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UNIQUENESS RESULTS ON DIFFERENTIAL POLYNOMIALS

GENERATED BY A MEROMORPHIC FUNCTION AND A

L-FUNCTION

PREETHAM N. RAJ AND HARINA P. WAGHAMORE

Abstract. The Riemann zeta function and its various generalizations have

been extensively studied by mathematicians worldwide. The L-functions are

Selberg class functions with Riemann zeta function as the prototype and since
L-functions are analytically continued as meromorphic functions, it is conve-

nient to study the value distribution and uniqueness problems on L-functions
and arbitrary meromorphic functions. Further, the fact that L-functions nei-

ther have a pole nor zero at the origin, but is having only possible pole at s = 1

helps us to study some of the classical results of Boussaf et al. [3] in terms of a
L-function and an arbitrary meromorphic function. In this paper, by using the

concept of weighted sharing and least multiplicity, we study the value distribu-

tion of a L-function and an arbitrary meromorphic function when certain type
of differential polynomials generated by them share a non-zero small function

with finite weight. Our results extends and improves the classical results due

to Boussaf et al. (Indagationes Mathematicae 24(1):15-41, 2013).

1. Introduction and main results

The Nevanlinna theory is one of the several branches of complex analysis that
has seen extensive research work. For the standard definitions and notations of the
Nevanlinna theory one can refer ([10], [32], [33]).

Let f(z) and g(z) be two meromorphic functions in the complex plane C. Sup-
pose if f(z)− a and g(z)− a assumes the same zeros with the same multiplicities,
then we say that f(z) and g(z) share the value a CM (counting multiplicity), and if
we do not consider the multiplicity, then we say that f(z) and g(z) share the value
a IM (ignoring multiplicity), where a is a complex number. Around 2001, Lahiri
([12], [13]) introduced the idea of weighted sharing which is in between CM and IM
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sharing. If we say that f and g share the value a with the weight k, then it implies
that, z0 is a zero of f(z) − a with multiplicity m(≤ k) if and only if z0 is a zero
of g(z)− a with multilpicity m(≤ k), and z0 is a zero of f(z)− a with multiplicity
m(> k) if and only if z0 is a zero of g(z)− a with multiplicity n(> k), where m is
not necessarily equal to n. We denote by f , g share (a, k) to mean f and g share
the value a with the weight k.

Many mathematicians around the world have found the uniqueness problem of
meromorphic functions in the field C or in the p-adic field to be an intriguing re-
search topic and we can see significant number of research works regarding the
polynomial of uniqueness in C (see [6], [8], [14], [16], [30], [31]) as well as in p-adic
fields (see [1], [4], [5], [19], [20], [21], [22]). After studying the uniqueness problems
of the form P (f) = P (g), where P is a polynomial, the studies were extended
to problems of the form f ′P ′(f) = g′P ′(g), in both complex and p-adic contexts.
Boussaf et al. [3] conducted one such studies in which they re-examined several
crucial lemmas obtained on a p-adic field to complex field and obtained similar
results to those obtained in p-adic analysis.

For the sake of convenience we retain the same notations used earlier in p-
adic analysis by many authors including Boussaf et al. [3]. Let A(C) represent
the C-algebra of entire functions in C, M(C) represent the field of meromorphic
functions in C, and C[x] represent the field of rational functions. A polynomial
P ∈ C[x] is called a polynomial of uniqueness for a class of functions T , if the
property P (f) = P (g) implies f = g, for any two functions f , g ∈ T (see [1], [15],
[29], [31]).

Let f ∈ M(C) be a function such that f has no pole or zero at 0. Then we
define the positive logarithm, the proximity function m(r, f), the counting function
Z(r, f) for the zeros of f (respectively the reduced counting function Z(r, f)), the
counting function N(r, f) for the poles of f (respectively the reduced counting func-
tion N(r, f)), the Nevanlinna characteristic function T (r, f) and the small function
α in a similar manner as defined in the previous paper by Boussaf et al. [3].

Suppose, if f assumes a zero or a pole of order t at 0, then we can either make a
change of origin, or count the zero or pole at 0 by respectively adding or subtracting
t log r to the counting functions. We denote by Mf (C) the set of all small mero-
morphic functions with respect to f in C and by S(r, f) a function in r ∈ (0,+∞)

such that lim
r→+∞

S(r,f)
T (r,f) = 0 outside a subset of (0,+∞) of finite measure. For a ∈ C,

the deficiency of a with respect f is defined by δ(a, f) = 1− lim
r→∞

Z(r,f−a)
T (r,f) . Clearly

0 ≤ δ(a, f) ≤ 1. We also have δ(∞, f) = 1− lim
r→∞

N(r,f)
T (r,f) .

Now, Boussaf et al. [3] obtained the following theorems and corollaries for the
meromorphic functions f , g ∈ M(C) in the complex field.

Theorem A. [3, Theorem 3] Let P be a polynomial of uniqueness for M(C), let
P ′ = b(x− a1)

n
∏l

i=2(x− ai)
ki with b ∈ C\{0}, and l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l − 1

when l > 2 and let k =
∑l

i=2 ki. Suppose P satisfies the following conditions:

n ≥ 10 +
∑l

i=3 max(0, 4− ki) +max(0, 5− k2),
n ≥ k + 3,

if l = 2, then n ̸= 2k, 2k + 1, 3k + 1,
if l = 3, then n ̸= 2k + 1, 3ki − k, ∀i = 2, 3.
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Let f , g ∈ M(C) be transcendental and let α ∈ Mf (C)∩Mg(C) be non-identically
zero. If f ′P ′(f) and g′P ′(g) share α CM, then f = g.

Corollary B. [3, Corollary 3.2] Let P ∈ C[x] be such that P ′ is of the form
b(x− a1)

n(x− a2)
k with k ≥ 2. Suppose that P satisfies the further conditions:

n ≥ 10 +max(0, 5− k),
n ≥ k + 3,
n ̸= 2k, 2k + 1, 3k + 1.

Let f , g ∈ M(C) be transcendental and let α ∈ Mf (C)∩Mg(C) be non-identically
zero. If f ′P ′(f) and g′P ′(g) share α CM, then f = g.

