

Electronic Journal of Mathematical Analysis and Applications Vol. 11(2) July 2023, No. 14 ISSN: 2090-729X (online) http://ejmaa.journals.ekb.eg/

RESULTS ON CERTAIN DIFFERENTIAL POLYNOMIALS OF L-FUNCTIONS SHARING A FINITE VALUE

PRIYANKA V., RAJESHWARI S., HUSNA V.

ABSTRACT. In this Article, we analyses a uniqueness of meromorphic functions of certain differential polynomials that share a nonzero finite value or have the same fixed points with the same of L-functions. The results in this paper extend the corresponding results from Xiao-Min Li, Fang Liu, Hong-Xun .

1. INTRODUCTION

In this Article, by L-functions with the Riemann zeta function as a prototype, are important objects in number theory, and value distribution of L-functions has been studied extensively. L-functions can be analytically continued as meromorphic functions in \mathbb{C} . It is well-known that a non-constant meromorphic function in \mathbb{C} completely determined by five such pre-images five such pre-images, which is a famous theorem due to Nevanlinna and often referred to as Nevanlinna's uniqueness theorem. Two meromorphic functions f and q in the complex plane are said to share a value $c \in \mathbb{C} \cup \{\infty\}$ IM (ignoring multiplicities) if $f^{-1}(c) = g^{-1}(c)$ as two sets in C. Moreover, f and g are said to share a value c CM (counting multiplicities) if they share the value c and if the roots of the equations f(s) = c and q(s) = chave the same multiplicities. Throughout the paper, an L-function always means an L-function L in the Selberg class, which includes the Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ and essentially those Dirichlet series where one might expect a Riemann hypothesis. Such an L-function is defined to be a Dirichlet series L(s) = $\sum_{n=1}^{\infty} a(n) n^{-s}$ satisfying the following axioms[[19][20]] : (i) Ramanujan hypothesis:

 $a(n) \ll n^{\varepsilon}$

for every $\varepsilon > 0$.

(ii) Analytic continuation: There is a non negative integer k such that $(s-1)^k L(s)$

2010 Mathematics Subject Classification. 30D35.

Key words and phrases. Nevanlinna Theory , Uniqueness theorems , Shared values , Meromorphic Functions , L functions, Differential Polynomials etc.,

Submitted April. 4, 2023. Revised September.9, 2023.

is an entire function of finite order.

(iii) Functional equation: L satisfies a functional equation of type

$$\Lambda_L(s) = \omega \overline{\Lambda_L(1-\overline{s})},$$

where

$$\Lambda_L(s) = L(s)Q^s \prod_{j=1}^k \Gamma\left(\lambda_j s + v_j\right)$$

with positive real numbers Q, λ_j and complex numbers ν_j, ω with $Re\nu_j \ge 0$ and $|\omega| = 1$.

(iv) Euler product hypothesis:

$$\mathbf{L}(s) = \prod_{p} \exp\left(\sum_{k=1}^{\infty} \frac{b\left(p^{k}\right)}{p^{ks}}\right)$$

with suitable coefficients $b(p^k)$ satisfying $b(p^k) \ll p^{k\theta}$ for some $\theta < 1/2$, where the product is taken over all prime numbers p.

We first recall the following result due to Steuding [20], which actually holds without the Euler product hypothesis:

Theorem 1.1 [20] If two L-functions L_1 and L_2 with a(1) = 1 share a complex value $c \neq \infty$ CM, then $L_1 = L_2$.

Later on, Li [8] proved the following result to deal with a question posed by Chung-Chun Yang [22]:

Theorem 1.2 [8] Let a and b be two distinct finite values, and let f be a meromorphic function in the complex plane such that f has finitely many poles in the complex plane. If f and a non-constant function L share a CM and b IM, then L = f.

In 1997, Lahiri [9] posed the following question: What can be said about the relationship between two meromorphic functions f and g, when two differential polynomials, generated by f and g respectively, share some nonzero finite value? In this direction, Fang [1] and Yang-Hua [22] respectively proved the following results:

Theorem 1.3 [1] Let f and g be two non-constant entire functions, and let n and k be two positive integers such that n > 2k + 4. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share 1 CM, then either $f(z) = c_l e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$, or f = tg for a constant t such that $t^n = 1$.

Theorem 1.4 [22] Let f and g be two non-constant meromorphic functions, and let $n \geq 11$ be a positive integer. If $f^n f'$ and $g^n g'$ share 1 CM, then either $f(z) = c_l e^{cz}, g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(c_1 c_2)^{n+1} c^2 = -1$, or f = tg for a constant t such that $t^{n+1} = 1$.

