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RESULTS ON CERTAIN DIFFERENTIAL POLYNOMIALS OF

L-FUNCTIONS SHARING A FINITE VALUE

PRIYANKA V., RAJESHWARI S., HUSNA V.

Abstract. In this Article, we analyses a uniqueness of meromorphic functions

of certain differential polynomials that share a nonzero finite value or have the

same fixed points with the same of L-functions. The results in this paper
extend the corresponding results from Xiao-Min Li, Fang Liu, Hong-Xun .

1. Introduction

In this Article, by L-functions with the Riemann zeta function as a prototype,
are important objects in number theory, and value distribution of L-functions has
been studied extensively. L-functions can be analytically continued as meromorphic
functions in C. It is well-known that a non-constant meromorphic function in C
completely determined by five such pre-images five such pre-images, which is a
famous theorem due to Nevanlinna and often referred to as Nevanlinna’s uniqueness
theorem. Two meromorphic functions f and g in the complex plane are said to share
a value c ∈ C ∪ {∞} IM (ignoring multiplicities) if f−1(c) = g−1(c) as two sets
in C. Moreover, f and g are said to share a value c CM (counting multiplicities)
if they share the value c and if the roots of the equations f(s) = c and g(s) = c
have the same multiplicities. Throughout the paper, an L-function always means
an L-function L in the Selberg class, which includes the Riemann zeta function
ζ(s) =

∑∞
n=1 n

−s and essentially those Dirichlet series where one might expect a
Riemann hypothesis. Such an L-function is defined to be a Dirichlet series L(s) =∑∞

n=1 a(n)n−s satisfying the following axioms[[19][20]] :
(i) Ramanujan hypothesis:

a(n) ≪ nε

for every ε > 0.
(ii) Analytic continuation: There is a non negative integer k such that (s− 1)kL(s)

2010 Mathematics Subject Classification. 30D35.
Key words and phrases. Nevanlinna Theory , Uniqueness theorems , Shared values , Mero-

morphic Functions , L functions, Differential Polynomials etc.,

Submitted April. 4, 2023. Revised September.9, 2023.
1



2 PRIYANKA V., RAJESHWARI S., HUSNA V. EJMAA-2023/11(2)

is an entire function of finite order.
(iii) Functional equation: L satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s),

where

ΛL(s) = L(s)Qs
k∏

j=1

Γ (λjs + vj)

with positive real numbers Q,λj and complex numbers νj , ω with Reνj ≥ 0 and
|ω| = 1.
(iv) Euler product hypothesis:

 L(s) =
∏
p

exp

( ∞∑
k=1

b
(
pk
)

pks

)
with suitable coefficients b

(
pk
)

satisfying b
(
pk
)
≪ pkθ for some θ < 1/2, where the

product is taken over all prime numbers p.
We first recall the following result due to Steuding [20], which actually holds with-
out the Euler product hypothesis:

Theorem 1.1 [20] If two L-functions L1 and L2 with a(1) = 1 share a complex
value c ̸= ∞ CM, then L1 = L2.

Later on, Li [8] proved the following result to deal with a question posed by Chung-
Chun Yang [22]:

Theorem 1.2 [8] Let a and b be two distinct finite values, and let f be a mero-
morphic function in the complex plane such that f has finitely many poles in the
complex plane. If f and a non-constant function L share a CM and b IM, then
L = f .

In 1997, Lahiri [9] posed the following question: What can be said about the
relationship between two meromorphic functions f and g, when two differential
polynomials, generated by f and g respectively, share some nonzero finite value?
In this direction, Fang [1] and Yang-Hua [22] respectively proved the following re-
sults:

Theorem 1.3 [1] Let f and g be two non-constant entire functions, and let n

and k be two positive integers such that n > 2k + 4. If (fn)
(k)

and (gn)
(k)

share 1
CM, then either f(z) = cle

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants

satisfying (−1)k (c1c2)
n

(nc)2k = 1, or f = tg for a constant t such that tn = 1.