Corollary C. [3, Corollary 3.3] Let f , g ∈ M(C) be transcendental and let α ∈
Mf (C) ∩ Mg(C) be non-identically zero. Let a ∈ C\{0}. If f ′fn(f − a)2 and
g′gn(g − a)2 share the function α CM and if n ≥ 13, then f = g.

Let L be an algebraically closed field and let P ∈ L[x]\K (whereK is algebraically
closed field of characteristic zero, complete for an ultrametric absolute value) and
let Ξ(P ) be the set of zeros c of P ′ such that P (c) ̸= P (d) for every zero d of P ′

other than c. Let ϕ(P ) denote its cardinal.

Corollary D. [3, Corollary 3.4] Let P ∈ C[x] be such that P ′(x) = b(x− a1)
n(x−

a2)
k2(x − a3)

k3 with b ∈ C\{0}, ϕ(P ) = 3, ki ≥ ki+1 and i = 2, 3. Suppose, P
satisfies the following conditions:

n ≥ 10 +
∑l

i=3 max(0, 4− k2) +max(0, 5− k3),
n ≥ k2 + k3 + 3.

Let f , g ∈ M(C) be transcendental and let α ∈ Mf (C)∩Mg(C) be non-identically
zero. If f ′P ′(f) and g′P ′(g) share α CM, then f = g.

By taking all ki’s equal to 1 in Theorem A, Boussaf et al. [3] obtained the
following theorem.

Theorem E. [3, Theorem 4] Let P be a polynomial of uniqueness for M(C) such
that P ′ is of the form b(x−a1)

n
∏l

i=2(x−ai) with l ≥ 3, b ∈ C\{0}, with n ≥ l+10.
Let f , g ∈ M(C) be transcendental and let α ∈ Mf (C)∩Mg(C) be non-identically
zero. If f ′P ′(f) and g′P ′(g) share α CM, then f = g.

Boussaf et al. [3] also proved the following result.

Theorem F. [3, Theorem 5] Let f , g ∈ M(C) be transcendental and let α ∈
Mf (C) ∩ Mg(C) be non-identically zero. Let a ∈ C\{0}. If f ′fn(f − a) and
g′gn(g − a) share the function α CM and if n ≥ 12, then either f = g or there

exists h ∈ M(C) such that f = a(n+2)
n+1

(
hn+1−1
hn+2−1

)
h and g = a(n+2)

n+1

(
hn+1−1
hn+2−1

)
.

Following Riemann’s groundbreaking result [24], the Riemann zeta function as
well as its various generalizations have been extensively studied by mathemati-
cians for over a century. These functions are commonly referred to as L-functions.
Over time, significant links have been established between the properties of the
L-functions and other theories. Towards the end of twentieth century, in an effort
to summarize the core properties of classical L-functions, Selberg [27] gave an ax-
iomatic characterization of what would be called general L-functions. A L-function
F means a Selberg class function with the Riemann zeta function ζ(s) =

∑∞
n=1

1
ns

as the prototype and the Selberg class S of L-function is defined as follows:
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Definition 1.1. [27] The Selberg class S consists of the functions F satisfying the
following axioms:

(1) (Dirichlet series) F(s) =
∑∞

n=1
a(n)
ns , absolutely convergent for σ > 1.

(2) (Analytic continuation) There exists an integer m such that (s − 1)mF(s)
is an entire function of finite order.

(3) (Functional equation) There exist an integer r ≥ 0, positive real numbers
Q,λj, complex numbers µj with Reµj ≥ 0 and ω with |ω| = 1, such that
the function Λ(s) defined by

Λ(s) = Qs
r∏

j=1

Γ(λjs+ µj)F(s) = γ(s)F(s),

satisfies the functional equation Λ(s) = ωΛ(1 − s). We would call the
function γ(s) the γ-factor.

(4) (Ramanujan conjecture) For every ϵ > 0, a(n) = O(nϵ).

(5) (Euler product) a(1) = 1, and logF(s) =
∑

n≥1
b(n)
ns , where b(n) = 0 unless

n is a prime power, and b(n) ≪ nθ for some θ < 1
2 .

By the comment on the order of a function, we can choose m in axiom (2) to be
the order of the pole of F at s = 1.

Now, the main motivation to this paper is that, it is easy to compare the value
distribution and uniqueness outcomes between the L-functions and any arbitrary
meromorphic functions since L-functions are analytically continued as meromorphic
functions (see [9], [11], [18], [23], [25], [26]). Additionally, the fact that L-function
is not having any zero or pole at s = 0, but is having only possible pole at s = 1,
makes it interesting to analyse the results from Boussaf et al. [3] by taking a
L-function F and an arbitrary meromorphic function f , in the form f ′P ′(f) and
F ′P ′(F). Consideration of the concept of least multiplicity makes the study further
interesting.

Main Results

Following are the main results of our paper which builds upon and extends the
classical results of Boussaf et al. [3].

Theorem 1.1. Let f be a non-constant meromorphic function, F be a L-function
and P be a polynomial of uniqueness for M(C) such that P ′ is of the form b(x −
a1)

n
∏l

i=2(x − ai)
ki where b ∈ C\{0} and let n > 0, l ≥ 2, kj ≥ kj+1 and k =∑l

i=2 ki be integers with 2 ≤ j ≤ l − 1 when l > 2. Let s, t be positive integers.
Suppose that f , F ∈ M(C) whose poles and a1-points have multiplicities at least t
and s respectively and α(̸≡ 0) ∈ Mf (C) ∩ MF (C), then if f ′P ′(f) and F ′P ′(F)
share (α,w), where w ∈ N∪{0} and one of the following three conditions is satisfied:

(1) n > max
{
k+2,

(
1−δ(∞, f)

) (
11
t

)
+
(
7
s

)
+
∑l

i=3 max(0, 7−ki)+max(0, 11−k2)
}

when w = 0;

(2) n > max
{
k+2,

(
1−δ(∞, f)

) (
6
t

)
+
(

9
2s

)
+
∑l

i=3 max(0, 9
2−ki)+max(0, 6−k2)

}
when w = 1;

(3) n > max
{
k+2,

(
1−δ(∞, f)

) (
5
t

)
+
(
4
s

)
+
∑l

i=3 max(0, 4−ki)+max(0, 5−k2)
}
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when w ≥ 2;
and also n is such that
if l = 2, then n ̸= 2k, 2k + 1, 3k + 1;
if l = 3, then n ̸= 2k + 1, 3ki − k for i = 2, 3,
then f = F .