Regarding Theorems 1.1-1.4, one may ask, what can be said about the relationship between a meromorphic function f and an L-function L, if $(f^n)^{(k)}$ and $(L^n)^{(k)}$ share

3

1 CM or that $(f^n)^{(k)}$ and $(L^n)^{(k)}$ have the same fixed points, where *n* and *k* are positive integers? In this direction, Fang Liu, Xiao-Min Li and Hong-Xun Yi[10] proved the following two results respectively:

Theorem 1.5 [10] Let f be a non-constant meromorphic function, let L be an L-function, and let n and k be two positive integers with n > 3k+6. If $(f^n)^{(k)}$ and $(L^n)^{(k)}$ share 1 CM, then f = tL for a constant t satisfying $t^n = 1$.

Theorem 1.6 [10] Let f be a non-constant meromorphic function, let L be an L-function, and let n and k be two positive integers with n > 3k+6. If $(f^n)^{(k)}(z) - z$ and $(L^n)^{(k)}(z) - z$ share 0 CM, then f = tL for a constant t satisfying $t^n = 1$.

To prove Theorems 1.5 and 1.6 in the paper, authors applied Nevanlinna theory, which can be found in [[4],[11],[23],[24]]. In addition, we will use the lower order $\mu(f)$ and the order $\rho(f)$ of a meromorphic function f, which can be found, for example in [[4],[11],[24]], are in turn defined as follows:

$$\mu(f) = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}$$
$$\rho(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}$$

We also need the following two definitions:

Definition 1 [12]. Let p be a positive integer and $a \in \mathbb{C} \bigcup \{\infty\}$. Next we denote by $N_{p}\left(r, \frac{1}{f-a}\right)$ the counting function of those *a*-points of f (counted with proper multiplicities) whose multiplicities are not greater than p, and denote by $N_{(p}\left(r, \frac{1}{f-a}\right)$ the counting function of those *a*-points of f (counted with proper multiplicities) whose multiplicities are not less than p. We denote by $\overline{N}_{p}\left(r, \frac{1}{f-a}\right)$ and $\overline{N}_{(p}\left(r, \frac{1}{f-a}\right)$ the reduced forms of $N_{p}\left(r, \frac{1}{f-a}\right)$ and $N_{(p}\left(r, \frac{1}{f-a}\right)$ respectively. Here $N_{p}\left(r, \frac{1}{f-\infty}\right), \overline{N}_{p}\left(r, \frac{1}{f-\infty}\right), N_{(p}\left(r, \frac{1}{f-\infty}\right)$ and $\overline{N}_{(p}\left(r, \frac{1}{f-\infty}\right)$ mean $N_{p}(r, f), \overline{N}_{p}(r, f), N_{(p}(r, f))$ and $\overline{N}_{(p}(r, f))$ respectively.

Definition 2[12] Let a be an any value in the extended complex plane and let k be an arbitrary non negative integer. We define

$$\Theta(a, f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)},$$
$$\delta_k(a, f) = 1 - \limsup_{r \to \infty} \frac{N_k\left(r, \frac{1}{f-a}\right)}{T(r, f)},$$

where

$$N_k\left(r,\frac{1}{f-a}\right) = \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}_{(2}\left(r,\frac{1}{f-a}\right) + \dots + \overline{N}_{(k}\left(r,\frac{1}{f-a}\right)$$

Remark 1. By Definition 2, we have

$$0 \le \delta_k(a, f) \le \delta_{k-1}(a, f) \le \delta_1(a, f) \le \Theta(a, f) \le 1$$

Remark 2. Recently Hu and Li pointed out that Theorem 1.4 is false when c = 1. A counter example was given by Hu and Li, see [3].

In 2010, Li [13] introduced the following question posed by Chung-Chun Yang:

Question 1. [13]. If f is a meromorphic function in \mathbb{C} that shares three distinct values a, b CM and c IM with the Riemann zeta function ζ , where $c \notin \{a, b, 0, \infty\}$, is f equal to ζ ?

Li [13] also proved the following result to deal with Question 1:

Theorem 1.7 [13] Let a and b be two distinct finite values, and let f be a meromorphic function in the complex plane such that f has finitely many poles in the complex plane. If f and a non-constant L-function L share a CM and b IM, then L = f.

Remark 3. In 2012, Gao and Li completely solved Question 1, see [13].