Theorem 1.4 [22] Let f and g be two non-constant meromorphic functions, and
let n ≥ 11 be a positive integer. If fnf ′ and gng′ share 1 CM , then either
f(z) = cle

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(c1c2)
n+1

c2 = −1, or f = tg for a constant t such that tn+1 = 1.

Regarding Theorems 1.1-1.4, one may ask, what can be said about the relationship

between a meromorphic function f and an L-function L, if (fn)
(k)

and (Ln)
(k)

share
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1 CM or that (fn)
(k)

and (Ln)
(k)

have the same fixed points, where n and k are
positive integers? In this direction, Fang Liu, Xiao-Min Li and Hong-Xun Yi[10]
proved the following two results respectively:

Theorem 1.5 [10] Let f be a non-constant meromorphic function, let L be an

L-function, and let n and k be two positive integers with n > 3k+ 6. If (fn)
(k)

and

(Ln)
(k)

share 1 CM, then f = tL for a constant t satisfying tn = 1.

Theorem 1.6 [10] Let f be a non-constant meromorphic function, let L be an L-

function, and let n and k be two positive integers with n > 3k+6. If (fn)
(k)

(z)−z

and (Ln)
(k)

(z) − z share 0 CM, then f = tL for a constant t satisfying tn = 1.

To prove Theorems 1.5 and 1.6 in the paper, authors applied Nevanlinna theory,
which can be found in [[4],[11],[23],[24]]. In addition, we will use the lower order
µ(f) and the order ρ(f) of a meromorphic function f , which can be found, for
example in [[4],[11],[24]], are in turn defined as follows:

µ(f) = lim inf
r→∞

log T (r, f)

log r

ρ(f) = lim sup
r→∞

log T (r, f)

log r

We also need the following two definitions:

Definition 1 [12]. Let p be a positive integer and a ∈ C
⋃
{∞}. Next we

denote by Np)

(
r, 1

f−a

)
the counting function of those a-points of f (counted

with proper multiplicities) whose multiplicities are not greater than p, and de-

note by N(p

(
r, 1

f−a

)
the counting function of those a-points of f (counted with

proper multiplicities) whose multiplicities are not less than p. We denote by

Np)

(
r, 1

f−a

)
and N (p

(
r, 1

f−a

)
the reduced forms of Np)

(
r, 1

f−a

)
and N(p

(
r, 1

f−a

)
respectively. Here Np)

(
r, 1

f−∞

)
, Np)

(
r, 1

f−∞

)
, N(p

(
r, 1

f−∞

)
and N (p

(
r, 1

f−∞

)
mean Np)(r, f), Np)(r, f), N(p(r, f) and N (p(r, f) respectively.

Definition 2[12] Let a be an any value in the extended complex plane and let
k be an arbitrary non negative integer. We define

Θ(a, f) = 1 − lim sup
r→∞

N
(
r, 1

f−a

)
T (r, f)

,

δk(a, f) = 1 − lim sup
r→∞

Nk

(
r, 1

f−a

)
T (r, f)

,

where

Nk

(
r,

1

f − a

)
=N

(
r,

1

f − a

)
+ N (2

(
r,

1

f − a

)
+ · · · + N (k

(
r,

1

f − a

)
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Remark 1. By Definition 2 , we have

0 ≤ δk(a, f) ≤ δk−1(a, f) ≤ δ1(a, f) ≤ Θ(a, f) ≤ 1

Remark 2. Recently Hu and Li pointed out that Theorem 1.4 is false when c = 1.
A counter example was given by Hu and Li, see [3].

In 2010, Li [13] introduced the following question posed by Chung-Chun Yang:

Question 1. [13]. If f is a meromorphic function in C that shares three distinct
values a, b CM and c IM with the Riemann zeta function ζ, where c /∈ {a, b, 0,∞},
is f equal to ζ ?

Li [13] also proved the following result to deal with Question 1:

Theorem 1.7 [13] Let a and b be two distinct finite values, and let f be a mero-
morphic function in the complex plane such that f has finitely many poles in the
complex plane. If f and a non-constant L-function L share a CM and b IM, then
L = f .