Example 1.1. Let f = 1
z and F = ζ(z), where ζ(z) is the Riemann zeta function.

Then f has a simple pole at z = 0 and a simple zero at z = ∞. Also, F has a
simple pole at z = 1 and a zero at z = ∞. Now, f and F share 0 IM. Let P be a
polynomial such that P ′ is of the form, P ′(x) = x21(x−1)11(x−2)7. Then f ′P ′(f)
and F ′P ′(F) share (0, 0), but f ̸= F .

Example 1.2. Let f = −ζ(z) and F = ζ(z), where ζ(z) is the Riemann zeta
function. Now, f and F share 0 CM. Let P be a polynomial such that P ′ is of the
form, P ′(x) = x12(x − 1)5(x − 2)4. Then f ′P ′(f) and F ′P ′(F) share (0,∞), but
f ̸= F .

These examples shows that the conditions given in the theorem are necessary.

Corollary 1.1. Let f be a non-constant meromorphic function, F be a L-function
and let P ∈ C[x] be such that P ′ is of the form b(x− a1)

n(x− a2)
k with b ∈ C\{0}

and k ≥ 2. Let f , F ∈ M(C) whose poles and a1-points have multiplicities at least
t and s respectively and α(̸≡ 0) ∈ Mf (C)∩MF (C). Suppose P satisfies one of the
following conditions:

(1) n > max
{
k + 2,

(
1− δ(∞, f)

) (
11
t

)
+
(
7
s

)
+max(0, 11− k)

}
when w = 0;

(2) n > max
{
k + 2,

(
1− δ(∞, f)

) (
6
t

)
+

(
9
2s

)
+max(0, 6− k)

}
when w = 1;

(3) n > max
{
k + 2,

(
1− δ(∞, f)

) (
5
t

)
+

(
4
s

)
+max(0, 5− k)

}
when w ≥ 2;

and also n is such that n ̸= 2k, 2k + 1, 3k + 1. Then if f ′P ′(f) and F ′P ′(F) share
(α,w), then f = F .

Corollary 1.2. Let f be a non-constant meromorphic function, F be a L-function
and let P ∈ C[x] be such that P ′ is of the form b(x − a1)

n(x − a2)
k2(x − a3)

k3

with b ∈ C\{0}, ϕ(P ) = 3, ki ≥ ki+1 and i = 2, 3. Let f , F ∈ M(C) whose
poles and a1-points have multiplicities at least t and s respectively and α(̸≡ 0) ∈
Mf (C) ∩MF (C). Suppose P satisfies one of the following conditions:

(1) n > max
{
k2+k3+2,

(
1−δ(∞, f)

) (
11
t

)
+
(
7
s

)
+max(0, 7−k2)+max(0, 11−k3)

}
when w = 0;

(2) n > max
{
k2+k3+2,

(
1−δ(∞, f)

) (
6
t

)
+
(

9
2s

)
+max(0, 9

2−k2)+max(0, 6−k3)
}

when w = 1;

(3) n > max
{
k2+k3+2,

(
1−δ(∞, f)

) (
5
t

)
+
(
4
s

)
+max(0, 4−k2)+max(0, 5−k3)

}
when w ≥ 2,
then if f ′P ′(f) and F ′P ′(F) share (α,w), then f = F .

By taking all ki’s equal to 1, a better formulation can be obtained as below.

Theorem 1.2. Let f be a non-constant meromorphic function, F be a L-function
and P be a polynomial of uniqueness for M(C) such that P ′ is of the form b(x −
a1)

n
∏l

i=2(x−ai) where b ∈ C\{0}, and n > 0, l ≥ 3 are integers. Let s, t be positive
integers. Suppose that f , F ∈ M(C) whose poles and a1-points have multiplicities
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at least t and s respectively and α( ̸≡ 0) ∈ Mf (C) ∩ MF (C), then if f ′P ′(f) and
F ′P ′(F) share (α,w), where w ∈ N∪ {0} and one of the following three conditions
is satisfied:

(1) n >
(
1− δ(∞, f)

) (
11
t

)
+

(
7
s

)
+ 4l when w = 0;

(2) n >
(
1− δ(∞, f)

) (
6
t

)
+
(

9
2s

)
+ 3

2 l when w = 1;

(3) n >
(
1− δ(∞, f)

) (
5
t

)
+
(
4
s

)
+ l when w ≥ 2;

then if f ′P ′(f) and F ′P ′(F) share (α,w), then f = F .

Theorem 1.3. Let f be a non-constant meromorphic function, F be a L-function,
t, s be positive integers and a ∈ C\{0}. Suppose that f , F ∈ M(C) whose poles and
a1-points have multiplicities at least t and s respectively and α(̸≡ 0) ∈ Mf (C) ∩
MF (C), then if f ′fn(f −a) and F ′Fn(F −a) share (α,w), where w ∈ N∪{0} and
one of the following conditions is satisfied:

(1) n >
(
1− δ(∞, f)

) (
11
t

)
+

(
7
s

)
+ 8 when w = 0;

(2) n >
(
1− δ(∞, f)

) (
6
t

)
+
(

9
2s

)
+ 3 when w = 1;

(3) n >
(
1− δ(∞, f)

) (
5
t

)
+
(
4
s

)
+ 2 when w ≥ 2,

then either f = F or there exists some h ∈ M(C) satisfying f = a(n+2)
n+1

(1−hn+1)
(1−hn+2)h,

F = a(n+2)
n+1

(1−hn+1)
(1−hn+2) .