Concerning the value distribution of nonlinear differential polynomials of meromorphic functions, we recall the following result proved by Fang in 2002:

Theorem 1.8 [2] Let f and g be two non-constant entire functions, and let n, k be two positive integers satisfying $n \ge 2k + 8$. If $(f^n(f-1))^{(k)}$ and $(g^n(g-1))^{(k)}$ share 1 CM, then f = g.

Regarding Theorem 1.8, one may ask, what can be said about the relationship between two meromorphic functions f and g, if $(f^n(f-1))^{(k)}$ and $(g^n(g-1))^{(k)}$ share 1 CM (IM), where n and k are positive integers ? which was also posed by Professor M. L. Fang in 2009. By now this question is still open. In this paper, Xiao-Min Li, Fang Liu, Hong-Xun [7] proved the following result by considering the nonlinear differential polynomials of L-functions.

Theorem 1.9 [7] Let f be a non-constant meromorphic function, let L be an L-function, and let n and k be two positive integers with n > 3k + 9 and $k \ge 2$. If $(f^n(f-1))^{(k)}$ and $(L^n(L-1))^{(k)}$ share 1 CM, then f = L.

Theorem 1.10 [7] Let f be a non-constant meromorphic function, let L be an L-function, and let n and k be two positive integers satisfying n > 7k + 17 and $k \ge 2$. If $(f^n(f-1))^{(k)}$ and $(L^n(L-1))^{(k)}$ share 1 IM, then f = L.

Regarding Theorems 1.9 and 1.10 one may ask the following question. What happens if $(f^n(f-1))^{(k)}$ and $(L^n(L-1))^{(k)}$ is replaced by $((f^n)^s P(f))^{(k)}$ and $((L^n)^s P(L))^{(k)}$ in Theorems 1.9 and 1.10 ?

We obtain analogous results to answer the above question affirmatively, we prove the following results which is the main results of this article.

2. Main Result

Theorem 2.1 Let f be a non-constant meromorphic function, let L be an L-function, and let n and k be two positive integers with $n > \frac{k+m+6+2s(k+1)}{s}$. If $((f^n)^s P(f))^{(k)}$ and $((L^n)^s P(L))^{(k)}$ share 1 CM, then f = L.

In the same manner as in the proof of Theorem 2.1 in Section 4 of this paper, we can get the following result by Lemma 3.3 in Section 3 of this paper:

Theorem 2.2 Let f be a non-constant meromorphic function, let L be an L-function, and let n and k be two positive integers satisfying $n > \frac{2k+7+5s(k+1)}{s}$. If $((f^n)^s P(f))^{(k)}$ and $((L^n)^s P(L))^{(k)}$ share 1 IM, then f = L.

3. Some Lemmas

In this section, we present some lemmas which will be needed later on to prove main results .

Lemma 3.1 [4] Let f be a non-constant meromorphic function, let $k \ge 1$ be a positive integer, and let c be a nonzero finite complex number. Then

$$T(r,f) \leq \overline{N}(r,f) + N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f^{(k)}-c}\right) - N\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f)$$
$$\leq \overline{N}(r,f) + N_{k+1}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f^{(k)}-c}\right) - N_0\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f)$$

Lemma 3.2 [16] (Valiron-Mokhonoko,). Let f be a non-constant meromorphic function, and let

$$F = \frac{\sum_{k=0}^{p} a_k f^k}{\sum_{j=0}^{q} b_j f^j}$$

be an irreducible rational function in f with constant coefficients $\{a_k\}$ and $\{b_j\}$, where $a_p \neq 0$ and $b_q \neq 0$. Then T(r, F) = dT(r, f) + O(1), where $d = \max\{p, q\}$.

Lemma 3.3 [14] Let F and G be two non-constant meromorphic functions such that $F^{(k)} - P$ and $G^{(k)} - P$ share 0 CM, where $k \ge 1$ is a positive integer, $P \ne 0$ is a polynomial. If

$$(k+2)\Theta(\infty,F) + 2\Theta(\infty,G) + \Theta(0,F) + \Theta(0,G) + \delta_{k+1}(0,F) + \delta_{k+1}(0,G) > (k+7)$$

and

$$\begin{aligned} (k+2)\Theta(\infty,G) + 2\Theta(\infty,F) + \Theta(0,G) + \Theta(0,F) + \delta_{k+1}(0,G) + \delta_{k+1}(0,F) > (k+7), \\ \text{then either } F^{(k)}G^{(k)} &= P^2 \text{ or } F = G. \end{aligned}$$

