lim sup
r→∞

logp Mf (r)

rρp
.

Similarly the iterated p lower type tp of an entire dunction f as

tp = lim inf
r→∞

logp Mf (r)

rρp
.

In this paper we want to prove the existence of iterated proximate p order and
the existence of iterated proximate p type of an entire function.

2. Main Results

In this section we first introduce the definitions of iterated proximate p order
and iterated proximate p type of an entire function. Then we prove their existence.

Definition If f(z) is an entire function of iterated p order ρp. A function ρp(r)
is said to be finite iterated proximate p order of f(z) if the following properties
hold:

(i) ρp(r) is differentiable for sufficiently large values of r except at isolated points
where ρ′p(r − 0), ρ′p(r + 0) exist;

(ii) lim
r→∞

ρp(r) = ρp;

(iii) lim
r→∞

ρ′p (r)
∏p

i=0 logi(r) = 0;

(iv) lim sup
r→∞

logp−1 Mf (r)

rρ = 1.

Similarly finite iterated proximate p lower order of f(z) can be defined.
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Definition If f(z) is an entire function of iterated p order ρp.Then the function
Tp(r) is said to be iterated proximate p type of f(z) of order ρ(0 < ρ < ∞) and
finite type Tp if it satisfies the following properties:

(i) Tp(r) is differentiable for sufficiently large values of r except at isolated points
where T ′

p(r − 0), T ′
p(r + 0) exist;

(ii) lim
r→∞

Tp(r) = Tp;

(iii) lim
r→∞

T ′
p(r)

∏p−1
i=0 logi r = 0;

(iv) lim sup
r→∞

Mf (r)
expp{rρpTp(r)} = 1.

Similarly finite iterated proximate p lower type of f(z) can be defined.
Theorem 1 For every entire function f(z) of finite iterated order ρp, with

i(f) = p (0 < ρp < ∞), there exists a proximate iterated order ρp(r).
Proof. Let

σp(r) =
logp Mf (r)

log r

then

lim sup
r→∞

σp(r) = ρp.

We consider two cases:
Case I: Let σp(r) > ρp for atleast a sequence of values of r tending to infinity.
We define

ϕp(r) = max
x≥r

{σp(x)} .

Note that ϕp(r) exists and is nonincreasing.
Let R1 > expp+1(1) and σp(R) > ρp.
Then for r ≥ R1 > R, we get

σp(r) ≤ σp(R).

Since σp(r) is continuous, there exists r1 ∈ [R,R1] such that

σp(r1) = max
R≤x≤R1

{σp(x)} .

Obviously r1 > expp+1(1) and ϕp(r1) = σp(r1).
Note that r = r1 exists for a sequence of values of r tending to infinity.
Let ρp (r1) = ϕp(r1) and t1 be the smallest integer not less than 1+ r1 such that

ϕp(r1) > ϕp(t1).
We define ρp (r) = ρp (r1) for r1 < r ≤ t1.
Clearly ϕp(r) and ρp (r1)− logp+1 r+logp+1 t1 are continuous functions of r and

lim
r→∞

ρp (r1)− logp+1 r + logp+1 t1 = −∞.

Further lim
r→∞

ρp (r1)− logp+1 r + logp+1 t1 > ϕp(t1) for r (> t1) sufficiently close

to t1 and ϕp(r) is nonincreasing.
We can define u1 as follows

u1 > t1

ρp (r) = ρp (r1)− logp+1 r + logp+1 t1, for t1 ≤ r ≤ u1

ρp (r) = ϕp(r), for r = u1

ρp (r) > ϕp(r), for t1 ≤ r < u1.
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Let r2 be the smallest value of r for which r ≥ u1 and ϕp(r2) = σp(r2). If r2 > u1

then let ρp (r) = ϕp(r) for u1 ≤ r ≤ r2.
One can be easily checked that ϕp(r) is constant in u1 ≤ r ≤ r2. Thus ρp (r) is

constant in u1 ≤ r ≤ r2.
Repeating this process infinitely and we obtain that ρp (r) is differentiable in

adjacent intervals.
Further, ρ′p (r) = 0 or −1∏p+1

i=0 logi(r)
and ρp (r) ≥ ϕp (r) ≥ σp (r) for all r ≥ r1.

Also ρp (r) = σp (r) for a sequence of values of r tending to infinity, ρk (r) is
nonincreasing for r ≥ r1 and

ρp = lim sup
r→∞

σp (r)

= lim
r→∞

ϕp (r) .

So

lim sup
r→∞

ρp (r) = lim inf
r→∞

ρp (r)

= lim
r→∞

ρp (r)

= ρp

and

lim
r→∞

ρ′k (r)

p∏
i=0

logi(r) = 0.