Theorem 1.4. Let f be a non-constant meromorphic function, F be a L-function,
t, s,m(≥ 2) be positive integers and a ∈ C\{0}. Suppose that f , F ∈ M(C) whose
poles and a1-points have multiplicities at least t and s respectively and α(̸≡ 0) ∈
Mf (C) ∩ MF (C), then if f ′fn(f − a)m and F ′Fn(F − a)m share (α,w), where
w ∈ N ∪ {0} and one of the following conditions is satisfied:

(1) n > max
{
k∗,

(
1− δ(∞, f)

) (
11
t

)
+
(
7
s

)
+max(0, 11−m)

}
when w = 0;

(2) n > max
{
k∗,

(
1− δ(∞, f)

) (
6
t

)
+
(

9
2s

)
+max(0, 6−m)

}
when w = 1;

(3) n > max
{
k∗,

(
1− δ(∞, f)

) (
5
t

)
+
(
4
s

)
+max(0, 5−m)

}
when w ≥ 2,

where k∗ = 2m(t+1)
t − (m− 1), then one of the following two cases holds:

(I) f = dF for a constant d such that du = 1, where u = gcd(n + m + 1, n +
m, ..., n+ 1),
(II) f and F satisfy the algebraic equation R(f,F) = 0, where

R(ω1, ω2) =

ωn+1
1

(
ωm
1

m+ n+ 1
−ma

ωm−1
1

m+ n
+

m(m− 1)a2

2

ωm−2
1

m+ n− 1
− · · ·+ (−1)mam

n+ 1

)
− ωn+1

2

(
ωm
2

m+ n+ 1
−ma

ωm−1
2

m+ n
+

m(m− 1)a2

2

ωm−2
2

m+ n− 1
− · · ·+ (−1)mam

n+ 1

)
.

In particular, if m = 2 and a = 1, then f = F .

2. Lemmas

In order to prove our results, we need the following lemmas.
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Lemma 2.1. [28] Let F be a L-function with degree d. Then

T (r,F) =
d

π
rlogr +O(r).

Lemma 2.2. [17] Let F be a L-function. Then N(r,∞;F) = N(r,F) = S(r,F) =
O(logr).

Lemma 2.3. [32] Let f ∈ M(C) and P (f) = bnf
n + bn−1f

n−1 + · · · + b0, where
bj ∈ Mf (C), (j = 0, 1, · · · , n), bn ̸≡ 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.4. [32] Suppose that f ∈ M(C) and k is a positive integer. Then

Z(r, f (k)) ≤ Z(r, f) + kN(r, f) + S(r, f).

Lemma 2.5. [3] Let f ∈ M(C) be non-constant meromorphic function. Then

T (r, f)− Z(r, f) ≤ T (r, f ′)− Z(r, f ′) + S(r, f).

Lemma 2.6. [3] Let P ′(x) = b(x−a1)
n
∏l

i=2(x−ai)
ki ∈ C[x], (ai ̸= aj , for i ̸= j)

with b ∈ C\{0}, l ≥ 2 and let k =
∑l

i=2 ki. Suppose that f , g ∈ M(C) be
transcendental and let θ = P ′(f)f ′P ′(g)g′. If θ ∈ Mf (C) ∩Mg(C), then we have
the following:
if l = 2, then n ∈ {k, k + 1, 2k, 2k + 1, 3k + 1};
if l = 3, then n ∈ {k

2 , k + 1, 2k + 1, 3k2 − k, 3k3 − k};
if l ≥ 4, then n = k + 1.
In particular, if f, g ∈ A(C), then θ does not belong to Af (C).

Lemma 2.7. Let f be a non-constant meromorphic function, F be a L-function
such that 0 is not a Picard’s exeptional value of f and F . Let n,m be positive
integers and P1(z) = amzm + am−1z

m−1 + · · ·+ a1z + a0 be a polynomial of degree
m with a0(̸= 0), a1, · · · , am( ̸= 0) being complex constants and γ(≤ m) be the number
of distinct roots of the equation P1(z) = 0. Suppose that f , F ∈ M(C) whose poles
have multiplicities at least t and α( ̸≡ 0) ∈ Mf (C) ∩ MF (C), such that n > k∗1 ,

where k∗1 = 2m(t+1)
tγ − (m− 1) then f ′fnP1(f)F ′FnP1(F) ̸≡ α2.

Proof. Suppose that

f ′fnP1(f)F ′FnP1(F) ≡ α2. (2.1)

Let vi be the distinct zeros of P1(z) = 0 with multiplicity pi, where i = 1, 2, · · · , γ,
1 ≤ γ ≤ m and

∑γ
i=1 pi = m.

Now by the Second Fundamental Theorem for f and F we get respectively

γT (r, f) ≤ Z(r, f) +N(r, f) +

γ∑
i=1

Z(r, vi; f)− Z0(r, f
′) + S(r, f) (2.2)

and

γT (r,F) ≤ Z(r,F) +

γ∑
i=1

Z(r, vi;F)− Z0(r,F ′) + S(r,F), (2.3)

where Z(r, vi; f) denotes the reduced counting function of zeros of f − vi, (i =
1, 2, · · · , γ) and Z0(r, f

′) denotes the reduced counting function of those zeros of f ′

which are not the zeros of f and f − vi, (i = 1, 2, · · · , γ) and Z(r, vi;F), Z0(r,F ′)
are similarly defined.
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Let z0 be a zero of f with multiplicity p such that α(z0) ̸= 0 or ∞. Clearly z0 must
be a pole of F with multiplicity q. Then from (2.1), we get np+p−1 = nq+mq+q+1.
This gives

(n+ 1)(p− q) = mq + 2. (2.4)

From (2.4), we get p− q ≥ 1 and hence q ≥ n−1
m . Now, np+p−1 = nq+mq+ q+1

gives p ≥ n+m−1
m .

Thus, we have

Z(r, f) ≤ m

n+m− 1
Z(r, f) ≤ m

n+m− 1
T (r, f). (2.5)

Let z1 be a zero of f − vi with multiplicity qi (i = 1, 2, · · · , γ) such that α(z1) ̸= 0
or ∞, then obviously z1 must be a pole of F with multiplicity r(≥ t). Then from
(2.1), we get qipi + qi − 1 = (n+m+ 1)r + 1 ≥ (n+m+ 1)t+ 1.

This gives qi ≥
[
(n+m+1)t+2

pi+1

]
for i = 1, 2, · · · , γ and hence, we get

Z(r, vi; f) ≤ pi + 1

(n+m+ 1)t+ 2
Z(r, vi; f) ≤ pi + 1

(n+m+ 1)t+ 2
T (r, f).