Lemma 3.4 [14] Let F and G be two non-constant meromorphic functions such that $F^{(k)} - P$ and $G^{(k)} - P$ share 0 IM, where $k \ge 1$ is a positive integer, $P \ne 0$ is a polynomial. If

$$(2k+3)\Theta(\infty,F) + (2k+4)\Theta(\infty,G) + \Theta(0,F) + \Theta(0,G) + 2\delta_{k+1}(0,F) + 3\delta_{k+1}(0,G) > (4k+13)$$

 $(2k+3)\Theta(\infty,G) + (2k+4)\Theta(\infty,F) + \Theta(0,G) + \Theta(0,F) + 2\delta_{k+1}(0,G) + 3\delta_{k+1}(0,F) > (4k+13),$ then either $F^{(k)}G^{(k)} = P^2$ or F = G.

Lemma 3.5 [15] Suppose that f is a meromorphic of finite order in the plane, and that $f^{(k)}$ has finitely many zeros for some $k \ge 2$. Then f has finitely many poles in the complex plane.

Lemma 3.6 [25] Let f_1 and f_2 be two non-constant meromorphic functions such that

$$\overline{N}(r, f_j) + \overline{N}\left(r, \frac{1}{f_j}\right) = S(r)$$

for $1 \leq j \leq 2$ Then, either $\overline{N}_0(r, 1; f_1, f_2) = S(r)$ or that there exist two integers p and q satisfying |p| + |q| > 0, such that $f_1^p f_2^q = 1$, where $\overline{N}_0(r, 1; f_1, f_2)$ denotes the reduced counting function of the common 1-points of f_1 and f_2 in $|z| < r, T(r) = T(r, f_1) + T(r, f_2)$ and S(r) = o(T(r)), as $r \notin E$ and $r \to \infty$. Here $E \subset (0, +\infty)$ is a subset of finite linear measure.

Lemma 3.7 [15] Let f be a transcendental meromorphic function in the complex plane. Then, for each K > 1, there exists a set $M(K) \subset (0, +\infty)$ of the lower logarithmic density at most $d(K) = 1 - (2e^{K-1} - 1)^{-1} > 0$, that is

$$\underline{\log \operatorname{dens}} M(K) = \liminf_{r \to \infty} \frac{1}{\log r} \int_{M(K) \cap [1,r]} \frac{dt}{t} \le d(K),$$

such that, for every positive integer k, we have

$$\limsup_{\substack{r \to \infty \\ r \notin M(K)}} \frac{T(r, f)}{T\left(r, f^{(k)}\right)} \le 3eK.$$

Lemma 3.8 [25] Let s > 0 and t be relatively prime integers, and let c be a finite complex number such that $c^s = 1$, then there exists one and only one common zero of $\omega^s - 1$ and $\omega^t - c$.

4. Proof of Main Results

Proof of Theorem 2.1.

First of all, we denote by d the degree of L. Then $d = 2 \sum_{j=1}^{K} \lambda_j > 0$ (cf.[22],p.113) where K and λ_j are respectively the positive integer and the positive real number in the functional equation of the axiom (iii) of the definition of L-functions. Therefore, by Steuding (cf.[20],p.150) we have

$$T(r,L) = \frac{d}{\pi}r\log r + O(r).$$
(1)

Noting that an L-function at most has one pole z = 1 in the complex plane, we deduce by Lemma 3.1 and Lemma 3.2 that

$$T(r, L^{n}) = nT(r, L) + O(1)$$

$$\leq \overline{N}(r, (L^{n})^{s}P(L)) + N_{k+1}\left(r, \frac{1}{(L^{n})^{s}P(L)}\right)$$

$$+ \overline{N}\left(r, \frac{1}{((L^{n})^{s}P(L))^{(k)} - 1}\right)$$

$$- N_{0}\left(r, \frac{1}{((L^{n})^{s}P(L))^{(k+1)}}\right) + O(\log r)$$

$$\leq (s+m)\overline{N}(r, L) + (k+1+s+m)\overline{N}\left(r, \frac{1}{L}\right)$$

$$+ \overline{N}\left(r, \frac{1}{((f^{n})^{s}P(f))^{(k)} - 1}\right) + O(\log r)$$

$$\leq (k+1+s+m)T(r, L) + T\left(r, ((f^{n})^{s}P(f))^{(k)}\right) + O(\log r)$$

$$(n-k-1-s-m)T(r, L) \leq T\left(r, ((f^{n})^{s}P(f))^{(k)}\right) + O(\log r)$$
(2)