Remark 3. In 2012, Gao and Li completely solved Question 1, see [13].
Concerning the value distribution of nonlinear differential polynomials of mero-

morphic functions, we recall the following result proved by Fang in 2002:

Theorem 1.8 [2] Let f and g be two non-constant entire functions, and let n, k

be two positive integers satisfying n ≥ 2k + 8. If (fn(f − 1))
(k)

and (gn(g − 1))
(k)

share 1 CM, then f = g.

Regarding Theorem 1.8, one may ask, what can be said about the relationship

between two meromorphic functions f and g, if (fn(f − 1))
(k)

and (gn(g − 1))
(k)

share 1 CM (IM), where n and k are positive integers ? which was also posed by
Professor M. L. Fang in 2009. By now this question is still open. In this paper,
Xiao-Min Li , Fang Liu , Hong-Xun [7] proved the following result by considering
the nonlinear differential polynomials of L-functions.

Theorem 1.9 [7] Let f be a non-constant meromorphic function, let L be an
L-function, and let n and k be two positive integers with n > 3k + 9 and k ≥ 2. If

(fn(f − 1))
(k)

and (Ln(L− 1))
(k)

share 1 CM, then f = L.

Theorem 1.10 [7] Let f be a non-constant meromorphic function, let L be an
L-function, and let n and k be two positive integers satisfying n > 7k + 17 and

k ≥ 2. If (fn(f − 1))
(k)

and (Ln(L− 1))
(k)

share 1 IM, then f = L.

Regarding Theorems 1.9 and 1.10 one may ask the following question. What

happens if (fn(f − 1))
(k)

and (Ln(L− 1))
(k)

is replaced by ((fn)sP (f))
(k)

and

((Ln)sP (L))
(k)

in Theorems 1.9 and 1.10 ?
We obtain analogous results to answer the above question affirmatively, we prove
the following results which is the main results of this article.
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2. Main Result

Theorem 2.1 Let f be a non-constant meromorphic function, let L be an L-

function, and let n and k be two positive integers with n > k+m+6+2s(k+1)
s . If

((fn)sP (f))
(k)

and ((Ln)sP (L))
(k)

share 1 CM, then f = L.

In the same manner as in the proof of Theorem 2.1 in Section 4 of this paper,
we can get the following result by Lemma 3.3 in Section 3 of this paper:

Theorem 2.2 Let f be a non-constant meromorphic function, let L be an L-

function, and let n and k be two positive integers satisfying n > 2k+7+5s(k+1)
s . If

((fn)sP (f))
(k)

and ((Ln)sP (L))
(k)

share 1 IM, then f = L.

3. Some Lemmas

In this section, we present some lemmas which will be needed later on to prove
main results .

Lemma 3.1 [4] Let f be a non-constant meromorphic function, let k ≥ 1 be a
positive integer, and let c be a nonzero finite complex number. Then

T (r, f) ≤ N(r, f) + N

(
r,

1

f

)
+ N

(
r,

1

f (k) − c

)
−N

(
r,

1

f (k+1)

)
+ S(r, f)

≤ N(r, f) + Nk+1

(
r,

1

f

)
+ N

(
r,

1

f (k) − c

)
−N0

(
r,

1

f (k+1)

)
+ S(r, f)

Lemma 3.2 [16] (Valiron-Mokhonoko,). Let f be a non-constant meromorphic
function, and let

F =

∑p
k=0 akf

k∑q
j=0 bjf

j

be an irreducible rational function in f with constant coefficients {ak} and {bj},
where ap ̸= 0 and bq ̸= 0. Then T (r, F ) = dT (r, f) + O(1), where d = max{p, q}.