Clearly,
γ∑

i=1

Z(r, vi; f) ≤
m+ γ

(n+m+ 1)t+ 2
T (r, f). (2.6)

Similarly, we have

Z(r,F) ≤ m

n+m− 1
T (r,F) (2.7)

and
γ∑

i=1

Z(r, vi;F) ≤ m+ γ

(n+m+ 1)t+ 2
T (r,F). (2.8)

Also, it is clear from (2.1), (2.7) and (2.8) that

N(r, f) ≤ Z(r,F) +

γ∑
i=1

Z(r, vi;F) + Z0(r,F ′) + S(r, f) + S(r,F)

≤
(

m

n+m− 1
+

m+ γ

(n+m+ 1)t+ 2

)
T (r,F) + Z0(r,F ′) + S(r, f) + S(r,F).

(2.9)

Then from (2.2), (2.5), (2.6) and (2.9), we get

γT (r, f) ≤
(

m

n+m− 1
+

m+ γ

(n+m+ 1)t+ 2

)
{T (r, f) + T (r,F)}

+ Z0(r,F ′)− Z0(r, f
′) + S(r, f) + S(r,F). (2.10)

Similarly from (2.3), (2.7) and (2.8), we get

γT (r,F) ≤
(

m

n+m− 1
+

m+ γ

(n+m+ 1)t+ 2

)
T (r,F)− Z0(r,F ′) + S(r, f) + S(r,F).

(2.11)
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By adding (2.10) and (2.11), we get

γ{T (r, f) + T (r,F)} ≤
(

m

n+m− 1
+

m+ γ

(n+m+ 1)t+ 2

)
T (r, f)− Z0(r, f

′)

+ 2

(
m

n+m− 1
+

m+ γ

(n+m+ 1)t+ 2

)
T (r,F)

+ S(r, f) + S(r,F). (2.12)

Let A =
(

m
n+m−1 + m+γ

(n+m+1)t+2

)
. Then (2.12) becomes,

γ{T (r, f) + T (r,F)} ≤ A
(
T (r, f)

)
+ 2A

(
T (r,F)

)
+ S(r, f) + S(r,F).

This implies

γ{T (r, f) + T (r,F)} < 2A
(
T (r, f)

)
+ 2A

(
T (r,F)

)
+ S(r, f) + S(r,F).

This implies

(γ − 2A) <
S(r, f) + S(r,F)

T (r, f) + T (r,F)
. (2.13)

We note that when n+m−1 >
[
2m(t+1)

tγ

]
, implies (n+m+1)t+2 >

[
2(m+γ)(t+1)

γ

]
,

i.e., when n > k∗1 , where k∗1 =
[
2m(t+1)

tγ

]
− (m − 1), then clearly (γ − 2A) > 0.

Thus, (2.13) leads to a contradiction.
This completes the proof of Lemma 2.7. □

Now, by changing the notation N (r, 0; f) by Z(r, f) for zeros of f , N(r,∞; f)
by N(r, f) for poles of f (similarly for g) and replacing the meromorphic function
g by F , we can obtain the following lemmas by a similar argument as in the proof
of Theorem 1 in [13] and Lemmas 2.14 and 2.15 in [2] respectively.

Lemma 2.8. Let f , F ∈ M(C) and let a ∈ Mf (C) ∩MF (C) be such that a(z) ̸≡
0,∞. If f and F share (a, 2) then one of the following conditions holds:

(1) T (r, f) ≤ Z[2](r, f) + Z[2](r,F) +N[2](r, f) +N[2](r,F) + S(r, f) + S(r,F)
and a similar inequality holds for F ;

(2) fF = a2;
(3) f = F .

Lemma 2.9. Let f , F ∈ M(C) and let a ∈ Mf (C) ∩MF (C) be such that a(z) ̸≡
0,∞. If f and F share (a, 1) then one of the following conditions holds:

(1) T (r, f) ≤ Z[2](r, f)+Z[2](r,F)+N[2](r, f)+N[2](r,F)+ 1
2Z(r, f)+ 1

2N(r, f)+
S(r, f) + S(r,F) and a similar inequality holds for F ;

(2) fF = a2;
(3) f = F .

Lemma 2.10. Let f , F ∈ M(C) and let a ∈ Mf (C) ∩ MF (C) be such that
a(z) ̸≡ 0,∞. If f and F share (a, 0) then one of the following conditions holds:

(1) T (r, f) ≤ Z[2](r, f)+Z[2](r,F)+N[2](r, f)+N[2](r,F)+2Z(r, f)+Z(r,F)+

2N(r, f)+N(r,F)+S(r, f)+S(r,F) and a similar inequality holds for F ;
(2) fF = a2;
(3) f = F .

By following the proof of Lemma 6 in [7], we can get the following Lemma.
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Lemma 2.11. Let f , F ∈ M(C) be non-constant and let n ≥ 6 be an integer. If

(n− 1)(n− 2)

2
fn − n(n− 2)fn−1 +

n(n− 1)

2
fn−2 =

(n− 1)(n− 2)

2
Fn − n(n− 2)Fn−1 +

n(n− 1)

2
Fn−2,

then f = F .

3. Proof of Theorems

3.1. Proof of Theorem 1.1.

Proof. Let Φ = P (f) and Ψ = P (F). We may assume without loss of generality
that a1 = 0. Then clearly Φ′ and Ψ′ share (α,w). From the definitions of Φ and Ψ
it follows that

Z[2](r,Φ
′) + Z[2](r,Ψ

′) +N[2](r,Φ
′) +N[2](r,Ψ

′)

≤ 2Z(r, f) + 2

l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2Z(r,F) + 2

l∑
i=2

Z(r,F − ai)

+ Z(r,F ′) + 2N(r, f) + 2N(r,F) + S(r, f) + S(r,F)

≤ 2

s
Z(r, f) + 2

l∑
i=2

Z(r, f − ai) + Z(r, f ′) +
2

s
(r,F) + 2

l∑
i=2

Z(r,F − ai)

+ Z(r,F ′) +
2

t
N(r, f) + S(r, f) + S(r,F). (3.1)

Noting the proof of Theorem 3 in [3] for the fact that P (x) = xn+1Q(x), where
Q(x) is some polynomial of degree k and using Lemma 2.5, we get

T (r,Φ) ≤ T (r,Φ′) + Z(r, fn+1Q(f))− Z(r, f ′P ′(f)) + S(r, f)

≤ T (r,Φ′) + (n+ 1)Z(r, f) + Z(r,Q(f))− nZ(r, f)−
l∑

i=2

kiZ(r, f − ai)

− Z(r, f ′) + S(r, f)

≤ T (r,Φ′) + Z(r, f) + Z(r,Q(f))−
l∑

i=2

kiZ(r, f − ai)− Z(r, f ′) + S(r, f).