Let

$$F = ((f^n)^s P(f)), G = ((L^n)^s P(L))$$
(3)

now we let

$$\Delta_1 = (k+2)\Theta(\infty, F) + 2\Theta(\infty, G) + \Theta(0, F) + \Theta(0, G) + \delta_{k+1}(0, F) + \delta_{k+1}(0, G)$$
(4) and

$$\Delta_{2} = (k+2)\Theta(\infty, G) + 2\Theta(\infty, F) + \Theta(0, G) + \Theta(0, F) + \delta_{k+1}(0, G) + \delta_{k+1}(0, F).$$
(5)

by Lemma 3.2 we have

$$\Theta(\infty, F) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, F)}{T(r, F)} = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, f)}{(n+1)T(r, f) + O(1)} \ge 1 - \frac{1}{ns + m},$$
(6)
$$\delta_{k+1}(0, F) = 1 - \limsup_{r \to \infty} \frac{N_{k+1}\left(r, \frac{1}{F}\right)}{T(r, F)}$$

$$\ge 1 - \frac{s(k+1) + m}{ns + m}$$
(7)

and

$$\Theta(0,F) \ge 1 - \frac{2}{ns+m}, \quad \Theta(0,G) \ge 1 - \frac{2}{ns+m}, \quad \delta_{k+1}(0,G) \ge 1 - \frac{s(k+1)+m}{ns+m}.$$
(8)

by noting that an L-function has at most one pole z = 1 in the complex plane, we have by equation 1 that

$$\Theta\left(\infty,G\right) = 1.\tag{9}$$

by equation 4-9 we have

$$\Delta_1 \ge k+8 - \frac{k+2s(k+1)+2m+6}{ns+m}, \quad \Delta_2 \ge k+8 - \frac{2s(k+1)+2m+6}{ns+m}.$$
(10)

By equation 10 and the assumption $n > \frac{k+m+6+2s(k+1)}{s}$, we have $\Delta_1 > k+7$ and $\Delta_2 > k+7$. This together with equations 4 and 5, Lemma 3.3 and the assumption that $F^{(k)}$ and $G^{(k)}$ share 1 CM gives $F^{(k)}G^{(k)} = 1$ or F = G. We consider the following two cases:

Case 1. Suppose that $F^{(k)}G^{(k)} = 1$. Then, by equation 3 we have

$$(((f^n)^s P(f))^{(k)})(((L^n)^s P(L))^{(k)}) = 1.$$
(11)

On the other hand, by equations 1 and 11, Lemma 3.2, a result from Whittaker(cf.[25],p.82) and the definition of the order of a meromorphic function we have

$$\rho(f) = \rho\left((f^n)^s P(f)\right) = \rho\left(\left((f^n)^s P(f)\right)^{(k)}\right) = \rho\left(\left((L^n)^s P(L)\right)^{(k)}\right) = \rho\left((L^n)^s P(L)\right) = \rho(L) = 1.$$
(12)

By equation 12 we can see that f is a transcendental meromorphic function. Since an L-function at most has one pole z = 1 in the complex plane, we deduce by equation 11 that $((f^n)^s P(f))^{(k)}$ at most has one zero z = 1 in the complex plane. Combining this with equation 12, Lemma 3.5 and the assumption $k \ge 2$, we have that $(f^n)^s P(f)$, and so f has at most finitely many poles in the complex plane. This together with equation 11 implies that $((L^n)^s P(L))^{(k)}$ has at most finitely many zeros in the complex plane. Therefore, by equation 3 we have

$$\overline{N}\left(r,F^{(k)}\right) + \overline{N}\left(r,\frac{1}{F^{(k)}}\right) \le O(\log r) \tag{13}$$

and

$$\overline{N}\left(r, G^{(k)}\right) + \overline{N}\left(r, \frac{1}{G^{(k)}}\right) \le O(\log r).$$
(14)

We now set

$$f_1 = \frac{F^{(k)}}{G^{(k)}}, \quad f_2 = \frac{F^{(k)} - 1}{G^{(k)} - 1}.$$
 (15)

By equation 15 and the assumption that f and L are transcendental meromorphic functions, we have $f_1 \neq 0$ and $f_2 \neq 0$. Suppose that one of f_1 and f_2 is a nonzero constant. Then, by equation 15 we see that $F^{(k)}$ and $G^{(k)}$ share ∞ CM. Combining this with $F^{(k)}G^{(k)} = 1$ we deduce that ∞ is a Picard exceptional value of f and L. Next we suppose that f_1 and f_2 are non-constant meromorphic functions. We set

$$F_1 = F^{(k)}, \quad G_1 = G^{(k)}.$$
 (16)