Lemma 3.3 [14] Let F and G be two non-constant meromorphic functions such
that F (k) − P and G(k) − P share 0 CM, where k ≥ 1 is a positive integer, P ̸≡ 0
is a polynomial. If

(k+ 2)Θ(∞, F ) + 2Θ(∞, G) + Θ(0, F ) + Θ(0, G) + δk+1(0, F ) + δk+1(0, G) > (k+ 7)

and

(k+2)Θ(∞, G)+2Θ(∞, F )+Θ(0, G)+Θ(0, F )+δk+1(0, G)+δk+1(0, F ) > (k+7),

then either F (k)G(k) = P 2 or F = G.

Lemma 3.4 [14] Let F and G be two non-constant meromorphic functions such
that F (k) − P and G(k) − P share 0 IM, where k ≥ 1 is a positive integer, P ̸≡ 0 is
a polynomial. If

(2k+3)Θ(∞, F )+(2k+4)Θ(∞, G)+Θ(0, F )+Θ(0, G)+2δk+1(0, F )+3δk+1(0, G) > (4k+13)
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and

(2k+3)Θ(∞, G)+(2k+4)Θ(∞, F )+Θ(0, G)+Θ(0, F )+2δk+1(0, G)+3δk+1(0, F ) > (4k+13),

then either F (k)G(k) = P 2 or F = G.

Lemma 3.5 [15] Suppose that f is a meromorphic of finite order in the plane,
and that f (k) has finitely many zeros for some k ≥ 2. Then f has finitely many
poles in the complex plane.

Lemma 3.6 [25] Let f1 and f2 be two non-constant meromorphic functions such
that

N (r, fj) + N

(
r,

1

fj

)
= S(r)

for 1 ≤ j ≤ 2 Then, either N0 (r, 1; f1, f2) = S(r) or that there exist two inte-
gers p and q satisfying |p| + |q| > 0, such that fp

1 f
q
2 = 1, where N0 (r, 1; f1, f2)

denotes the reduced counting function of the common 1-points of f1 and f2 in
|z| < r, T (r) = T (r, f1) + T (r, f2) and S(r) = o(T (r)), as r /∈ E and r → ∞. Here
E ⊂ (0,+∞) is a subset of finite linear measure.

Lemma 3.7 [15] Let f be a transcendental meromorphic function in the com-
plex plane. Then, for each K > 1, there exists a set M(K) ⊂ (0,+∞) of the lower

logarithmic density at most d(K) = 1 −
(
2eK−1 − 1

)−1
> 0, that is

log densM(K) = lim inf
r→∞

1

log r

∫
M(K)∩[1,r]

dt

t
≤ d(K),

such that, for every positive integer k, we have

lim sup
r→∞

r/∈M(K)

T (r, f)

T
(
r, f (k)

) ≤ 3eK.

Lemma 3.8 [25] Let s > 0 and t be relatively prime integers, and let c be a finite
complex number such that cs = 1, then there exists one and only one common zero
of ωs − 1 and ωt − c.

4. Proof of Main Results

Proof of Theorem 2.1.
First of all, we denote by d the degree of L. Then d = 2

∑K
j=1 λj > 0 (cf.[22],p.113)

where K and λj are respectively the positive integer and the positive real number in
the functional equation of the axiom (iii) of the definition of L-functions. Therefore,
by Steuding (cf.[20],p.150) we have

T (r, L) =
d

π
r log r + O(r). (1)
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Noting that an L-function at most has one pole z = 1 in the complex plane, we
deduce by Lemma 3.1 and Lemma 3.2 that

T (r, Ln) = nT (r, L) + O(1)

≤ N (r, (Ln)sP (L)) + Nk+1

(
r,

1

(Ln)sP (L)

)
+ N

(
r,

1

((Ln)sP (L))
(k) − 1

)

−N0

(
r,

1

((Ln)sP (L))
(k+1)

)
+ O(log r)

≤ (s + m)N(r, L) + (k + 1 + s + m)N

(
r,

1

L

)
+ N

(
r,

1

((fn)sP (f))
(k) − 1

)
+ O(log r)

≤ (k + 1 + s + m)T (r, L) + T
(
r, ((fn)sP (f))

(k)
)