(3.2)

Similarly, we get

T (r,Ψ) ≤ T (r,Ψ′)+Z(r,F)+Z(r,Q(F))−
l∑

i=2

kiZ(r,F − ai)−Z(r,F ′)+S(r,F).

(3.3)
Now the following three cases can be distinguished:
Case 1. Let w = 0. Now the following three subcases needs to be considered:
Subcase 1.1. Suppose if (1) of Lemma 2.10 holds. Then

T (r,Φ′) ≤ Z[2](r,Φ
′) + Z[2](r,Ψ

′) +N[2](r,Φ
′) +N[2](r,Ψ

′) + 2Z(r,Φ′)

+ Z(r,Ψ′) + 2N(r,Φ′) +N(r,Ψ′) + S(r,Φ′) + S(r,Ψ′), (3.4)
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and using Lemma 2.2, we have

T (r,Ψ′) ≤ Z[2](r,Ψ
′) + Z[2](r,Φ

′) +N[2](r,Ψ
′) +N[2](r,Φ

′) + 2Z(r,Ψ′)

+ Z(r,Φ′) +N(r,Φ′) + S(r,Φ′) + S(r,Ψ′). (3.5)

From Lemma 2.4, we have

Z(r, f ′)+Z(r,F ′) ≤ Z(r, f−a2)+
1

t
N(r, f)+Z(r,F−a2)+S(r, f)+S(r,F). (3.6)

Also, we have

Z(r,Q(f)) ≤ kT (r, f) + S(r, f) and Z(r,Q(F)) ≤ kT (r,F) + S(r,F). (3.7)

Using (3.1), (3.2) and (3.4), we obtain

T (r,Φ) ≤
(
1 +

4

s

)
Z(r, f) +

3

s
Z(r,F) +

l∑
i=2

(4− ki)Z(r, f − ai) + 3

l∑
i=2

Z(r,F − ai)

+ 2Z(r,F ′) +
4

t
N(r, f) + 2Z(r, f ′) + Z(r,Q(f)) + S(r, f) + S(r,F).

(3.8)

Similarly, using (3.1), (3.3) and (3.5), we have

T (r,Ψ) ≤
(
1 +

4

s

)
Z(r,F) +

3

s
Z(r, f) +

l∑
i=2

(4− ki)Z(r,F − ai) + 3

l∑
i=2

Z(r, f − ai)

+ 2Z(r, f ′) +
3

t
N(r, f) + 2Z(r,F ′) + Z(r,Q(F)) + S(r, f) + S(r,F).

(3.9)

Both Φ and Ψ are polynomials of degree n+ k + 1 in f and F respectively. Thus,
by adding (3.8) and (3.9) and using (3.6), (3.7), Lemma 2.2 and Lemma 2.3, we get

(n+ k + 1){T (r, f) + T (r,F)}

≤
(
1 +

7

s

){
Z(r, f) + Z(r,F)

}
+

l∑
i=3

(7− ki)
{
Z(r, f − ai) + Z(r,F − ai)

}
+

7

t
N(r, f) + 4

{
Z(r, f − a2) +N(r, f) + Z(r,F − a2)

}
+ k

{
T (r, f) + T (r,F)

}
+ (7− k2)

{
Z(r, f − a2) + Z(r,F − a2)

}
+ S(r, f) + S(r,F).

This implies[
n− 7

s
−

l∑
i=3

max(0, 7− ki)−max(0, 11− k2)

](
T (r, f) + T (r,F)

)
≤ S(r, f) + S(r,F) +

11

t
N(r, f),

since N(r,f)
T (r,f)+T (r,F) ≤

N(r,f)
T (r,f) , we have[

n− 7

s
−

l∑
i=3

max(0, 7− ki)−max(0, 11− k2)

]
≤ S(r, f) + S(r,F)

T (r, f) + T (r,F)

+
11

t

(
1− δ(∞, f)

)
,
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which contradicts,

n >
[(

1− δ(∞, f)
)(

11

t

)
+

(
7

s

)
+

l∑
i=3

max(0, 7− ki) +max(0, 11− k2)
]
.

Subcase 1.2. Suppose if (2) of Lemma 2.10 holds. Then Φ′Ψ′ = α2, a contradic-
tion by Lemma 2.6.
Subcase 1.3. Suppose if (3) of Lemma 2.10 holds. Then Ψ′ = Φ′. From this we
deduce that Ψ = Φ+c1, for some constant c1 and hence T (r,F) = T (r, f)+S(r,F).
We claim that c1 = 0. If not, then we have Φ = Ψ − c1. By Nevanlinna’s Second
Fundamental Theorem and (3.7), we get

T (r,Ψ) ≤ N(r,Ψ) + Z(r,Ψ) + Z(r,Ψ− c1) + S(r,F)

≤ Z(r,F) + Z(r,Q(F)) + Z(r, f) + Z(r,Q(f)) + S(r,F)

≤
(
2k +

2

s

)
T (r,F) + S(r,F),

i.e.,
[
n−

(
k − 1 + 2

s

)]
T (r,F) ≤ S(r,F), a contradiction as n > k + 2 and k + 2 >

k − 1 + 2
q . This proves our claim and so P (f) = P (F). Hence P (z) being a

polynomial of uniqueness gives f = F .
Case 2. Let w = 1. By using the Lemma 2.9 and considering the three subcases
just like Case 1 and following the proof in a similar manner we can arrive at the
required conclusion.
Case 3. Let w ≥ 2. By using the Lemma 2.8 and considering the three subcases
just like Case 1 and following the proof in a similar manner we can arrive at the
required conclusion.
This completes the proof of Theorem 1.1. □

3.2. Proof of Theorem 1.2. Since all k′is are equal to 1, the proof follows exactly
in a similar manner to the proof of Theorem 1.1 by taking Z[2](r,Φ

′) ≤ 2Z(r, f) +∑l
i=2 Z(r, f − ai) + Z(r, f ′) (Similarly for Z[2](r,Ψ

′)) and by taking Z(r, f ′) ≤
Z(r, f) +N(r, f).