Further we have

logp−1 Mf (r) = rσp(r)

= rρp(r)

for a sequence of values of r tending to ∞ and

logp−1 Mf (r) < rρp(r)

for remaining r’s. Therefore

lim sup
r→∞

logp−1 Mf (r)

rρp(r)
= 1.

Finally note that ρp (r) is continuous for r ≥ r1. It proves Case I.
Case II: Let σp(r) ≤ ρp for all sufficiently large values of r.
In case II we have two Subcases
Subcase A: Let σp(r) = ρp for atleast a sequence of values of r tending to

infinity.
We take ρp(r) = ρp for all values of r.
Subcase B: Let σp(r) < ρp for all sufficiently large values of r.
Let

ξp (r) = max
R2≤x≤r

σp (x)

where R2 > expp+1(1) is such that σp(x) < ρp whenever x ≥ R2.
Note that ξp (r) is increasing and for all sufficiently large x ≥ R2,the roots of

ξp(x) = ρp + logp+1 x− logp+1 r are less than r.
For a suitable large value u2 > R2, we define

ρp (u2) = ρp,

ρp (r) = ρp + logp+1 r − logp+1 u2,
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for t2 ≤ r ≤ u2 where t2 < u2 is such that ξp (t2) = ρp (t2) .
In fact t2 is given by the largest positive root of ξp(x) = ρp+logp+1 x− logp+1 u2.
If ξp (t2) ̸= σp (t2) , let v1 (< t2) be the upper bound of point v at which ξp (v) =

σp (v) and v < t2.
Note that ξp (v1) = σp (v1) .
We define

ρp (r) = ξp(r)

for v1 ≤ r ≤ t2.
One can check that ξp(r) is constant in v1 ≤ r ≤ t2. Thus ρp(r) is constant in

[v1, t2] .
If ξp (t2) = σp (t2), we take v1 = t2.
We choose u3 > u2 suitably large and let

ρp (u2) = ρp,

ρp (r) = ρp + logp+1 r − logp+1 u3,

for t3 ≤ r ≤ u3 where t3 < u3 is such that ξp (t3) = ρp (t3) .
If ξp (t3) ̸= ρp (t3) , let ρp (r) = ξp(r) for v2 ≤ r ≤ t3, where v2 has a similar

property as that of v1.
Similarly as before ρp (r) is constant in [v2, t3] .
If ξp (t3) = σp (t3), we take v2 = t3.
Let

ρp (r) = ρp (v2) + logp+1 v2 − logp+1 r

for t4 ≤ r ≤ v2 where t4 (< v2) is the point of intersection of y = ρp and y =
ρp (v2) + logp+1 v2 − logp+1 x.

We can choose u3 so large that u2 < t4.
Let ρp (r) = ρp for u2 ≤ r ≤ t4.
We repeat this process.
Now we can show that for all r ≥ u2, ρp ≥ ρp (r) ≥ ξp (r) ≥ σp (r) and ρp (r) =

σp (r) for r = v1, v2, ....
So we obtain

lim sup
r→∞

ρp (r) = lim inf
r→∞

ρp (r)

= lim
r→∞

ρp (r)

= ρp.

Since

logp−1 Mf (r) = rσp(r)

= rρp(r)

for a sequence of values of r tending to infinity and

logp−1 Mf (r) < rρp(r)

for remaining r’s.
Therefore

lim sup
r→∞

logp−1 Mf (r)

rρp(r)
= 1.

Also ρp (r) is differentiable in adjacent intervals.
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Further ρ′p (r) = 0 or −1∏p+1
i=0 logi(r)

and then

lim
r→∞

ρ′p (r)

p∏
i=0

logi(r) = 0.

Finally note that ρp (r) is continuous. Hence it proves Case II.
Theorem 2 For every entire function f(z) of finite iterated lower order λp, with

i(f) = p (0 < λp < ∞), there exists a proximate iterated lower order λp(r).
Proof. We can prove this theorem in the same line of the previous theorem.
Example For an entire function f(z), its maximummodulus isMf (r) = sup

|z|=r

|f(z)| .

Set ϕ (r) = logp Mf (r) > 0 for sufficiently large values of r.

Obviously ρp = lim sup
r→∞

log ϕ(r)
log r < ∞.

Then it can be found (lengthy process) proximate iterated p order ρp (r) such
that

ϕ (r) ≤ rρp(r)

for sufficiently large values of r, and

ϕ (rn) ≥ rρp(rn)

for a sequence of values of {rn} , rn → ∞.
Theorem 3 For every entire function f(z) of finite iterated order ρp, with

i(f) = p (0 < ρp < ∞) and finite iterated type Tp, there exists a proximate iterated
type T (r).

Proof.

ρp = lim sup
r→∞

logp+1 Mf (r)

log r
,

Tp = lim sup
r→∞

logp Mf (r)

rρp
,

tp = lim inf
r→∞

logp Mf (r)

rρp
.

Let

Sp(r) =
logp Mf (r)

rρp
.