+ O(log r)

(n− k − 1 − s−m)T (r, L) ≤ T
(
r, ((fn)sP (f))

(k)
)

+ O(log r)

(2)
Let

F = ((fn)sP (f)), G = ((Ln)sP (L)) (3)

now we let

∆1 = (k+2)Θ (∞, F )+2Θ (∞, G)+Θ (0, F )+Θ (0, G)+δk+1 (0, F )+δk+1 (0, G) (4)

and

∆2 = (k+ 2)Θ (∞, G) + 2Θ (∞, F ) + Θ (0, G) + Θ (0, F ) + δk+1 (0, G) + δk+1 (0, F ) .
(5)

by Lemma 3.2 we have

Θ (∞, F ) = 1 − lim sup
r→∞

N (r, F )

T (r, F )
= 1 − lim sup

r→∞

N(r, f)

(n + 1)T (r, f) + O(1)
≥ 1 − 1

ns + m
,

(6)

δk+1 (0, F ) = 1 − lim sup
r→∞

Nk+1

(
r, 1

F

)
T (r, F )

≥ 1 − s(k + 1) + m

ns + m

(7)

and

Θ (0, F ) ≥ 1− 2

ns + m
, Θ (0, G) ≥ 1− 2

ns + m
, δk+1 (0, G) ≥ 1− s(k + 1) + m

ns + m
.

(8)
by noting that an L-function has at most one pole z = 1 in the complex plane, we
have by equation 1 that

Θ (∞, G) = 1. (9)

by equation 4-9 we have

∆1 ≥ k + 8 − k + 2s(k + 1) + 2m + 6

ns + m
, ∆2 ≥ k + 8 − 2s(k + 1) + 2m + 6

ns + m
. (10)
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By equation 10 and the assumption n > k+m+6+2s(k+1)
s , we have ∆1 > k + 7 and

∆2 > k + 7. This together with equations 4 and 5, Lemma 3.3 and the assumption
that F (k) and G(k) share 1 CM gives F (k)G(k) = 1 or F = G. We consider the
following two cases:
Case 1. Suppose that F (k)G(k) = 1. Then, by equation 3 we have

(((fn)sP (f))(k))(((Ln)sP (L))(k)) = 1. (11)

On the other hand, by equations 1 and 11, Lemma 3.2, a result from Whittaker(cf.[25],p.82)
and the definition of the order of a meromorphic function we have

ρ(f) = ρ ((fn)sP (f)) = ρ
(

((fn)sP (f))
(k)
)

= ρ
(

((Ln)sP (L))
(k)
)

= ρ ((Ln)sP (L))

= ρ(L) = 1.

(12)
By equation 12 we can see that f is a transcendental meromorphic function. Since
an L-function at most has one pole z = 1 in the complex plane, we deduce by

equation 11 that ((fn)sP (f))
(k)

at most has one zero z = 1 in the complex plane.
Combining this with equation 12, Lemma 3.5 and the assumption k ≥ 2, we have
that (fn)sP (f), and so f has at most finitely many poles in the complex plane.

This together with equation 11 implies that ((Ln)sP (L))
(k)

has at most finitely
many zeros in the complex plane. Therefore, by equation 3 we have

N
(
r, F (k)

)
+ N

(
r,

1

F (k)

)
≤ O(log r) (13)

and

N
(
r,G(k)

)
+ N

(
r,

1

G(k)

)
≤ O(log r). (14)

We now set

f1 =
F (k)

G(k)
, f2 =

F (k) − 1

G(k) − 1
. (15)

By equation 15 and the assumption that f and L are transcendental meromorphic
functions, we have f1 ̸≡ 0 and f2 ̸≡ 0. Suppose that one of f1 and f2 is a nonzero
constant. Then, by equation 15 we see that F (k) and G(k) share ∞ CM. Combining
this with F (k)G(k) = 1 we deduce that ∞ is a Picard exceptional value of f and L.
Next we suppose that f1 and f2 are non-constant meromorphic functions. We set