3.3. Proof of Theorem 1.3.

Proof. As in the proof of Theorem 5 in [3], suppose P (x) ∈ C[x] is a polynomial
such that P ′(x) = xn(x− a). Let Φ = P (f) and Ψ = P (F). Then Φ′ and Ψ′ share
(α,w). Then by a similar argument as in Theorem 1.1, we have

Z[2](r,Φ
′) + Z[2](r,Ψ

′) +N[2](r,Φ
′) +N[2](r,Ψ

′)

≤ 2Z(r, f) + Z(r, f − a) + Z(r, f ′) + 2Z(r,F) + Z(r,F − a)

+ Z(r,F ′) + 2N(r, f) + 2N(r,F) + S(r, f) + S(r,F)

≤ 2

s
Z(r, f) + Z(r, f − a) + Z(r, f ′) +

2

s
(r,F) + Z(r,F − a)

+ Z(r,F ′) +
2

t
N(r, f) + S(r, f) + S(r,F). (3.10)
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Using Lemma 2.5 and noting that P (x) = xn+1Q∗(x) for some polynomial Q∗(x) ∈
C[x] with deg(Q∗) = 1, we get

T (r,Φ) ≤ T (r,Φ′) + Z(r, fn+1Q∗(f))− Z(r, f ′P ′(f)) + S(r, f)

≤ T (r,Φ′) + (n+ 1)Z(r, f) + Z(r,Q∗(f))− nZ(r, f)− Z(r, f − a)

− Z(r, f ′) + S(r, f)

≤ T (r,Φ′) + Z(r, f) + Z(r,Q∗(f))− Z(r, f − a)− Z(r, f ′) + S(r, f).
(3.11)

Similarly, we get

T (r,Ψ) ≤ T (r,Ψ′)+Z(r,F)+Z(r,Q∗(F))−Z(r,F−a)−Z(r,F ′)+S(r,F). (3.12)

We now distinguish the following three cases:
Case 4. Let w = 0. Now we consider the following three subcases:
Subcase 4.1. Suppose that (1) of Lemma 2.10 holds. Then

T (r,Φ′) ≤ Z[2](r,Φ
′) + Z[2](r,Ψ

′) +N[2](r,Φ
′) +N[2](r,Ψ

′) + 2Z(r,Φ′)

+ Z(r,Ψ′) + 2N(r,Φ′) +N(r,Ψ′) + S(r,Φ′) + S(r,Ψ′), (3.13)

and using Lemma 2.2, we have

T (r,Ψ′) ≤ Z[2](r,Ψ
′) + Z[2](r,Φ

′) +N[2](r,Ψ
′) +N[2](r,Φ

′) + 2Z(r,Ψ′)

+ Z(r,Φ′) +N(r,Φ′) + S(r,Φ′) + S(r,Ψ′). (3.14)

From Lemma 2.4, we have

Z(r, f ′)+Z(r,F ′) ≤ Z(r, f−a)+
1

t
N(r, f)+Z(r,F−a)+S(r, f)+S(r,F). (3.15)

Also, we have

Z(r,Q∗(f)) ≤ T (r, f) + S(r, f) and Z(r,Q∗(F)) ≤ T (r,F) + S(r,F). (3.16)

Using (3.10), (3.11) and (3.13), we obtain

T (r,Φ) ≤
(
1 +

4

s

)
Z(r, f) +

3

s
Z(r,F) + 2Z(r, f − a) + 2Z(r,F − a)

+ 2Z(r,F ′) + 2Z(r, f ′) +
4

t
N(r, f) + Z(r,Q∗(f)) + S(r, f) + S(r,F).

(3.17)

Similarly, using (3.10), (3.12) and (3.14), we have

T (r,Ψ) ≤
(
1 +

4

s

)
Z(r,F) +

3

s
Z(r, f) + 2Z(r,F − a) + 2Z(r, f − a)

+ 2Z(r, f ′) + 2Z(r,F ′) +
3

t
N(r, f) + Z(r,Q∗(F)) + S(r, f) + S(r,F).

(3.18)

Since Φ and Ψ are polynomials in f and F respectively and both of them are of
degree n + 2, by adding (3.17), (3.18) and using (3.15), (3.16), Lemma 2.2 and
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Lemma 2.3 we get

(n+ 2)
{
T (r, f) + T (r,F)

}
≤

(
1 +

7

s

){
Z(r, f) + Z(r,F)

}
+

{
T (r, f) + T (r,F)

}
+

7

t
N(r, f) + 4

{
Z(r, f − a) +N(r, f) + Z(r,F − a)

}
+ 4

{
Z(r, f − a) + Z(r,F − a)

}
+ S(r, f) + S(r,F).

This implies[
n− 7

s
− 8

](
T (r, f) + T (r,F)

)
≤ S(r, f) + S(r,F) +

11

t
N(r, f),

since N(r,f)
T (r,f)+T (r,F) ≤

N(r,f)
T (r,f) , thus we have[

n− 7

s
− 8

]
≤ S(r, f) + S(r,F)

T (r, f) + T (r,F)
+

11

t

(
1− δ(∞, f)

)
,

which contradicts n >
[
8 + (1− δ(∞, f))

(
11
t

)
+

(
7
s

) ]
.

Subcase 4.2. Next we assume that (2) of Lemma 2.10 holds. Then Φ′Ψ′ = α2,
i.e., fn(f−a)f ′Fn(F−a)F ′ = α2. Then by Lemma 2.7 we arrive at a contradiction

as n >
[
8 +

(
1− δ(∞, f)

) (
11
t

)
+

(
7
s

) ]
.

Subcase 4.3. Suppose (3) of Lemma 2.10 holds. Then Ψ′ = Φ′. From this we
deduce that Ψ = Φ+c2, for some constant c2 and hence T (r,F) = T (r, f)+S(r,F).
We claim that c2 = 0. If not, then we have Φ = Ψ − c2. By Nevanlinna’s Second
Fundamental Theorem and (3.16), we get

T (r,Ψ) ≤ N(r,Ψ) + Z(r,Ψ) + Z(r,Ψ− c2) + S(r,F)

≤ Z(r,F) + Z(r,Q∗(F)) + Z(r, f) + Z(r,Q∗(f)) + S(r,F)

≤
(
2 +

2

s

)
T (r,F) + S(r,F),

i.e.,
[
n− 2

s

]
T (r,F) ≤ S(r,F), a contradiction as n >

[
8+(1−δ(∞, f))

(
11
t

)
+
(
7
s

) ]
.