Then, by equations 15-16 we have

$$F_1 = \frac{f_1 (1 - f_2)}{f_1 - f_2}, \quad G_1 = \frac{1 - f_2}{f_1 - f_2}.$$
(17)

By equation 17 we can find that there exists a subset $I \subset (0, +\infty)$ with infinite linear measure such that S(r) = o(T(r)) and

$$T(r, F_1) \le 2(T(r, f_1) + T(r, f_2)) + S(r) \le 8T(r, F_1) + S(r)$$
(18)

or

$$T(r,G_1) \le 2(T(r,f_1) + T(r,f_2)) + S(r) \le 8T(r,G_1) + S(r),$$
(19)

as $r \in I$ and $r \to \infty$, where $T(r) = T(r, f_1) + T(r, f_2)$. Without loss of generality, we suppose that equation 18 holds. Then we have $S(r) = S(r, F_1)$, as $r \in I$ and $r \to \infty$. By $F_1G_1 = 1$ we see that F_1 and G_1 share 1 and -1 CM. By noting that

 F_1 and G_1 are transcendental meromorphic functions such that F_1 and G_1 share 1 CM, we deduce by equations 13-15 that

$$\overline{N}\left(r,\frac{1}{f_j}\right) + \overline{N}\left(r,f_j\right) = o(T(r)), (j=1,2),$$
(20)

as $r \in I$ and $r \to \infty$. By noting that F_1 and G_1 share -1 CM, we deduce by equations 15 and 16 and the second fundamental theorem that

$$T(r, F_1) \leq \overline{N}(r, F_1) + \overline{N}\left(r, \frac{1}{F_1}\right) + \overline{N}\left(r, \frac{1}{F_1+1}\right) + O\left(T\left(r, F_2\right)\right)$$

$$\leq \overline{N}\left(r, \frac{1}{F_1+1}\right) + O(\log r) + o\left(T\left(r, F_1\right)\right)$$

$$\leq \overline{N}_0\left(r, 1; f_1, f_2\right) + o\left(T\left(r, F_1\right)\right),$$
(21)

as $r \in I$ and $r \to \infty$. By equations 18 and 21 we have

$$T(r, f_1) + T(r, f_2) \le \overline{N}_0(r, 1; f_1, f_2) + o(T(r)),$$
(22)

By equations 13-16, 20, 22 and Lemma 3.6 we find that there exist two relatively prime integers x and y satisfying |x| + |y| > 0, such that $f_1^x f_2^y = 1$. Combining this with equations 15-16, we have

$$\left(\frac{F_1}{G_1}\right)^x \left(\frac{F_1 - 1}{G_1 - 1}\right)^y = 1.$$
(23)

we consider the following two subcases:

Subcase 1.1 Suppose that xy < 0, say x > 0 and y < 0, say $y = -y_1$, where y_1 is some positive integer. Then, equation 23 can be rewritten as

$$\left(\frac{F_1}{G_1}\right)^x = \left(\frac{F_1 - 1}{G_1 - 1}\right)^{y_1}.$$
(24)

Let $z_1 \in \mathbb{C}$ be a pole of F_1 of multiplicity $p_1 \geq 1$. Then, by $F_1G_1 = 1$ we can see that z_1 be a zero of G_1 of multiplicity p_1 . Therefore, by equation 24 we deduce that $2x = y_1 = -y$. Combining this with the assumption that x and y are two relatively prime integers, we have x = 1 and $y = -y_1 = -2$. Therefore, equation 24 can be rewritten as $F_1 (G_1 - 1)^2 = (F_1 - 1)^2 G_1$, this equivalent to the obtained result $F_1G_1 = 1$. Next we can deduce a contradiction by using the other method. Indeed, by equations 12 and 14, the right equality of equation 3 and the fact that L, and so $((L^n)^s P(L))^{(k)}$ has at most one pole z = 1 in the complex plane, we deduce

$$((L^n)^s(z)P(L))^{(k)} = \frac{P_1(z)}{(z-1)^{p_2}} e^{A_1 z + B_1},$$
(25)

where P_1 is a nonzero polynomial, $p_2 \ge 0$ is an integer, $A_1 \ne 0$ and B_1 are constants. By equation 25, Hayman[6], Lemma 3.2 and Lemma 3.7 we deduce that there exists a subset $I \subset (0, +\infty)$ with logarithmic measure $I = \int_I \frac{dt}{t} = \infty$ such that for some given sufficiently large positive number K > 1, we have

$$(ns+m)T(r,L) = T(r,((L^{n})^{s}P(L)))$$

$$\leq 3eKT\left(r,((L^{n})^{s}P(L))^{(k)}\right) = \frac{3eK|A_{1}|r}{\pi}(1+O(1)) + O(\log r),$$
(26)

as $r \in I$ and $r \to \infty$. By equations 1 and 26 we have a contradiction.