F1 = F (k), G1 = G(k). (16)

Then, by equations 15-16 we have

F1 =
f1 (1 − f2)

f1 − f2
, G1 =

1 − f2
f1 − f2

. (17)

By equation 17 we can find that there exists a subset I ⊂ (0,+∞) with infinite
linear measure such that S(r) = o(T (r)) and

T (r, F1) ≤ 2 (T (r, f1) + T (r, f2)) + S(r) ≤ 8T (r, F1) + S(r) (18)

or

T (r,G1) ≤ 2 (T (r, f1) + T (r, f2)) + S(r) ≤ 8T (r,G1) + S(r), (19)

as r ∈ I and r → ∞, where T (r) = T (r, f1) + T (r, f2). Without loss of generality,
we suppose that equation 18 holds. Then we have S(r) = S (r, F1), as r ∈ I and
r → ∞. By F1G1 = 1 we see that F1 and G1 share 1 and -1 CM. By noting that
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F1 and G1 are transcendental meromorphic functions such that F1 and G1 share 1
CM, we deduce by equations 13-15 that

N

(
r,

1

fj

)
+ N (r, fj) = o(T (r)), (j = 1, 2), (20)

as r ∈ I and r → ∞. By noting that F1 and G1 share -1 CM, we deduce by
equations 15 and 16 and the second fundamental theorem that

T (r, F1) ≤ N (r, F1) + N

(
r,

1

F1

)
+ N

(
r,

1

F1 + 1

)
+ O (T (r, F2))

≤ N

(
r,

1

F1 + 1

)
+ O(log r) + o (T (r, F1))

≤ N0 (r, 1; f1, f2) + o (T (r, F1)) ,

(21)

as r ∈ I and r → ∞. By equations 18 and 21 we have

T (r, f1) + T (r, f2) ≤ N0 (r, 1; f1, f2) + o(T (r)), (22)

By equations 13-16, 20, 22 and Lemma 3.6 we find that there exist two relatively
prime integers x and y satisfying |x|+ |y| > 0, such that fx

1 f
y
2 = 1. Combining this

with equations 15-16, we have(
F1

G1

)x(
F1 − 1

G1 − 1

)y

= 1. (23)

we consider the following two subcases:

Subcase 1.1 Suppose that xy < 0, say x > 0 and y < 0, say y = −y1, where
y1 is some positive integer. Then, equation 23 can be rewritten as(

F1

G1

)x

=

(
F1 − 1

G1 − 1

)y1

. (24)

Let z1 ∈ C be a pole of F1 of multiplicity p1 ≥ 1. Then, by F1G1 = 1 we can see
that z1 be a zero of G1 of multiplicity p1. Therefore, by equation 24 we deduce that
2x = y1 = −y. Combining this with the assumption that x and y are two relatively
prime integers, we have x = 1 and y = −y1 = −2. Therefore, equation 24 can
be rewritten as F1 (G1 − 1)

2
= (F1 − 1)

2
G1, this equivalent to the obtained result

F1G1 = 1. Next we can deduce a contradiction by using the other method. Indeed,
by equations 12 and 14, the right equality of equation 3 and the fact that L, and

so ((Ln)sP (L))
(k)

has at most one pole z = 1 in the complex plane, we deduce

((Ln)s(z)P (L))
(k)

=
P1(z)

(z − 1)p2
eA1z+B1 , (25)

where P1 is a nonzero polynomial, p2 ≥ 0 is an integer, A1 ̸= 0 and B1 are constants.
By equation 25, Hayman[6], Lemma 3.2 and Lemma 3.7 we deduce that there exists
a subset I ⊂ (0,+∞) with logarithmic measure I =

∫
I

dt
t = ∞ such that for some

given sufficiently large positive number K > 1, we have

(ns + m)T (r, L) = T (r, ((Ln)sP (L)))

≤ 3eKT
(
r, ((Ln)sP (L))

(k)
)

=
3eK |A1| r

π
(1 + O(1)) + O(log r),

(26)
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as r ∈ I and r → ∞. By equations 1 and 26 we have a contradiction.