Then two cases arise.
Case I: Sp(r) > Tp for a sequence of values of r tending to infinity.
Define

Qp(r) = max
x≥r1

{Sp(x)} .

Since Sp(x) is continuous, lim sup
x→∞

Sp(x) = Tp and Sp(x) > Tp for a sequence of

values of x tending to infinity, Qp(r) exists and is a nonincreasing function of r.
Let r1 be a number such that r1 > expp(1) and Qp(r1) = maxx≥r1 {Sp(x)} =

Sp(r1). Such values exists for a sequence of values of r tending to infinity.
Next, suppose that Tp(r1) = Qp(r1) and choose t1 be the smallest integer not

less than 1 + r1 such that Qp(r1) > Qp(t1).
We set, Tp(r) = Tp(r1) = Qp(r1) for r1 < r ≤ t1.
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Define u1 as

u1 > t1

Tp(r) = T (r1)− logp r + logp t1 for t1 ≤ r ≤ u1,

Tp(r) = Qp(r) for r = u1,

but

Tp(r) > Qp(r) for t1 ≤ r ≤ u1.

Let r2 be the smallest value of r for which r2 ≥ u1 and Qp(r2) = Sp(r2).
If r2 > u1 then let Tp(r) = Qp(r) for u1 ≤ r ≤ r2. One can be easily checked

that Qp(r) is constant in u1 ≤ r ≤ r2.
Repeating the argument we obtain that Tp(r) is differentiable in adjacent inter-

vals.
Further T ′

p(r) = 0 or −
(∏p−1

i=0 logi r
)
and Tp(r) ≥ Qp(r) ≥ Sp(r) for all r ≥ r1.

Further Tp(r) = Sp(r) for an infinite number of values of r, also Tp(r) is nonin-
creasing and Tp = lim sup

r→∞
Sp(r) = lim

r→∞
Qp(r).

So,
lim sup
r→∞

Tp(r) = lim inf
r→∞

Tp(r) = lim
r→∞

Tp(r) = Tp

and

lim
r→∞

T ′
p(r)

p−1∏
i=0

logi r = 0.

Further we have,

Mf (r) = expp {rρpSp(r)} = expp {rρpTp(r)}
for sufficiently large values of r,

Mf (r) < expp {rρpTp(r)}
for the remaining r′s.

Therefore

lim sup
r→∞

Mf (r)

expp {rρpTp(r)}
= 1.

Case II: Let Sp(r) ≤ Tp for sufficiently large values of r. There are two Subcases.
Subcase A:

Sp(r) = Tp

for atleast a sequence of values of r tending to infinity.
We take Tp(r) = Tp for all values of r.
Subcase B:

Sp(r) < Tp

for sufficiently large values of r.
Let Lp(r) = maxX≤x≤r {Sp(x)}, where X > expp(1) is such that Sp(x) < Tp

whenever x ≥ X.
Note that Lp(r) is nondecreasing. Take a suitably large value of r1 ≥ X and let

Tp(r1) = Tp,

Tp(r) = Tp + logp r − logp r1, for s1 ≤ r ≤ r1,

where s1 < r1 is such that Lp(s1) = Tp(s1) upto the nearest point t1 < s1, at which
Lp(t1) = Sp(t1).
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Tp(r) is then constant for t1 ≤ r ≤ s1. If Lp(s1) = Sp(s1), then let t1 = s1.
Choose r2 > r1 suitably large and let

Tp(r2) = Tp,

Tp(r) = T + logp r − logp r2, for s2 ≤ r ≤ r2

where s2 (< r2) is such that Lp(s2) = Tp(s2).
If Lp(s2) ̸= Sp(s2) then Lp(r) = Tp(r) for t2 ≤ r ≤ s2 where t2 (< s2) is the

nearest point to s2 at which Lp(t2) = Sp(t2).
If Lp(s2) = Sp(s2), then let t2 = s2.
For r < t2, let

Tp(r) = Tp(t2) + logp(t2)− logp r , for u1 ≤ r ≤ t2

where u1(< t2) is the point of intersection of y = Tp with

y = Tp(t2) + logp (t2)− logp r.

Let Tp(r) = Tp for r1 ≤ r ≤ u1. It is always possible to choose r2 so large that
r1 < u1.

Repeating the procedure and note that

Tp(r) ≥ Lp(r) ≥ Sp(r)

and Tp(r) = Sp(r) for r = t1, t2, t3, ... .
Hence

lim
r→∞

Tp(r) = Tp

and

lim sup
r→∞

Mf (r)

expp {rρpTp(r)}
= 1.

Theorem 4 For every entire function f(z) of finite iterated lower order λp, with
i(f) = p (0 < λp < ∞) and finite iterated lower type tp, there exists a proximate
iterated lower type tp(r).

Proof. We can prove this theorem in the same line of the previous theorem.
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