Subcase 1.2 Suppose that st = 0, say s = 0 and $t \neq 0$. Then, by equation 23 we can see that F_1 and G_1 share ∞ CM. This together with equations 3 and 16 and the assumption $F_1G_1 = 1$ implies that ∞ is a Picard exceptional value of f and L.

Subcase 1.3 Suppose that st > 0, say s > 0 and t > 0. Then, by equation 23 we can see that F_1 and G_1 share ∞ CM. This together with equations 3 and 16 and the assumption $F_1G_1 = 1$ implies that ∞ is a Picard exceptional value of f and L.

By equations 3 and 14 and the assumption $n > \frac{k+m+6+2s(k+1)}{s}$ we deduce that L has at most finitely many zeros in the complex plane. This together with the obtained result that ∞ is a Picard exceptional value of f and L gives

$$L(z) = P_2(z)e^{A_2 z + B_2}, (27)$$

where P_2 is a nonzero polynomial, $A_2 \neq 0$ and B_2 are constants. By equation 27 and Hayman [6] we have

$$T(r, L(z)) = T\left(r, P_3(z)e^{A_2z + B_2}\right) = \frac{|A_2|r}{\pi}(1 + O(1)) + O(\log r),$$

which contradicts equation 1.

Case 2. Suppose that F = G. Then by equation 3 we have

$$(f^n)^s P(f) = (L^n)^s P(L)$$
 (28)

now we set

$$H = \frac{f}{L} \tag{29}$$

If H is a non-constant meromorphic function, then we get equation 28. Suppose H is a constant. Then from equation 29, we get

$$[a_n f^m + a_{n-1} f^{m-1} + \dots + a_1 f][(f^n)^s] = [a_n L^m + a_{n-1} L^{m-1} + \dots + a_1 L][(L^n)^s]$$

i.e.

 $a_n L^{(m+ns)}[H^{m+ns}-1] + a_{n-1}L^{(m+ns-1)}[H^{m+ns-1}-1] + \dots + a_1L^{(1+ns)}[H^{1+ns}-1] = 0$ which implies $H^{\chi_n} = 1$, where

$$\chi_n = \begin{cases} 1 & \sum_{j=1}^{n-1} |a_{n-j}| \neq 0 ; \\ d_1 & a_j = 0, \forall j = 1, 2, \cdots, n-1 , \end{cases}$$

$$d_1 = gcd(m + ns, m + ns - 1, \cdots, ns + 1),$$

Therefore, f = tL, for a constant t satisfies $t^{\chi_n} = 1$. We get the conclusion of Theorem 2.1. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2.

First of all, we denote by d the degree of L. Then $d = 2 \sum_{j=1}^{K} \lambda_j > 0$ [22], where K and λ_j are respectively the positive integer and the positive real number in the functional equation of the axiom (iii) of the definition of L-function. Therefore, by

the results of Steuding equations we have equation 1. Now we let equation 3, and let

$$\Delta_{3} = (2k+3)\Theta(\infty, F_{1}) + (2k+4)\Theta(\infty, G_{1}) + \Theta(0, F_{1}) + \Theta(0, G_{1}) + 2\delta_{k+1}(0, F_{1}) + 3\delta_{k+1}(0, G_{1})$$
(30)

and

$$\Delta_4 = (2k+3)\Theta(\infty, G_1) + (2k+4)\Theta(\infty, F_1) + \Theta(0, G_1) + \Theta(0, F_1) + 2\delta_{k+1}(0, G_1) + 3\delta_{k+1}(0, F_1).$$
(31)

In the same manner as in the proof of Theorem 2.1 by equations 6-9 and by equations 30-31 we have

$$\Delta_3 \ge 4k + 14 - \frac{2k + 7 + 5m + 5s(k+1)}{ns+m}, \quad \Delta_4 \ge 4k + 14 - \frac{2k + 8 + 5m + 5s(k+1)}{ns+m}$$
(32)

By equation 32 and the assumption $n > \frac{2k+7+5s(k+1)+4m}{s}$ we deduce $\Delta_3 > 4k+13$ and $\Delta_4 > 4k+13$. This together with Lemma 3.4 gives $F^{(k)}G^{(k)} = 1$ or F = G. We consider the following two cases:

Case 1. Suppose that $F^{(k)}G^{(k)} = 1$. Then, in the same manner as in Case 1 of the proof of Theorem 2.1 we have a contradiction.