Subcase 1.2 Suppose that st = 0, say s = 0 and t ̸= 0. Then, by equation
23 we can see that F1 and G1 share ∞ CM. This together with equations 3 and
16 and the assumption F1G1 = 1 implies that ∞ is a Picard exceptional value of f
and L.

Subcase 1.3 Suppose that st > 0, say s > 0 and t > 0. Then, by equation
23 we can see that F1 and G1 share ∞ CM. This together with equations 3 and
16 and the assumption F1G1 = 1 implies that ∞ is a Picard exceptional value of f
and L.

By equations 3 and 14 and the assumption n > k+m+6+2s(k+1)
s we deduce that

L has at most finitely many zeros in the complex plane. This together with the
obtained result that ∞ is a Picard exceptional value of f and L gives

L(z) = P2(z)eA2z+B2 , (27)

where P2 is a nonzero polynomial, A2 ̸= 0 and B2 are constants. By equation 27
and Hayman [6] we have

T (r, L(z)) = T
(
r, P3(z)eA2z+B2

)
=

|A2| r
π

(1 + O(1)) + O(log r),

which contradicts equation 1.

Case 2. Suppose that F = G . Then by equation 3 we have

(fn)sP (f) = (Ln)sP (L) (28)

now we set

H =
f

L
(29)

If H is a non-constant meromorphic function, then we get equation 28.
Suppose H is a constant. Then from equation 29, we get

[anf
m + an−1f

m−1 + · · · + a1f ][(fn)s] = [anL
m + an−1L

m−1 + · · · + a1L][(Ln)s]

i.e,

anL
(m+ns)[Hm+ns−1]+an−1L

(m+ns−1)[Hm+ns−1−1]+· · ·+a1L
(1+ns)[H1+ns−1] = 0

which implies Hχn = 1 , where

χn =

1
n−1∑
j=1

|an−j | ≠ 0 ;

d1 aj = 0,∀j = 1, 2, · · · , n− 1 ,

d1 = gcd(m + ns,m + ns− 1, · · · , ns + 1),

Therefore, f = tL , for a constant t satisfies tχn = 1. We get the conclusion of
Theorem 2.1. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2.
First of all, we denote by d the degree of L. Then d = 2

∑K
j=1 λj > 0 [22], where

K and λj are respectively the positive integer and the positive real number in the
functional equation of the axiom (iii) of the definition of L-function. Therefore, by
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the results of Steuding equations we have equation 1. Now we let equation 3, and
let

∆3 =(2k + 3)Θ (∞, F1) + (2k + 4)Θ (∞, G1) + Θ (0, F1) + Θ (0, G1)

+ 2δk+1 (0, F1) + 3δk+1 (0, G1)
(30)

and

∆4 =(2k + 3)Θ (∞, G1) + (2k + 4)Θ (∞, F1) + Θ (0, G1) + Θ (0, F1)

+ 2δk+1 (0, G1) + 3δk+1 (0, F1) .
(31)

In the same manner as in the proof of Theorem 2.1 by equations 6-9 and by equa-
tions 30-31 we have

∆3 ≥ 4k+14−2k + 7 + 5m + 5s(k + 1)

ns + m
, ∆4 ≥ 4k+14−2k + 8 + 5m + 5s(k + 1)

ns + m
.

(32)

By equation 32 and the assumption n > 2k+7+5s(k+1)+4m
s we deduce ∆3 > 4k + 13

and ∆4 > 4k + 13. This together with Lemma 3.4 gives F (k)G(k) = 1 or F = G.
We consider the following two cases:

Case 1. Suppose that F (k)G(k) = 1. Then, in the same manner as in Case 1
of the proof of Theorem 2.1 we have a contradiction.

Case 2. Suppose that F = G. Then, in the same manner as in Case 2 of the
proof of Theorem 2.1 we get the conclusion of Theorem 2.2 This completely proves
Theorem 2.2.
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