This proves our claim and so we have P (f) = P (F). Let f = hF . If h = 1, we
have f = F . Otherwise, P (f) = P (F) gives

fn+2

n+ 2
− a

fn+1

n+ 1
=

Fn+2

n+ 2
− a

Fn+1

n+ 1
,

i.e., fn+1

(
f − a

n+ 2

n+ 1

)
= Fn+1

(
F − a

n+ 2

n+ 1

)
.

From the above relation it follows that

f =
a(n+ 2)

n+ 1

(1− hn+1)

(1− hn+2)
h and F =

a(n+ 2)

n+ 1

(1− hn+1)

(1− hn+2)
.

Case 5. Let w = 1. By using the Lemma 2.9 and considering the three subcases
just like Case 4 and following the proof in a similar manner we can arrive at the
required conclusion.
Case 6. Let w ≥ 2. By using the Lemma 2.8 and considering the three subcases
just like Case 4 and following the proof in a similar manner we can arrive at the
required conclusion.
This completes the proof of Theorem 1.3. □
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3.4. Proof of Theorem 1.4.

Proof. Let

P (x) =
xm+n+1

m+ n+ 1
−ma

xm+n

m+ n
+

m(m− 1)a2

2

xm+n−1

m+ n− 1
− · · ·+ (−1)mamxn+1

n+ 1
,

(3.19)
such that P ′(x) = xn(x − a)m, where m ≥ 2. Let Φ = P (f) and Ψ = P (F).
Then Φ′ and Ψ′ share (α,w). Note that P (x) = xn+1Q1(x) of degree m. Then we
consider the following three cases.
Case 7. Let w = 0. Then we consider the following three subcases as in Theorem
1.1.
Subcase 7.1. Suppose that (1) of Lemma 2.10 holds. Then

T (r,Φ′) ≤ Z[2](r,Φ
′) + Z[2](r,Ψ

′) +N[2](r,Φ
′) +N[2](r,Ψ

′) + 2Z(r,Φ′)

+ Z(r,Ψ′) + 2N(r,Φ′) +N(r,Ψ′) + S(r,Φ′) + S(r,Ψ′), (3.20)

and using Lemma 2.2, we have

T (r,Ψ′) ≤ Z[2](r,Ψ
′) + Z[2](r,Φ

′) +N[2](r,Ψ
′) +N[2](r,Φ

′) + 2Z(r,Ψ′)

+ Z(r,Φ′) +N(r,Φ′) + S(r,Φ′) + S(r,Ψ′). (3.21)

From Lemma 2.4, we have

Z(r, f ′)+Z(r,F ′) ≤ Z(r, f−a)+
1

t
N(r, f)+Z(r,F−a)+S(r, f)+S(r,F). (3.22)

Also we have

Z(r,Q1(f)) ≤ mT (r, f)+S(r, f) and Z(r,Q1(F)) ≤ mT (r,F)+S(r,F). (3.23)

Then by a similar argument as in Subcase 1.1 of Case 1 of Theorem 1.1, we get a

contradiction as n >
[
(1− δ(∞, f))

(
11
t

)
+

(
7
s

)
+max(0, 11−m)

]
.

Subcase 7.2. Next we assume that (2) of Lemma 2.10 holds. Then Φ′Ψ′ = α2.

By Lemma 2.7 we arrive at a contradiction as n >
[
2m(t+1)

t

]
− (m− 1).

Subcase 7.3. Suppose (3) of Lemma 2.10 holds. Then Ψ′ = Φ′. From this we
deduce that Ψ = Φ+ c3. We claim that c3 = 0, if not then proceeding like Subcase

1.3 of Case 1 of Theorem 1.1,, we arrive at a contradiction as n >
[
2m(t+1)

t

]
−(m−1)

and
[
2m(t+1)

t

]
− (m− 1) >

(
2
s

)
+ (m− 1). Let h = f

F . If h is constant, then using

(3.19) we get

bmgm(hm+n+1 − 1) + bm−1g
m−1(hm+n − 1) + · · ·+ b0(h

n+1 − 1) ≡ 0,

where bm = 1
m+n+1 , bm−1 = −ma

m+n , ..., b0 = (−1)mam

n+1 with a ̸= 0, which implies that

hu = 1, where u = gcd(m+ n+ 1,m+ n, ..., n+ 1). Thus f = dF , for a constant d
such that du = 1. If h is not a constant, then f and F satisfy the algebraic equation
R(f,F) = 0, where

R(ω1, ω2) =

ωn+1
1

(
ωm
1

m+ n+ 1
−ma

ωm−1
1

m+ n
+

m(m− 1)a2

2

ωm−2
1

m+ n− 1
− · · ·+ (−1)mam

n+ 1

)
− ωn+1

2

(
ωm
2

m+ n+ 1
−ma

ωm−1
2

m+ n
+

m(m− 1)a2

2

ωm−2
2

m+ n− 1
− · · ·+ (−1)mam

n+ 1

)
.
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Moreover, by Lemma 2.11, we get f = F , for m = 2 and a = 1.
Case 8. Let w = 1. By using the Lemma 2.9 and considering the three subcases
just like Case 7 and following the proof in a similar manner we can arrive at the
required conclusion.
Case 9. Let w ≥ 2. By using the Lemma 2.8 and considering the three subcases
just like Case 7 and following the proof in a similar manner we can arrive at the
required conclusion.
This completes the proof of Theorem 1.4. □

4. Conclusion

L-functions are Selberg class functions with Riemann zeta function as the pro-
totype and since L-functions are analytically continued as meromorphic functions,
it is easy to study the value distribution and uniqueness problems on L-functions
and arbitrary meromorphic functions. Also since L-functions neither have a pole
nor zero at the origin, but is having only possible pole at s = 1 allows us to build
upon and extend the previous results obtained by Boussaf et al. [3] and enables us
to obtain uniqueness results on a L-function F and an arbitrary meromorphic func-
tion f , in the form f ′P ′(f) and F ′P ′(F). Consideration of the concept of weighted
sharing and least multiplicity further generalizes the results.
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