Case 2. Suppose that F = G. Then, in the same manner as in Case 2 of the proof of Theorem 2.1 we get the conclusion of Theorem 2.2 This completely proves Theorem 2.2.

Funding Agency. There is no funding agency.

Conflict of Interest. There is no conflict of interest. This article doesn't contain any studies with human participants and animals performed by any of the author.

References

- M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl. 44 (2002), no. 5-6, 823-831.
- [2] R. Gao, B. Q. Li, An answer to a question on value distribution of the Riemann zeta-function, International Journal of Mathematics (2012), no. 4, 17-18.
- [3] P. C. Hu, B. Q. Li, A simple proof and strengthening of a uniqueness theorem for L-functions, Canadian mathematical bulletin 59 (2016), no. 1,119-122.
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, (1964).
- [5] J. K. Langley, The second derivative of a meromorphic function of finite order, Bulletin of the London Mathematical Society 35(2003), no.1,97-108.
- [6] W. K. Hayman, J. Miles, On the growth of a meromorphic function and its derivatives, Complex Variables Theory and Application An International Journal, (1989), no. 1, 245-260.
- [7] X.M Li, F.Liu, H.X Yi, Results on L-functions of certain differential polynomials sharing one finite value, Faculty of sciences and Mathematics, University of Nis, Serbia (2019), 5767-5776.
- [8] B. Q. Li, A result on value distribution of L-functions, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2071-2077.
- [9] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J. 44 (1997), no. 2, 147-156.

- [10] F.Liu, X.M Li and H.X Yi, Value distribution of L-functions concerning shared values and certain differential polynomials, Proc. Japan Acad. Ser. A Math. Sci. 93(5):(2017), 41-46.
- [11] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, de Gruyter, Berlin, (1993)
- [12] I. Lahiri, Weighted sharing of three values and uniqueness of meromorphic functions, Kodai Math. J. 24 ,(2001), no. 3, 421-435.
- [13] B. Q. Li, A result on value distribution of L-functions, Proceedings of the American Mathematical Society 138(2010), no. 6 2071-2077.
- [14] X. M. Li, H. X. Yi, Uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a polynomial, Computers and Mathematics with Applications 62,(2011), no.2,539-550.
- [15] J. K. Langley, The second derivative of a meromorphic function of finite order, Bulletin of the London Mathematical Society 35(2003), no.1,97-108.
- [16] A. Z. Mokhonko, On the Nevanlinna characteristics of some meromorphic functions, Theory of Functions, Functional Analysis and Their Applications, vol.14, Izd-vo Khar'kovsk. Un-ta, (1971), pp. 83-87.
- [17] V.Priyanka., Rajeshwari S., and Husna V., Uniqueness problems for Difference polynomials sharing a non-zero polynomial of certain degree with finite weight, Aust. J. Math. Anal. Appl(2022)., Vol. 19., No. 2, Art. 12, pp.12
- [18] V.Priyanka ., Rajeshwari S., and Husna V., Generalization on value distribution of Lfunctions, Nonlinear Studies (NS), Vol 30 No 1 (2023), pp.249-261.
- [19] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), E. Bombieri et al. (eds.), Collected papers, Vol. II, Springer-Verlag, (1991), pp. 47-63.
- [20] J. Steuding, Value distribution of L-functions, Lecture Notes in Mathematics, Vol. 1877, Springer-Verlag, Berlin, (2007).
- [21] J. M. Whittaker, The order of the derivative of a meromorphic function, Journal of the London Mathematical Society (1936), no. 4 ,pp.1-11.
- [22] C. C. Yang and X. Hua, Uniqueness and value sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
- [23] C. C. Yang and H.X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Acad. Publ., Dordrecht, (2003)
- [24] L. Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer, Berlin, (1993).
- [25] Q. C. Zhang, Meromorphic functions sharing three values, Indian Journal of Pure and Applied Mathematics 30(1999), no.7, pp.667-682.

Priyanka V., Husna V.

DEPARTMENT OF MATHEMATICS, PRESIDENCY UNIVERSITY, BENGALURU-560 064 Email address: priyapriyankaram1994@gmail.com, husnav43@gmail.com

Rajeshwari S.

DEPARTMENT OF MATHEMATICS, BANGALORE INSTITUTE OF TECHNOLOGY, BENGALURU-560 004 Email address: rajeshwaripreetham@gmail.com